Introduction to SIM Cards
Part 1 : SIM Concepts

1. Overview of GSM Networks
2. SIM in GSM Networks
3. Introduction to GSM 11.11

Part 2 : SIM Applications

1. Anti-Cloning and Authentication Counter
2. Local Applications
3. Point to Point Applications
Overview of GSM Networks
What is GSM?

Original name:
Groupe Spéciale Mobile

GSM now stands for:
Global System for Mobile communication
Key Features of GSM

GSM properties:

- Open standard
- Provision of roaming
- SIM
- Digital (ISDN compatible)
- TDMA (Time Division Multiple Access)
MS: Mobile Station = Mobile equipment + SIM
Network Elements

BSS: Base Station System
Network Elements

Base Station System

BSC: Base Station Controller
BTS: Base Transceiver Station
Abbreviations:

HLR: Home Location Register
VLR: Visiting Location Register
AUC: Authentication Center
EIR: Equipment Identity Register
MSC: Mobile Switching Center
GMSC: Gateway MSC
OMC: Operational and Maintenance Center
SMSC: Short Message Service Center
Network Elements

The core network

Gateway to
- PLMN roaming
- PSTN
- others

Network Elements:

OMC

GMSC

BSC

AUC

HLR

VLR

EIR

SMSC
SIM in GSM Networks
What is a SIM?

SIM stands for:

Subscriber Identity Module
The purpose of a SIM:

- Identify a user
- Authenticate a user
- Data storage
- Marketing tool
- Portable
What is in a SIM?

Hardware:
- CPU
- I/O devices
- ROM
- RAM
- EEPROM

ROM:
- Basic OS functionality
- GSM functionality
- SIM vendor functionality
- Network operator functionality (optional)
- Fixed data (optional)

EEPROM:
- Setup for OS
- Patches to the OS
- Extensions to the OS
- Data
Architecture of standard SIM

Architecture of first Generation SIM

APDU Dispatch

ISO 7816-4 APDUs

GSM 11.11
Subscriber Identity Module – Mobile Equipment (SIM-ME) Interface

ISO 7816-4 File System
What is required to activate the SIM in the GSM network?

- Input file
- Output file
- Transport Key (Optional)
- SIM Card (with network profile)
- Algorithm Type
1. Input File, profile, keys

2. Output File

3. Perso data

Network Side

HLR

AUC (Stores IMSI, KI values)

Card Vendor

Data Gen

(Stores ICCID, IMSI, PINs)
* HEADER DESCRIPTION

Customer: TELCO
Quantity: 4500
Type: PLUG IN
Profile: 5.0
Batch: 00045
*
Transport_key: 001
*
Address1: TELCO
Address2: COUNTRY

* INPUT VARIABLES

var_in_list:
IMSI: 238993210070000
Ser_nb: 894502300000070000

* OUTPUT VARIABLES

var_out: PIN/PUK/PIN2/PUK2/Code_ADM/KI

Quantity
Transport Key Index
Start IMEI
Start ICCID
* HEADER DESCRIPTION

Customer: TELCO
Quantity: 4500
Type: PLUG IN
Profile: 5.0
Batch: 00045
*
Transport_key: 001
*
Address1: TELCO
Address2: COUNTRY

* INPUT VARIABLES

var_in_list:
IMSI: 238993210070000
Ser_nb: 894502300000070000

* OUTPUT VARIABLES

var_out: PIN/PUK/PIN2/PUK2/Code_ADM/KI
894502300000070000 238993210070000 1234 12345678 0000 12345678 88888888
12345678901234567890123456789012

Subscriber data
Objective: To protect the KI value during transport of file from SIM vendor to Network Operator.
The action on the air interface

RAND: random value
SRES: response for authentication
GSM Authentication Process

Ki RAND

IMSI

A8 A3

Kc

SRES

Ki RAND

A3

SRES'

Comparison
Confidentiality in GSM

Encrypted Voice Data Channel

A5_Kc[Data] -- A5_Kc[Data]

20 September 2007
Comp 128 algorithm

<table>
<thead>
<tr>
<th>SIM Process</th>
<th>Comp 128 consists of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-A3 δ Authentication Algorithm</td>
</tr>
<tr>
<td></td>
<td>-A8 δ K_c Calculation Algorithm</td>
</tr>
</tbody>
</table>

| ME Process | -A5 δ Voice Data Encryption Algorithm |

To use the Comp 128 command, ME calls SIM command:
RUN_GSM_ALGO

RUN_GSM_ALGO returns a 12-bytes response, of which 4 bytes are the SRES, and 8 bytes are the K_c.
Kᵢ is never revealed in the network

Kᵢ is never passed from SIM card to Mobile Phone

All Authentication Calculations including Kₖ are done in the SIM card
Introduction to GSM 11.11
GSM Specifications

- Defined by ETSI
- AKA European Telecommunications Standards Institute
- All the specs can be downloaded at http://www.3gpp.org/ftp/Specs/
Functions of a SIM card

<table>
<thead>
<tr>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 2+</th>
</tr>
</thead>
<tbody>
<tr>
<td>📞 Subscriber Authentication to the network</td>
<td>📞 More Security PIN2</td>
<td>📞 Service Dialing Numbers (SDNs)</td>
</tr>
<tr>
<td>📞 PIN protection to Subscriber Data</td>
<td>📞 Fixed Dialing Numbers (FDNs)</td>
<td>📞 Barred Dialing Numbers (BDNs)</td>
</tr>
<tr>
<td>📞 Phonebook Storage</td>
<td>📞 Public Land Mobile Networks (PLMNs)</td>
<td>📞 Over The Air (OTA)</td>
</tr>
<tr>
<td>📞 SMS Storage</td>
<td></td>
<td>📞 SIM ToolKit (STK)</td>
</tr>
</tbody>
</table>
GSM 11.11 Basic SIM Specifications

File System

- Purpose of each file
- Default Contents
- Access Conditions

Command Set

- APDU Coding of commands
- Coding of responses
- Communication Protocol

Power Up Procedure
1. Transparent File

- Consists of sequence of bytes
- Total length of file is defined in the header
- Relative address is used for reading or updating data in file

2. Linear Fixed File

- Consists of sequence of records all having same fixed length
- First record has index number 1
- Number of record and length is defined in the header
- Record Number is used for reading or updating data in file

3. Cyclic File

- Consists of sequence of records all having same fixed length
- Number of record and length is defined in the header
- Stores data in chronological order
- When record pointer is at last record, record 1 will be used next
More important Files (EF) and Folders (DF) includes:

Master File (Base Directory)

- **EF_ICCID**
 - Integrated Circuit Chip ID
 - Each card is unique
 - Assigned by operator
 - 19 Digit printed on exterior of SIM
 - Follows international format

- **DF Telecom**
 - **EF_ADN**
 - Phonebook
 - **EF_SMS**

- **DF GSM**
 - **EF_IMSI**
 - International Mobile Subscriber ID
 - Each card is unique
 - Assigned by operator
 - Network to identify SIM
SIM Card File System

- MF (ROOT) 3F00
- EF_ICCID 2FE2
- EF_MANU 0002
- EF_KEY_EXT 0011
- EF_CHV1 0000
- EF_CHV2 0100
- DF_GSM 7F20
- EF_KEY_INT 0001
- EF_PLMNSEL 6F30
- DF_TELECOM 7F10
- EF_ADN 6F3A
- EF_SMS 6F3C
- EF_MSISDN 6F40

Addr Book

Short Message

PIN1

PIN2
Format of ICCID

Primary account number
19 visible characters (maximum)

Issuer identification number (digits variable, maximum 7)
8 9

Individual account identification number
(variable, but fixed number of digits for each particular issuer identifier number)

Issuer identifier number
(variable, but fixed number of digits within a country or world zone where appropriate)

Country code: Recommendation E.164 [2]
(variable, 1 to 3 digits)

Major Industry Identifier (MII)
(Standard ISO/IEC 7812) [1]
"89" is assigned for telecommunication purposes to ROAs

Charge card numbering system
ICCID is the SIM cards unique identification number and is coded in accordance to ITU-T recommendation E.118 (18).

Format : 89 66 15 XTH YYYYYYYYY C

Number of digits ICCID : 19 digits including check digit

- 89 : Telecom Application Code
- 66 : Mobile country Code (eg. Thailand)
- 18 : Mobile Network Code (eg. DTAC)
- X : Card Manufacture Code
- T : Type of card (ID-1=1 and Plug-in=2)
- H : HLR ID (HLR1=0, HLR2=1, HLR3=2)

YYYYYYYYYY : Sequential Number

C : Luhn key computed from the 18 previous digits (1 nibble)

Example : 89661 51100 00000 001 -7
Use of ICCID in Graphical Personalisation

ICCID

2 rows vertical x 10 digits each row or
5 rows horizontal x 4 digits each row

Barcode

8966 1811 0000 0000 01 7

89661 81100 00000 001-7
Format of IMSI

<table>
<thead>
<tr>
<th></th>
<th>MCC</th>
<th>MNC</th>
<th>MSIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

IMO
IMSI Format IMSI is the International Mobile subscriber Identity. Length of IMSI coding must be according to GSM 04.48 [15]. IMSI is coded on 15 digits, according to the following structure:

MCCNCXXXXXXXXXX e.g. 520181000000001

MCC Mobile network country code defined by GSM11.11. ‘520’ for Thailand.
NC Network code registered in ITU for the operator. ‘18’ for DTAC.
XX..X Running number of serial number , included HLR ID

Note : The running number taken from the input file and automatically incremented from the initial value.
Important Data

- **Ki**
 - Unique 16 byte secret key used for authentication
 - Usually encrypted with transport key

- **PIN / PUK (Max 8 bytes)**
 - Personal Identification Number (3 tries)
 - PIN Unblocking Key (10 tries)
 - Can be fixed or random specified by operators

- **ADM (Max 8 bytes)**
 - Administrative PIN (5 tries)

Important Algo

- **A3/A8 (COMP128)**
 - Authentication algorithm
 - Version 1, 2 and 3
Basic GSM 11.11 command set includes:

- Select MF/DF/EF
- Read Binary
- Update Binary
- Read Record
- Update Record
- Verify PIN/PUK/ADM
- Run GSM Algo
Part 2 : SIM Applications
Anti Cloning & Authentication Counter
Cloning Kits call RUN_GSM_ALGO command many times with a series of Fake RAND

Analyze SRES returned by the RUN_GSM_ALGO commands

Ki can be found in 40000 to 80000 RUN_GSM_ALGO commands

Only Comp128-1 can be hacked now. Comp128-2 and Comp128-3 are safe from hacking
Methods to curb hacking
1. SIM Solution

<table>
<thead>
<tr>
<th>How</th>
<th>Limit the Number of times RUN_GSM_ALGO command can be called</th>
</tr>
</thead>
</table>

Advantages
- Effective in reducing possibility of SIM cloning

Disadvantages
- Life Span of SIM compromised
- Difficult to find optimal limit
2. Non SIM Solution

| How | Software generates K_i values that can withstand Cloning Kits Analysis
Only these K_i values are used in Perso |
|-----|---|
| Advantages | No SIM technology needed
Easy to Implement
Does not compromise SIM Life-Span |
| Disadvantages | K_i values may still be hacked with new analysis algorithm in the future
Customers may not feel safe |
3. SIM Solution

| How | Detect Fake RAND – eg: Running numbers
Detect unusually high percentage of RUN_GSM_ALGO commands received by the SIM card
Once Hacking Pattern is detected, return a Wrong SRES value, which will thwart the Analysis
Wrong SRES value generation
| Random Number Generation
| Dummy K_i |
3. SIM Solution

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Does not compromise SIM Life-Span</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Very effective as it will not be affected by new Cloning Kits</td>
</tr>
</tbody>
</table>
Comparison of Methods
Comparison Table

<table>
<thead>
<tr>
<th></th>
<th>Authentication Counter</th>
<th>Strong K_i</th>
<th>Pattern Recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIM Solution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Easy to Implement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintain SIM Life Span</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection against New Cloning Kits</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User Applications
Eastcompeace Applications Portfolio may be divided into 2 main categories:

- Local
- Point to Point

Applications Portfolio

- Info on demand
- Data back up
- m-Banking
- Prepaid
- Loyalty
- Internet/E-mail
Local Applications are stand-alone applications, running into the Mobile Station without producing traffic.

Eastcompeace offer of Local Applications includes:
- Dual IMSI
- Phonebook plus
- Enhanced Phonebook
- Multi-Inbox
- Password Manager
- Welcome Note
Dual IMSI

Dual IMSI application allows the operator to offer two different accounts on the same SIM card without any impact on the network side.

Applications:
- Private/Business
- Roaming

Operator Benefits:
- Differentiate the product
- Increase customer satisfaction
- Target specific subscribers segment
Phonebook Plus

Phonebook Plus application provides the SIM card with an increased phonebook, up to 500 entries.

The standard phonebook is duplicated, the user can access by menu two phonebooks, pbook1 and pbook2, each up to 250 entries.

Phonebook is the unique solution that allows increasing SIM phonebook without changing the user experience.

Operator Benefits:
Differentiate the product
Increase customer satisfaction
Enhanced Phonebook

USIM:
- Enhanced Phonebook for USIM allows to access all the 3G Phone Book functionalities (more than 250 entries, second name, additional number, e-mail, ...) even from a 2G handset.
- Enhanced Phonebook makes smoother the 2G migration toward 3G.

SIM:
- Enhanced Book for SIM makes 3G Phonebook functionalities (more than 250 entries, second name, additional number, e-mail, ...) available on a 2G SIM card.

Operator Benefits:
- Differentiate the product
- Increase customer satisfaction
Multi-Inbox

- Multi-Inbox application satisfies the need to store as many SMS as possible.

- The standard Inbox is duplicated, the user can access by menu two Inbox, Inbox1 and Inbox2.

- Once an Inbox is selected, it is managed as the standard SIM Inbox folder, through the ME commands, without changing the user experience.

Operator Benefits:
- Differentiate the product
- Increase customer satisfaction
Password Manager

Password Manager application allows the operator to dedicate a certain amount of memory to the user, where he can store his highly sensitive personal data (credit card number, access codes, ...).

The dedicated space can only be accessed by code presentation.

The secured data can be stored into a secure application server and securely retrieved in case of the SIM card is lost or stolen.

Operator Benefits:
- Differentiate the product
- Increase customer satisfaction
- Increase ARPU
Welcome Note

This application provides a personalized welcome note when the phone is powered up. This application can be used by the operator to display the service branding and the customer’s subscription plan, which will help our customers to guarantee loyalty by improving the user experience.

Welcome message can be modified via OTA, which is a perfect marketing tool to inform each customer of relevant new services or offers available!
Point-to-Point Applications

Point to point applications provide end to end connections to the users. The aim is to offer value added services, generating traffic and revenue for the operator.

Eastcompeace offer of Point to Point applications includes:
 - Smart Lock
 - Group SMS
 - My Secret SMS
 - Flash SMS
Smart Lock

Smart Lock application provides a feature to prevent unauthorized use of your mobile phone. If the user forgot to carry his/her mobile phone or lose it, the user can send a special SMS to his/her phone to lock the SIM card with PIN1.

- The STK-SMS must follow a special format and include a password
- The password can be set through your SIM card’s STK menu
- The SIM card can be unlocked by presenting the password again through the STK menu
Group SMS

Group SMS application assists the user to broadcast information.

Once a group is defined, the application allows to send a SMS to the entire group by single operation.

Definitely, this application produce revenue for the operator, leading to increase SMS traffic per user.

Operator Benefits:
- Differentiate the product
- Increase customer satisfaction
- Increase ARPU
My Secret SMS

My Secret SMS application allows the user to send/receive anonymous SMS, protected by PIN.

Upon the arrival of a secret SMS, the user experience is to receive a standard SMS, the text of which, configurable by the same user, represents the notification of the arrival of a secret SMS.

The “Secret Inbox” can be accessed via menu after a PIN code presentation.

Operator Benefits:
- Differentiate the product
- Increase customer satisfaction
- Increase ARPU
Flash SMS

Flash SMS application offers mobile subscribers the following features:

- Upon receiving SMS, the contents of the SMS are displayed on the mobile phone screen
- the SMS will not be stored in inbox directly
- User scroll down to read the SMS
- At the end of the SMS, the user shall be prompted to save or discard the SMS
Thank you

We are always willing to grow with you.