
"EVOLIUM BTS A9100" (Alcatel technology)

Manufactured by

M/s ITI Mankapur & M/s ITI Raebareli

GSM Network Elements

Mobile Station. MS HLR **Home Location Register.** BTS **Base Transceiver Station** VLR **Visitor Location Register.** BSC **Equipment Identity Register Base Station Controller** EIR **Authentication Center.** MSC Mobile Services Switching Canter. SMS Short Message Service.

2.1 General characteristics

G4 BTS – MBI					
Definition					
Network	GSM 850 or GSM 900, or GSM 1800, or GSM 1900, or Multiband 900/1800 & 900/1900.				
Cabinet	MBI3 or MBI5				
Number of sectors	Max. 3 in MBI3 cabinet, Max. 4 in a MBI5 cabinet.				

EVOLIUM A9100

INDOOR-BTS

(MBI5)

EVOLIUM A9100

INDOOR-BTS

The BTS A9100's has modular design which allows following configurations:

- Omni Configuration,
- Sectorized Configuration and
- Multi Band Architecture.

- Configurations are built from a small primary components.

Quality of BTS.(as per Alcatel version)

- Very high radio performances, in particular
 - * Reception sensitivity, -111 dBm,
 - * Improved Output Power, (Standard 45 W),
- Radio (synthesizer) Frequency Hopping,
- Antenna Diversity (as standards option),
- Minimum Service Interruption
- Very High BTS availability
 - Due to Module Reliability
 - Due to System Architecture,

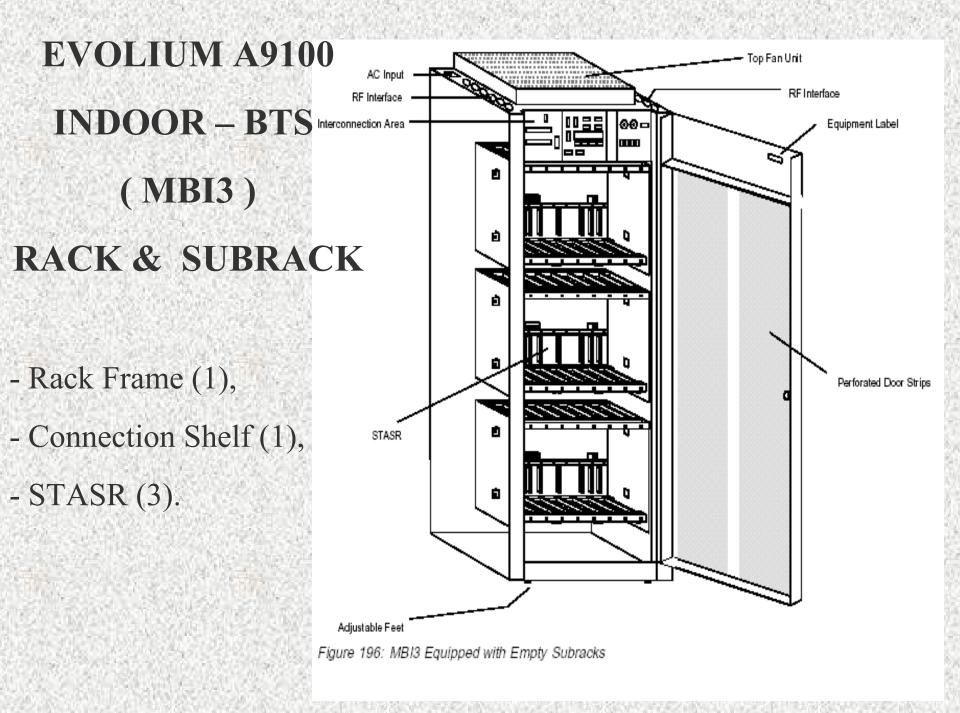
- Optimized software release migration. (Simultaneously stores two software-versions).

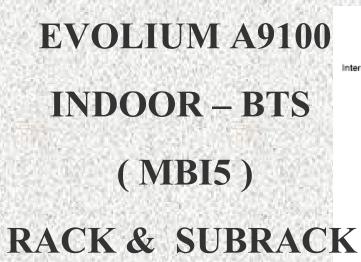
Flexibility of BTS.

- Wide possibilities of extensions and sectorization, within the same cabinet, e.g., the MBO2 cabinet can accommodate up to six sectors with a twelve-TRX total capacity,

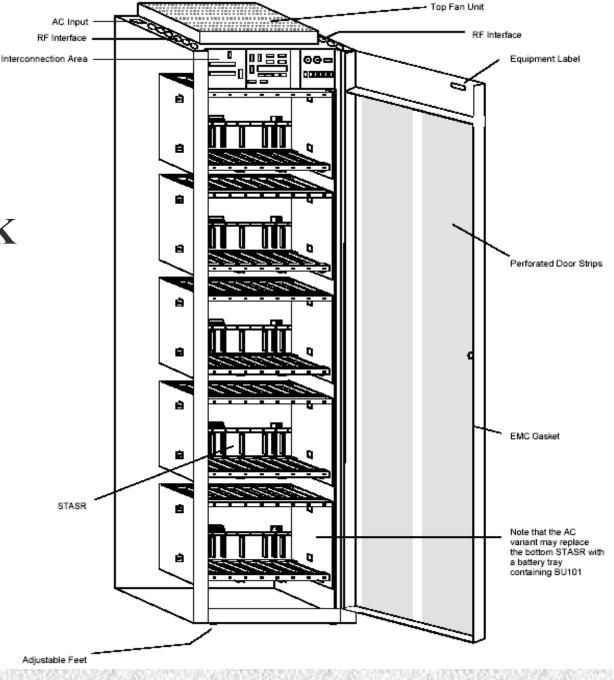
- Outdoor BTS modularity provides flexibility for other equipments (Transmission Equipment, Batteries, Microwave, DDF etc.),

- System Architecture and Cabinet for GSM 850, GSM 900, GSM 1800 and GSM 1900 remains the same,


- High modularity,


- Reduced set of modules and a common interface.

Future Proof BTS.


- GPRS Ready

EDGE Ready by "add TRE" operation
UMTS Ready: the MBI5 and MBO2 outdoor cabinet allow mixed configurations GSM + UMTS.

- Rack Frame (1),
- Connection Shelf (1),
- STASR Shelf (5).

MBI5: Multistandard Base Station Indoor(5 shelves)

STASR: Standard Telecommunication Subrack

4. CABINET DESCRIPTION

4.1 Indoor cabinets description

Two types of indoor cabinets (also called racks) are available: the MBI3 cabinet, with three subracks, and the MBI5 cabinet, with five sub-racks.

Extern		MBI3 BTS	MBI5 BTS	1
Depth		45 cm	45 cm	Ē
Heigh	t	130 cm	194 cm	
Width	1	60 cm	60 cm	
Max. T capac		8 TRX	12 TRX	
ĺ	-		1U 120 mm	
			6U	
			1U 1U	- 6
		Subrack	6U	
	D	ummy panel	1U	— E
		Subrack	6U	
			1U 1U	
			50 mm	
	N	IBI3 BTS		

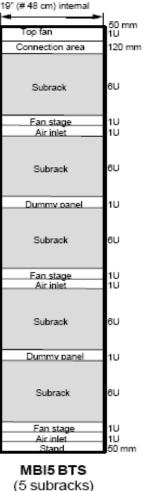


Figure 6: EVOLIUM™ indoor A9100 Base Stations

STASR Subrack Dimensions

Height (TEP/mm)	Width (TEP/mm)	Depth (mm)	
7 HU/311.5	84 WU/431.8	304.4	
(= 6 HU for modules +			
1 HU for fans)			

	Units of Measurement	Standard TEP units of measurement are used for BTS A9100 equipment. Metric and imperial equivalents for the TEP units are as follows:	
		1 HU = 44.45 mm (1.75 inches)	
		▶ 1 WU = 5.08 mm (0.20 inches).	
1			

0	abinet	Height Overall/Usable	Width Overall/Usable	Depth	Weight
	MBI3	1300 mm/23 HU	600 mm/84 WU	450 mm	170 kg fully equipped (AC and DC)
-	MBI5	1940 mm/38 HU	600 mm/84 WU	450 mm	270 kg fully equipped (AC and DC)
	MBO1/MBO1DC	1500 mm/24 HU	825 mm/84 WU	750 mm	95 kg not equipped w/o battery
	MBO2/MBO2DC	1500 mm/24 HU	1500 mm/2 x 84 WU	750 mm	175 kg not equipped w/o battery

MBI3/MBI5 Module Positions

	Top FANUs
	Connector Area
	STASR 5
	Up to 4 TREs
	FANUs
	Air Inlet
	STASR 4
	SUM, ANYs and ANCs
Top FANUs	
Connector Area	Dummy Panel
ASR 3	STASR 3
DC: TREs, ANC AC: ADAM, 2 or 3PM12s,	Up to 4 TREs
BATS (Option)	
FANUs	FANUs
Air Inlet	Air Inlet
ASR 2	STASR 2
DC: SUM, ANYs, ANCs	SUM, ANYs
AC: SUM, ANCs	and ANCs
Dummy Panel	Dummy Panel
ASR 1	STASR 1
DC: Up to 4 TREs	Up to 4 TREs
AC: SUM, TREs	
FANUs	FANUs
Air Inlet	Air Inlet

MBI5 – DC Variant

MBI3 – AC or DC Variant Figure 195: MBI3/MBI5 Module Positions

STASR 3

STASR 2

STASR 1

EVOLIUM A9100 OUTDOOR – BTS (MBO2)

- MBO1 is half of this rack.

OUTDOOR – BTS MBO1

- Battery Unit (BU90),
- Air Con. Unit,
- STASR (3), - OPTIONAL,
- PM12 (1200W) (2).

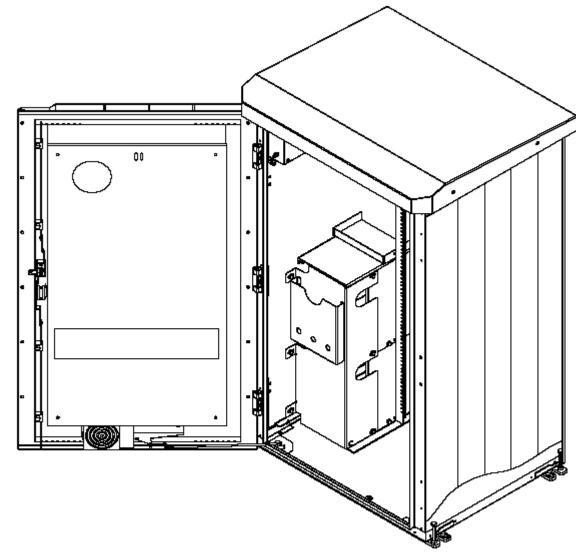
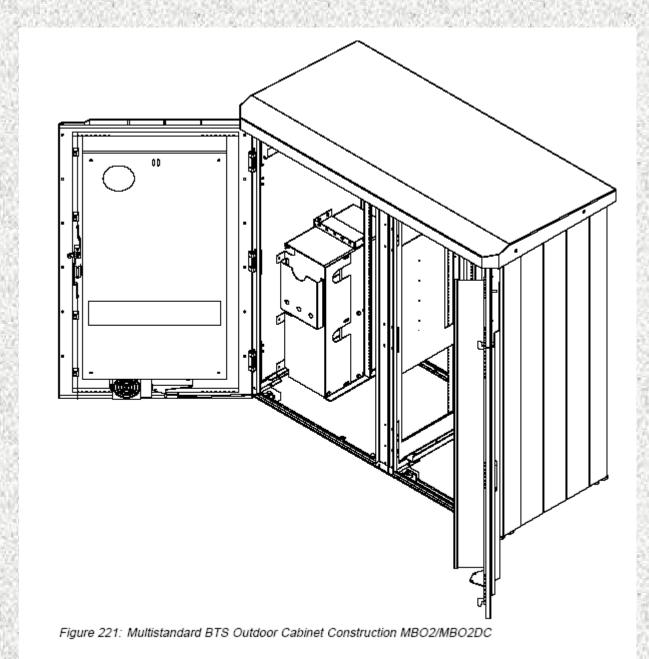



Figure 220: Multistandard BTS Outdoor Cabinet Construction MBO1/MBO1DC

OUTDOOR – BTS MBO2 (MBO1+MBOE)

- Rack Frame (MBO1+MBOE),
- Battery Unit (BU90),
- Heat Exch. Unit,
- STASR (6),
- OPTIONAL,
- PM12 (1200W) (3).

Multi Standard BTS OUTDOOR

External dimensions	MBO1 BTS	MBO2 BTS
Depth	74 cm	74 cm
Height	149 cm	149 cm
Width	90 cm	152 cm
Max TRX capacity	8 TRX	12 TRX

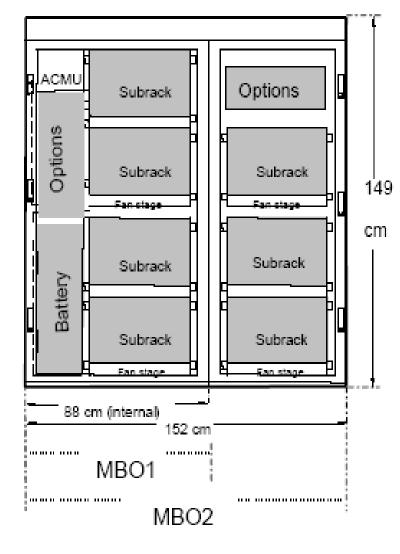
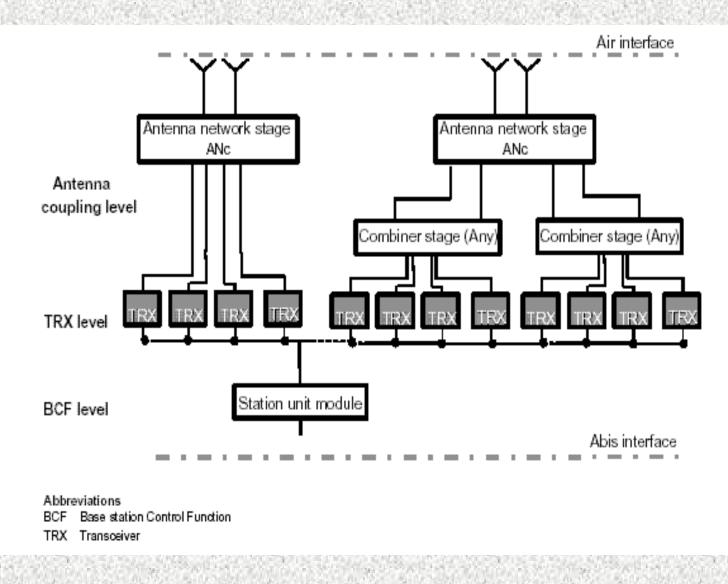
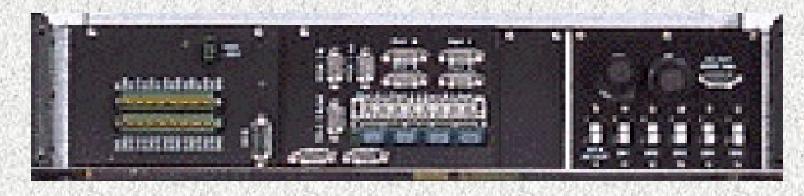
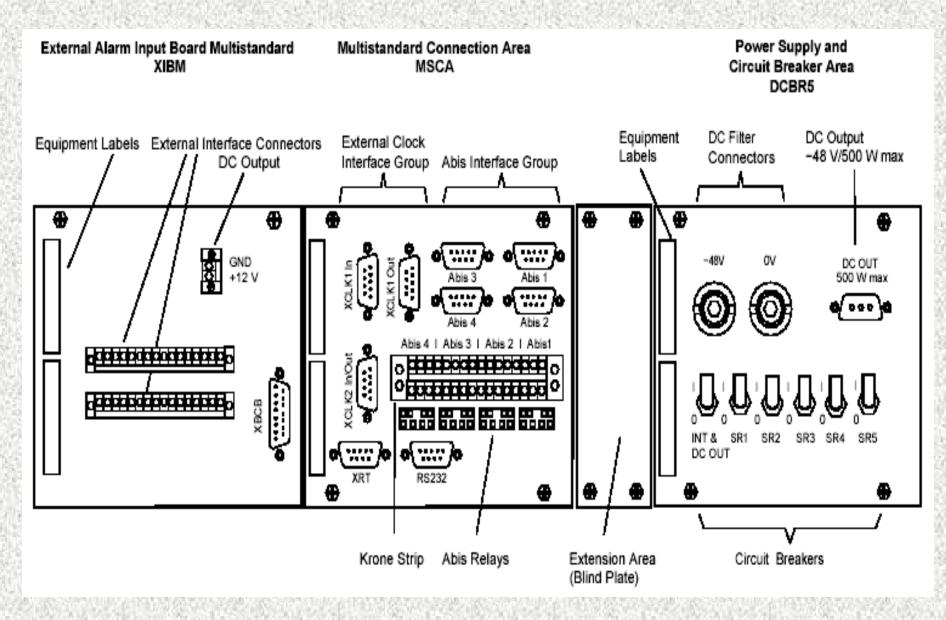



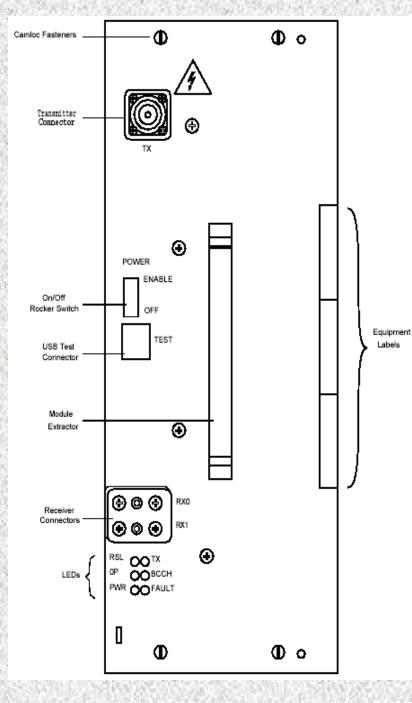
Figure 7: EVOLIUM™ outdoor A9100 Base Station


BTS A9100 MBI5 MODULES/ CABLES

S.No	MNEMO	MODULE PROD.CODE	ICS	ED_MOD
1	MBI5	3BK25965AAAB	01	
2	KMBI5	3BK25980AAAB	el de la cons	03
3	MSCA	3BK26014AAAB	01	02
4	XIBM	3BK26012AAAB	02	03
5	BTSRI5	3BK25974AAAA	02	03
6	DCBR5	3BK25978ABAA	01	03
7	MBU5	3BK25976AAAA		1252114822002
8	STASR	3BK07193CAAB	01	01
9	TFBP	3BK07659AAAA	01	Maria and Andrews
10	FACB	3BK07202ABAA	01	01
11	FANU	3BK07205AAAA	01	
12	CS04	3BK07600AAAA	01	02A
13	CS05	3BK07199CAAB	02	01
14	SP2M	3BK08949AAAA	in Profe	1.
15	FC1U	3BK07601AAAA	01	
16	CS03	3BK07599CAAA	01	01
17	L50N	1AB125380002	Setting the	
18	SUMA	3BK08925AAAC	04	02
19	TRAG	3BK08967ABAC	02	04
20	ANCG	3BK08992AA	02	

A9100 Base Station Architecture (BTS)

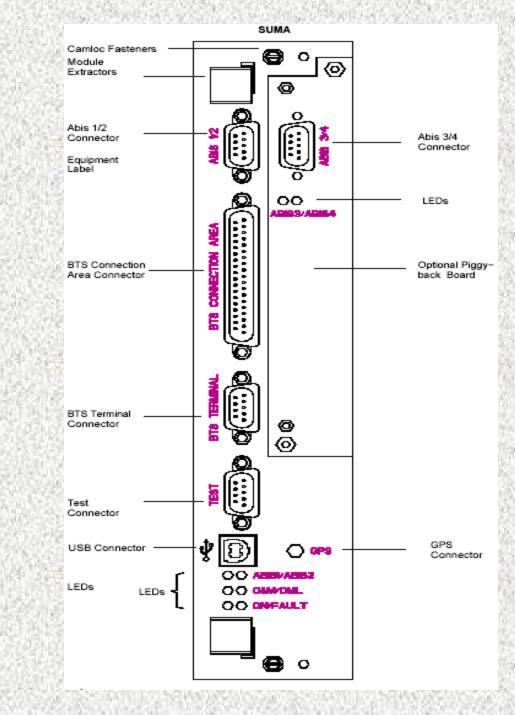

View of Connection Area showing the boards XIBM, MSCA and the Breakers


XIBM MSCA DCBR5

XIBM: External Alarm Input Board Multistandard MSCA: Multistandard Connection Area DCBR5: Power Supply & Circuit Breaker Area

MBI Interconnection Panel

TRE Front Panel (Trans Receive Equipment)



Transceiver (TRX) level

The transceiver (TRX) level covers GSM 850, GSM 900, GSM 1800 and GSM 1900 functionalities, including *full rate*, *half rate*, *enhanced full rate*, *antenna diversity*, *radio frequency hopping (synthesized hopping) and different iphering algorithms*. For each band, these functions are integrated into one single module. Inside each TRX module, an RF loop is implemented. The loop test is performed after downloading the frequencies to the BTS as a supplement to the autotest. The TRX module also handles the Radio Signaling Link (RSL) protocol.

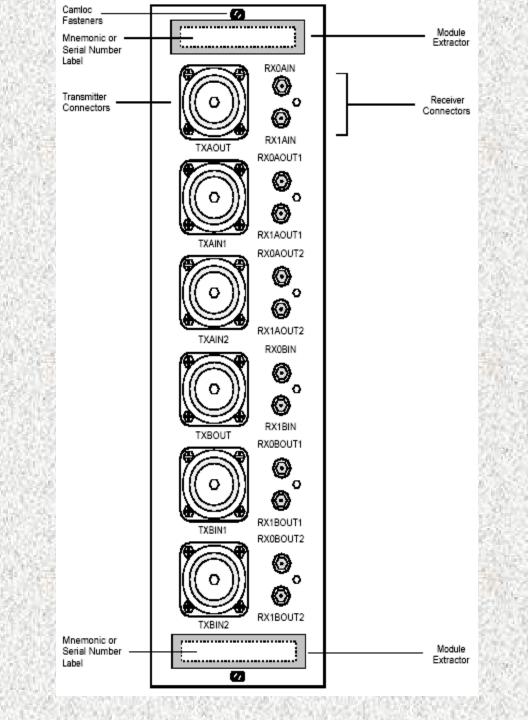
SUMA Controller Card (Station Unit Module Advanced)

2.1.3 Base station Control Function (BCF) level

This level is ensured by the Station Unit Module (SUM), which is the central unit of the BTS. There is only one such module per BTS, whatever the number of sectors and TRXs is; this common control function of the SUM is also called Station Unit Sharing. The main base station control functions performed are as follows:

- Generating the clocks for all other BTS modules; the clocks can be either synchronized to an external clock reference - e.g. A-bis link, GPS or another BTS - or generated in a pure free-run mode by an internal frequency generator.

- Ensuring central BTS Operation & Maintenance (O&M) application,
- Handling the A-bis transmission links (up to two A-bis interfaces),

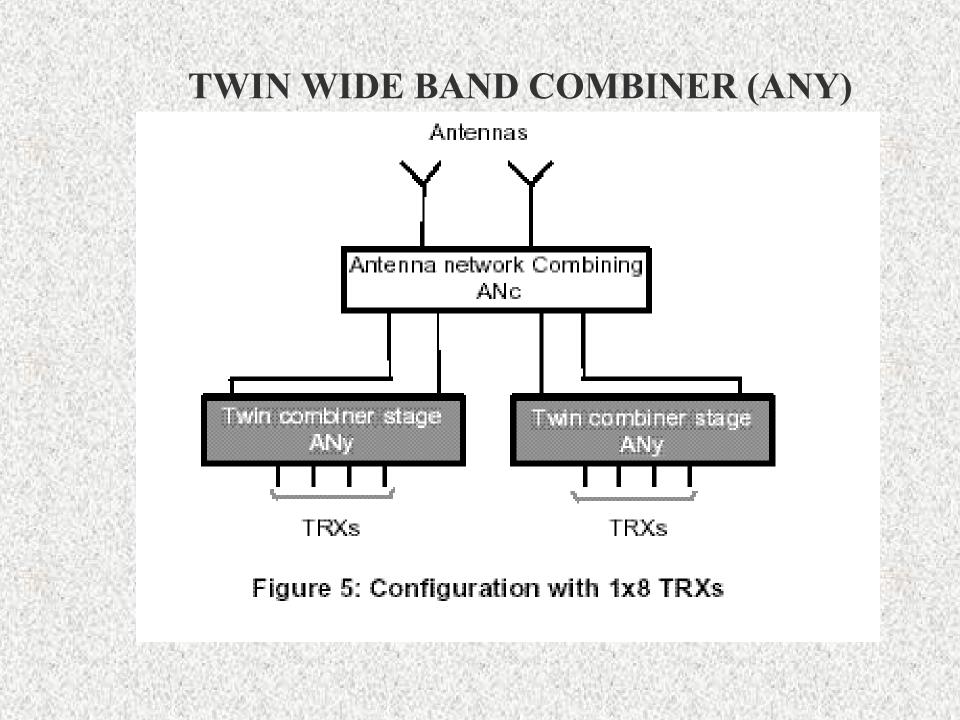

- Handling Operation and Maintenance Link (OML) and Qmux (transmission equipment supervision) protocols,

- Controlling the AC/DC function when integrated inside the BTS (Outdoor or Indoor AC configurations),

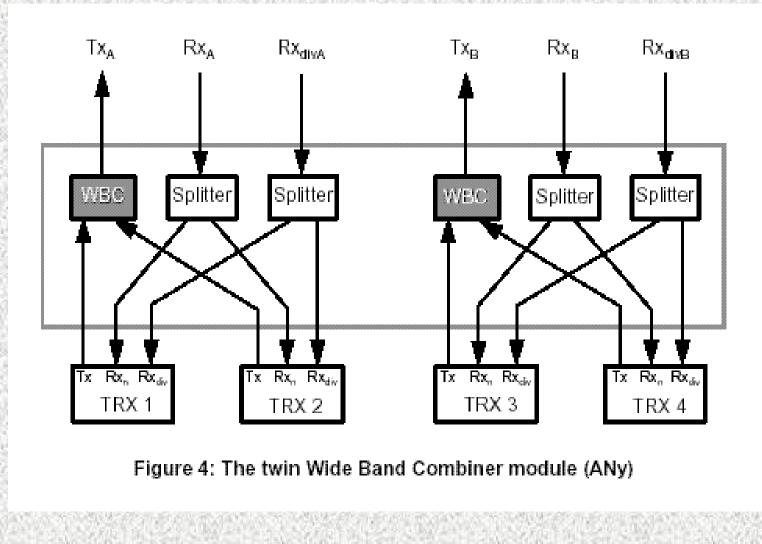
- Controlling the battery (capacity, voltage, temperature),
- Setting the optimal voltage and current for battery charging.

ANY Front Panel (Twin Wide Band Combiner)

The Twin Wide Band Combiner (ANy) module

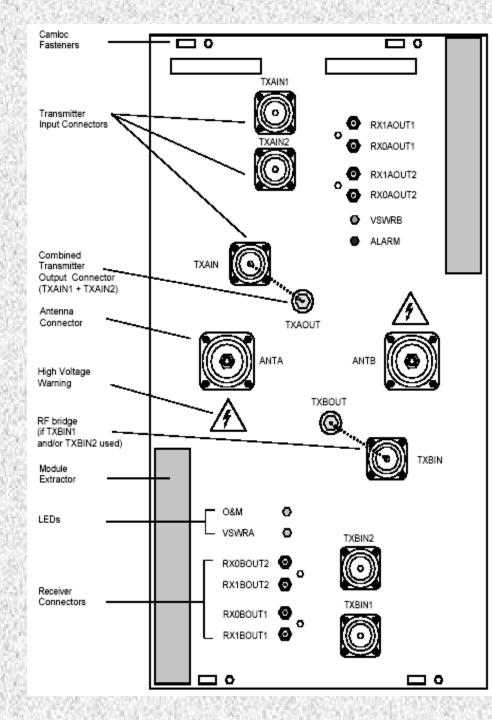

The Twin Wide Band Combiner stage (ANy) combines up to four transmitters into two outputs, and distributes the two received signals up to four receivers. This module includes twice the same structure, each structure containing:

- One wide band combiner (WBC), concentrating two transmitter outputs into one

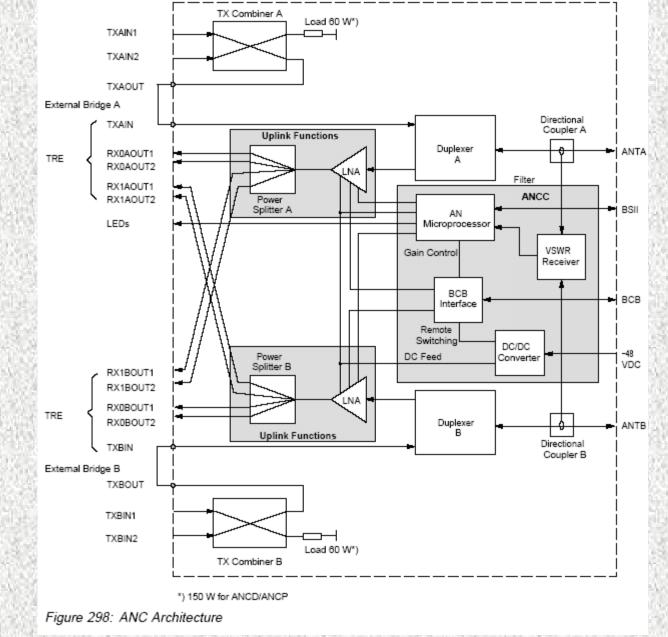

- Two splitters, each one distributing the received signal to two separate outputs providing diversity and non-diversity path. The hybrid Wide-band combining technique is used, since it avoids tuning problems and is more reliable compared to remotely tunable cavities. Moreover it is compatible with the Synthesized Frequency Hopping (SFH) feature.

For standard configurations (for details please refer to dedicated chapter), for which each sector is connected to two antennas (or one cross-polarized antenna), the *Twin Wide Band Combiner* module

(ANy) is only necessary for sectors with five or more TRXs.



TWIN WIDE BAND COMBINER (ANY)



ANC Front Panel

(Antenna Network Combiner)

ANC Architecture

Antenna Coupling Level.

The antenna coupling level is the stage between the antennas and the TRX level; it handles the combining functions as well as the interface with the antennas. A single module called Antenna Network Combiner (ANc) performs these functions for up to 4 TRXs. For configurations of higher capacity, a Combiner stage can be added. Thanks to the ANc flexibility and this modular building, the antenna coupling level can be adapted to a wide range of requirements (reduction of attenuation losses, minimization of the number of antennas...).

The general functions performed at this level are:

- Duplexing transmit and receive paths onto common antennas;
- Feeding the received signals from the antenna to the receiver front end, where the signals are amplified and distributed to the different receivers (Low Noise Amplifier (LNA) and power splitter functions);
- Providing filtering for the transmit and the receive paths;
- Combining, if necessary, output signals of different transmitters and connecting them to the antenna(s);
- Supervising antennas VSWR (Voltage Standing Wave Ratio).

The Antenna Network Combiner (ANc) module

The Antenna Network combiner module (ANc) connects up to four transmit signals to two antennas, and distributes the received signals from each antenna to up to four receivers (for the normal and the diversity reception). This module includes twice the same structure, each structure containing:

- One duplexer allowing a single antenna to be used for the transmission and reception of both downlink and uplink channels- hence minimizing the number of antenna

- A frequency selective VSWR meter to monitor antenna feeder and antenna

- One LNA amplifying the receive RF signal, and giving good VSWR values, noise compression and good reliability

- Two splitter levels distributing the received signal to two or four separate outputs so that each output receive the signal from its dedicated antenna and from the second one (diversity)

- One Wide Band Combiner (WBC), concentrating two transmitter outputs into one, only for configurations with more than two TRX.

Each sector is equipped with at least one such stage, which features very high sensitivity reception, low attenuation, and minimum inter-modulation products.

The ANc can be manually configured (on site) in two modes depending on the number of TRX in the sector:

- The No-combining mode for configuration up to 2 TRX, for which the Wide Band Combiner is not needed therefore bypassed.

- The Combining mode for configuration from 3 up to 4 TRX, for which the Wide Band combiner is not bypassed.

Each sector is equipped with at least one such stage, which features very high sensitivity reception, low attenuation, and minimum inter-modulation products.

The ANc can be manually configured (on site) in two modes depending on the number of TRX in the sector

- The No-combining mode for configuration up to 2 TRX, for which the Wide Band Combiner is not needed therefore bypassed.

- The Combining mode for configuration from 3 up to 4 TRX, for which the Wide Band combiner is not bypassed.

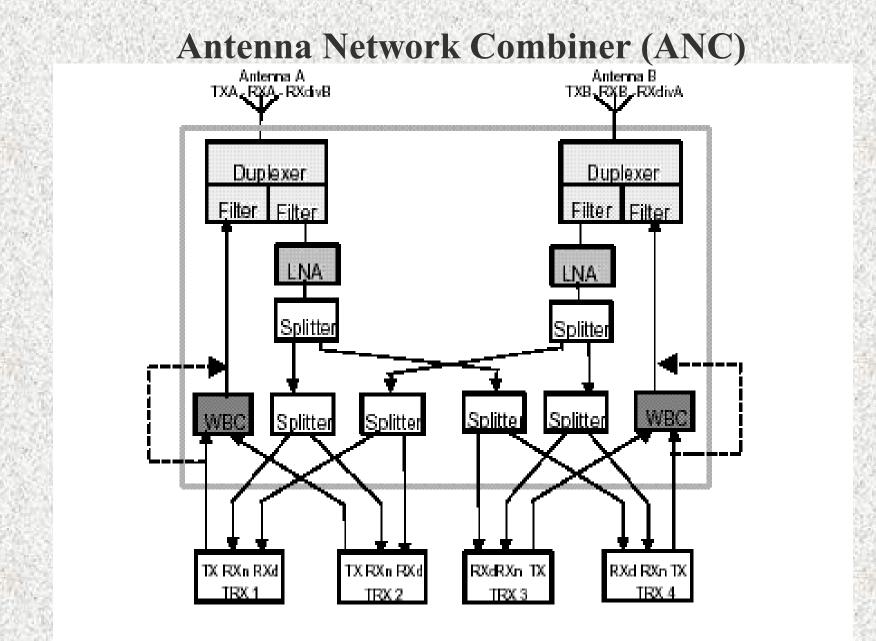
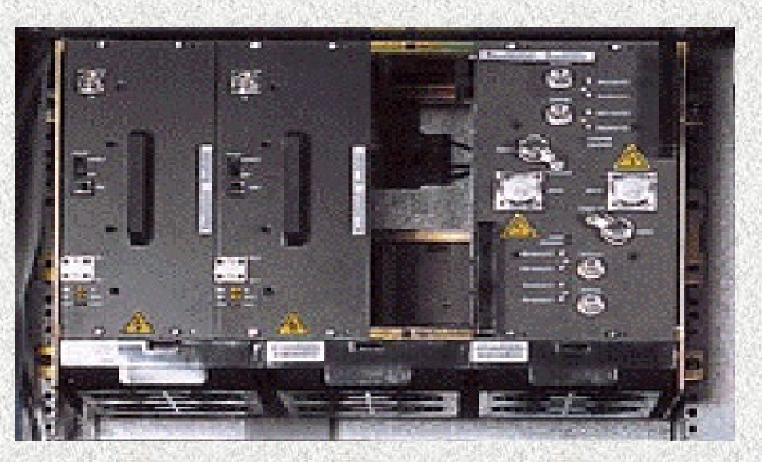


Figure 3: The Antenna network Combiner (ANc)- Combining mode

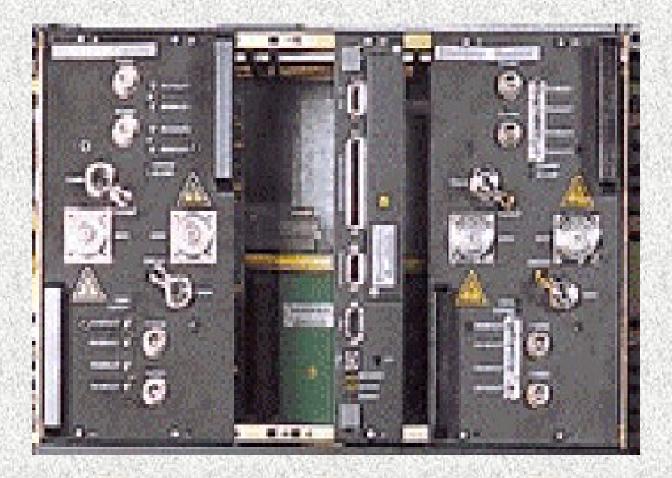
Weight of Physical Modules

5.10 Weight of modules and configurations


The following table gives the weight of main BTS modules; modules of which the weight is negligible and/or the number is the same whatever the configuration are not listed (their weight is included in that of cabinet or of other modules); also, weight of options such are microwaves are not listed:

Module	Weight (Kg)
TRX	7.2
ANC	8.5
ANy	3.5
CBO cabinet	104
MBO1 cabinet	188
MBO2 cabinet	316
MBI3 DC cabinet	86
MBI3 AC cabinet	97
MBI5 DC cabinet	131
MBI5 AC cabinet	142
BUS	15
BU90	140

These weights allow to estimate the weight of any configuration; as an example, the weight of MBI and MBO 3x4 are:


		Unit	Qty	Total (Kg)
MBO2 3x4 TRX-BU90				567.6
	MBO2 cabinet	316	1	316
	TRX	7.2	12	86.4
	ANC	8.5	3	25.5
	BU90	140	1	140
MBI5 AC 3x4 TRX-BU5				393.9
	MBI5 AC cabinet	142	1	142
	TRX	7.2	12	86.4
	ANC	8.5	3	25.5
	BU5	15	1	140

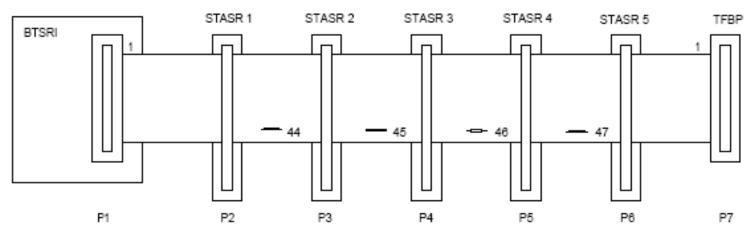
STASR Shelf showing 2 TRE's & 1 ANC

TRE: Trans Receive Equipment **ANC:** Antenna Network Combiner(upto 4 TRE's)

STASR Shelf showing SUMA and 2 ANC's

SUMA: Station Unit Module Advanced (Controller Board) ANC: Antenna Network Combiner (upto 4 TRE's).

STASR Shelf showing 4 TREs



TRE: Trans Receive Equipment

BTSRI5

17.1.9 BTSRI5

The connections for the BTSRI5 (part number 3BK 25974) are shown in the following figure.

Break in wire for coding purposes

- P1: Non-removable, self cutting, 50 pins
- P2 P8: DIN 41612, 64 pins, rows A and C only, female
- P7: Flat cable connector, 50 pins, female

Figure 456: BTSRI5 Connections

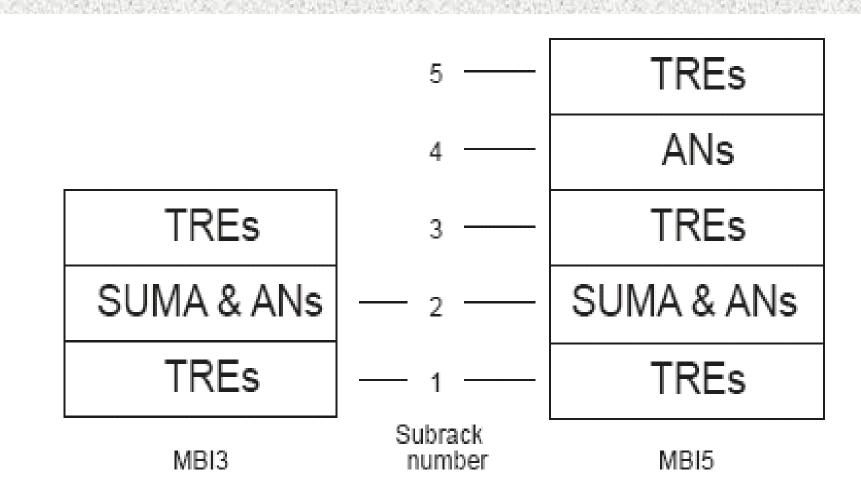


Figure 1. Subracks equipment in MBI racks

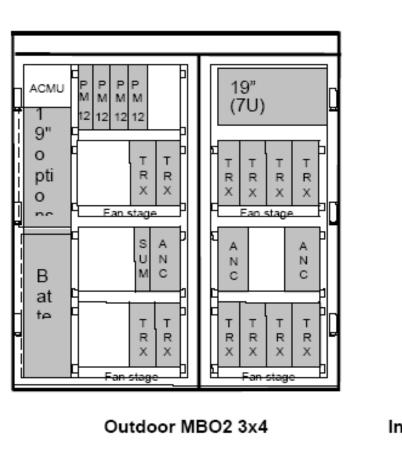
SUB-RACK CONFIGURATION

Different sub-rack organizations are given in figure below. The following widths hold true for the different modules (taken L for one sub-rack):

		Legend
SUM	L/8	SUM
Antenna Network Combining	L/3	ANC
Twin WBC stage	L/8	ANY
TRX	L/4	TRX

S	A	A	A N C
U	N	N	
M	Y	Y	

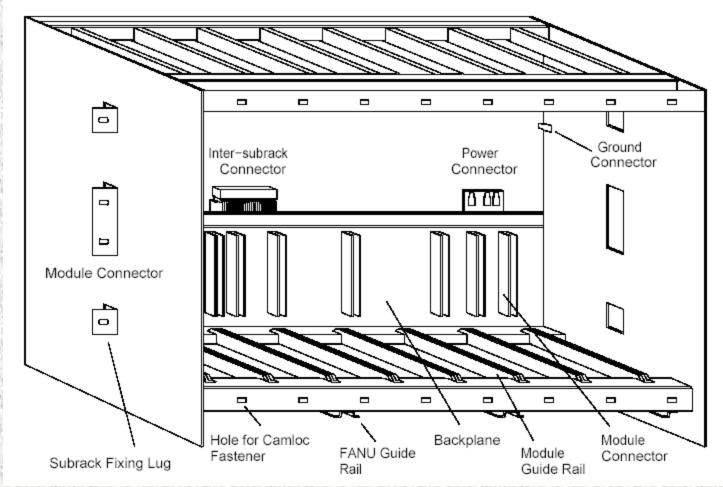
т	т	т	т
R	R	R	R
х	х	х	х


A A N C C

SUN	A N C
-----	-------------

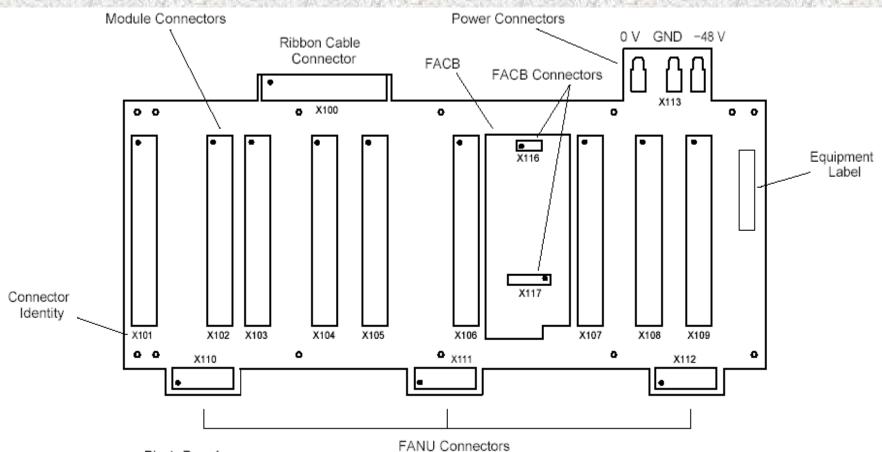
4.3 Sub-rack and modules organization

The following figure gives an example of indoor and outdoor 3*4 configuration:

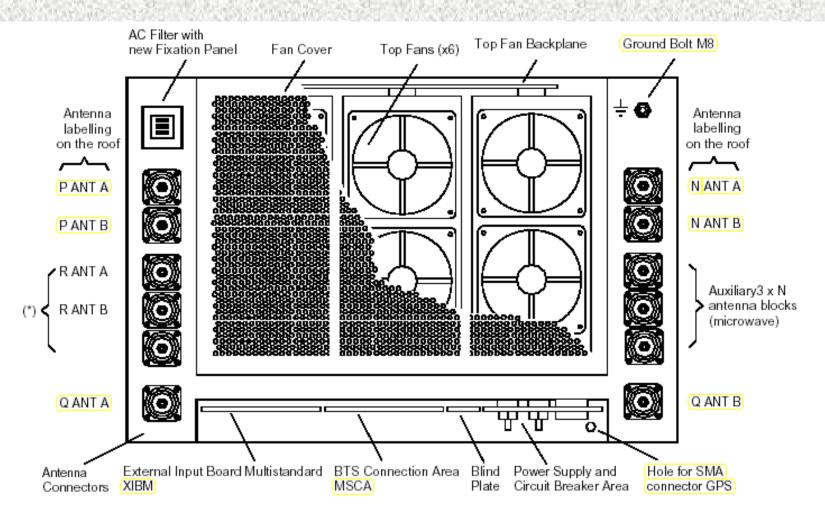

	Top F	an			
Connection area					
T R X	T R X	T R X	T R X		
_	Fan				
	Air	inlet			
A N C			A N C		
[Dumm	iy par	nel		
T R X	T R X	T R X	T R X		
Ean stage					
	Air	inlet			
S U M			A N C		
[Dumm	ıy par	nel		
T R X	T R X	T R X	T R X		
		stage	-		
		<u>inlet</u> and			
	-				

Indoor MBI5 3x4

Figure 8: Sub-rack organization - configurations examples


STASR Shelf

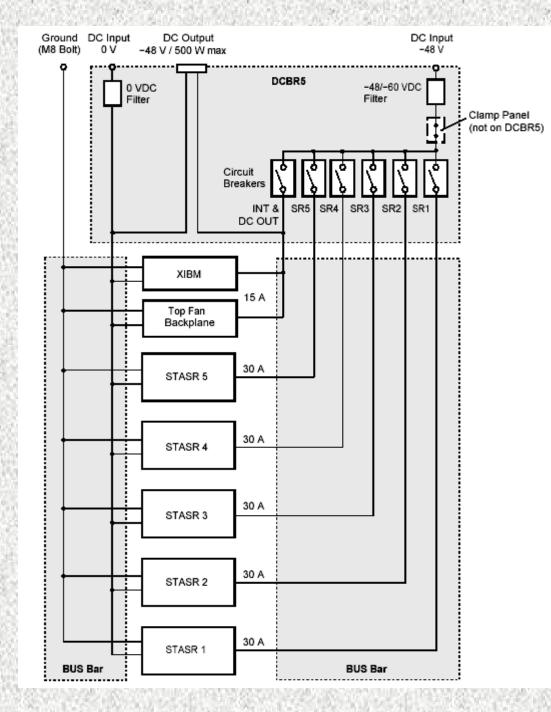
The following figure shows the STASR with no modules fitted.


STASR: Standard Telecommunication Sub-rack

STASR BACK-PLANE Connector Layout Front View

Pin 1, Row A

MBI Rack Top View



(*) Auxiliary 3 x 7/16 antenna blocks

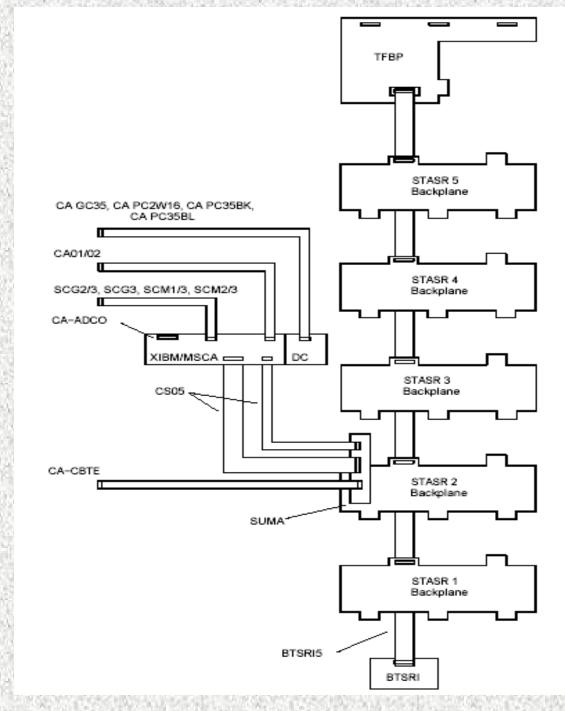
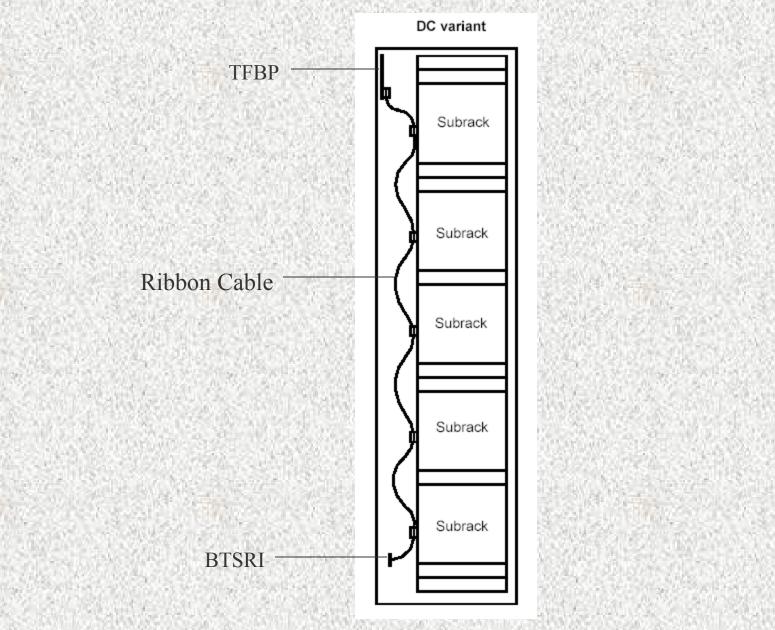

Note: Antenna connectors are not necessary completely equipped.

Figure 199: (MBI3/MBI5 Top View)


MBI5 DC Power Interconnections

MBI5 Data and Control Cabling

MBI5 Subracks Interconnection cabling

Naming Conventions for the BTS Configurations

1x14	means 1 sector with up to 4 TREs
3x12	means 3 sectors with up to 2 TRXs per sector
1x12/1x12	means Multiband configuration, with 1 sector and up to 2 TREs in Band 1, and 1 sector and up to 2 TREs in Band 2
1x(2/2)	means Multiband configuration, with 1 sector and up to 2 TREs in each band

Table 6: Naming Conventions Used for the BTS Configurations

CONFIGURATION NOMENCLATURE

Different type of Configurations

BTS-9100-IND-MBI5-1N, 1P, 1Q TRX900 BTS-9100-IND-MBI5-2N, 2P, 2Q TRX900 BTS-9100-IND-MBI5-3N, 3P, 3Q TRX900 BTS-9100-IND-MBI5-4N, 4P, 4Q TRX900 BTS-9100-IND-MBI3-4N, 0P, 0Q TRX900

(MBI5 1,1,1G) (MBI5 2,2,2G) (MBI5 3,3,3G) (MBI5 4,4,4G) (MBI3 4,0,0G)

BTS-9100-OUT-MBO2-1N, 1P, 0Q TRX900-2HU-BU90 (MBO2-1, 1G) BTS-9100-OUT-MBO2-2N, 2P, 0Q TRX900-2HU-BU90 (MBO2-2, 2G) BTS-9100-OUT-MBO2-1N, 1P, 1Q TRX900-2HU-BU90 (MBO2-1, 1, 1G) BTS-9100-OUT-MBO2-1N, 1P, 1Q TRX1800-2HU-BU90 (MBO2-1, 1, 1D)

BTS-9100-MBI3-8N,0P,0QG (MBI3 8,0,0G)

Connec	tion Area		The BTS has 1 sector with n TREs Ψ . Ψ
TRE8 TRE7	et ANY 1	TRE5	ANC1 ANC1 TRE 1 3 5 7 2 4 6 8 If more than 4 TREs, 2 ANYs are required. Pre-equipment possible Up to 4 TREs, and if no ANY pre-equipp the TRE1 to TRE4 are directly connecte to the ANC The ANC can be replaced by the ANB in case of less than 3TREs
TRE4 TRE3	TRE2	TRE1	Empty space
	NU	FANU	1
Air	Inlet		

Figure 47: MBI3- 1x1...8 - DC Configuration

BTS-9100-MBI3-4N,4P,0QG (MBI3 4,4,0G)

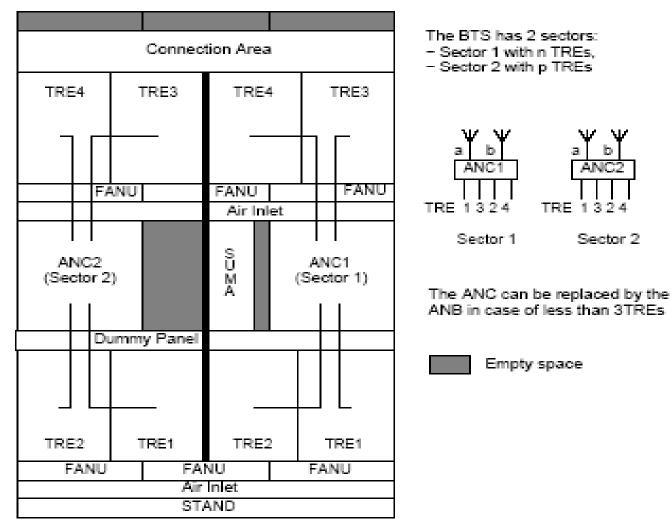
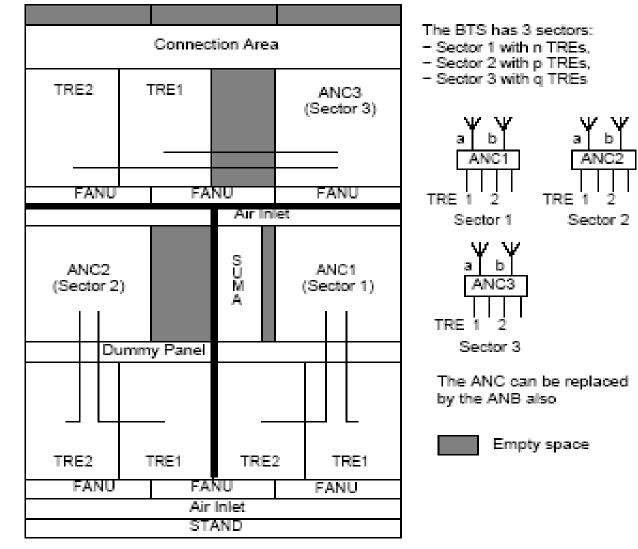
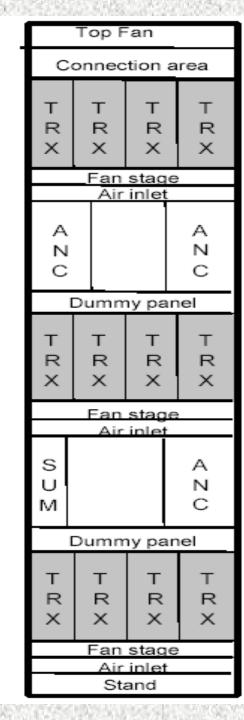
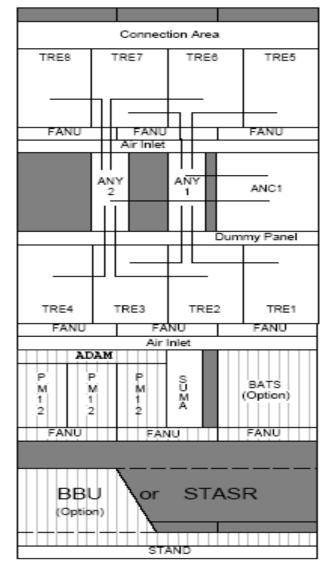


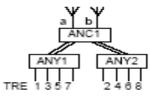
Figure 49: MBI3 - 2x1...4 - DC Configuration

BTS-9100-MBI3-2N,2P,2QG (MBI3 2,2,2G)


Figure 51: MBI3 - 3x1...2 - DC Configuration

MBI5 with 4,4,4 Configuration


State of the second sec

BTS-9100-MBI5-8N,0P,0QG (MBI5 8,0,0G)

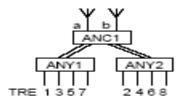
The BTS has 1 sector with n TREs

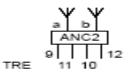
If more than 4 TREs, 2 ANYs are required. Pre-equipment possible

Up to 4 TREs, and if no ANY pre-equipped the TRE1 to TRE4 are directly connected to the ANC

The ANC can be replaced by the ANB in case of less than 3TREs

Modules present only in AC configuration

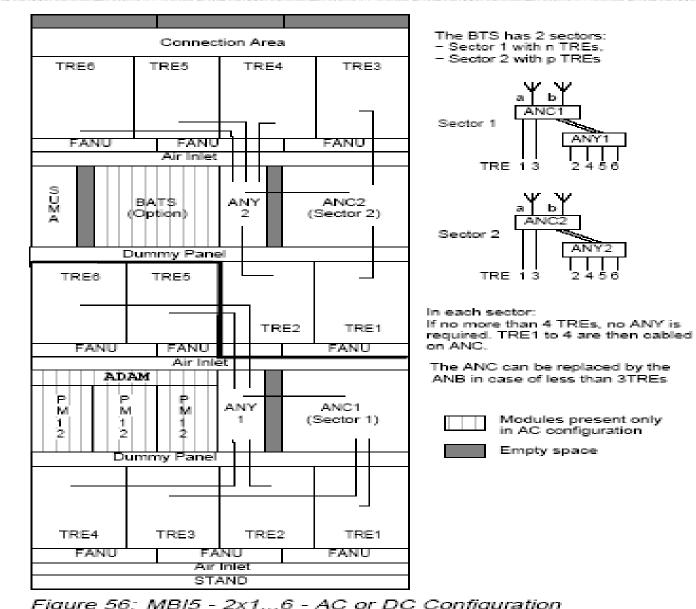

Empty space


Figure 53: MBI5 - 1x1...8 - AC or DC configuration

MBI5 - 1x9...12 (Low Loss) - AC or DC

	Connec	tion Area	
TRE8	TRE7	TRE6	TRE5
FANU	FANU Air Inlet		FANU
ANY 2	BATS (Option)		ANC1
	Dummy Par	nel	
TRE4 FANU	TRE3	TRE2	TRE1
P. 8	АМ Р Р И М 1	S U A	ANC2
		y Panel	
TRE12 FANU		NU Inlet	FANU

The BTS has 1 sector with n TREs


Both ANCs are set to the same sector number

> Modules present only in AC configuration

> > Empty space

Figure 54: MBI5 - 1x9...12 (Low Loss) - AC or DC Configuration

BTS-9100-MBI5-6N,6P,0QG (MBI5 6,6,0G)

_

BTS-9100-MBI5-4N,8P,0QG (MBI5 4,8,0G)

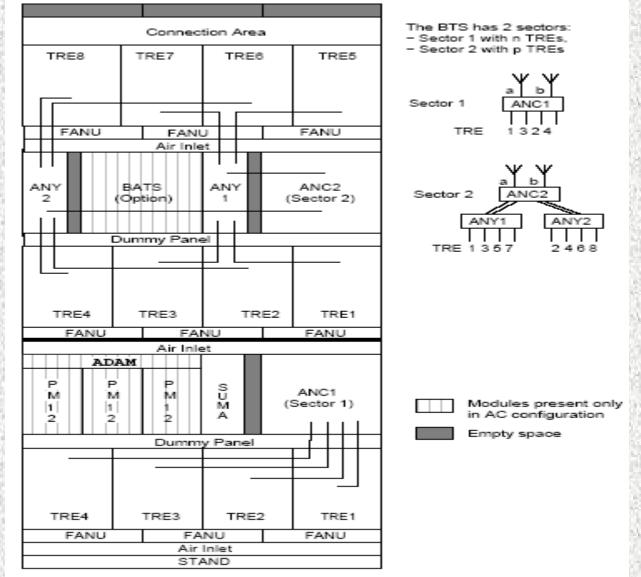


Figure 57: MBI5 - 1x1...8 + 1x1...4 - AC or DC Configuration

BTS-9100-MBI5-4N,4P,4QG (MBI5 4,4,4G)

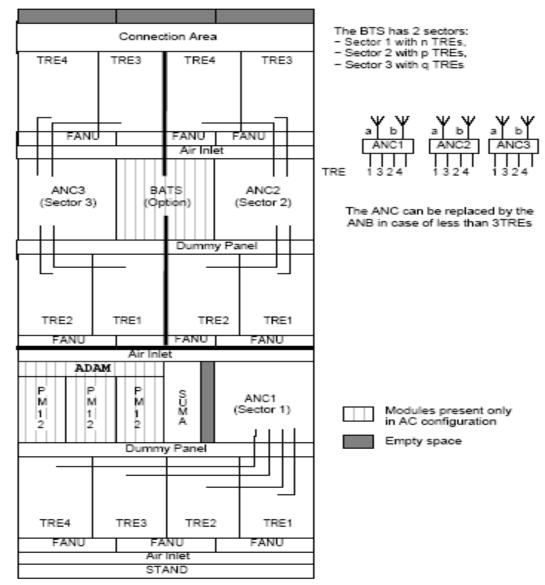


Figure 59: MBI5 - 3x1...4 - AC or DC Configuration

BTS-9100-MBI5-4N,4P,4QG (MBI5 4,4,4G)

Connection Area TRE3 TRE4 TRE3 TRE4 FANU FANU FANU Air Inlet ANC3 ANC2 BATS (Sector 3) (Option) (Sector 2) Dummy Panel TRE2 TRE2 TRE1 TRE1 FANU FANU FANU Air Inlet ADAM Ρ P S U ANC1 M. M. М (Sector 1) M 1 11 А 2 2 2 Dummy Panel TRF4 TRE3 TRF2 TRE1 FANU FANU FANU Air Inlet STAND

- The BTS has 3 sectors: Sector 1 with n TREs.
- Sector 2 with p TREs,
- Sector 3 with g TREs

	a b	a b	a b
)	ANC1	ANC2	ANC3
TRE	1324	1324	1324

The ANC can be replaced by the ANB in case of less than 3TREs

Note: Cards ADAM, PM12, and BATS(Opt) are used in AC version.

Modules present only in AC configuration

BTS-9100-MBO1-8N,0P,0QG-HU (MBO1 8,0,0G-HU)

b

ANY 2

2468

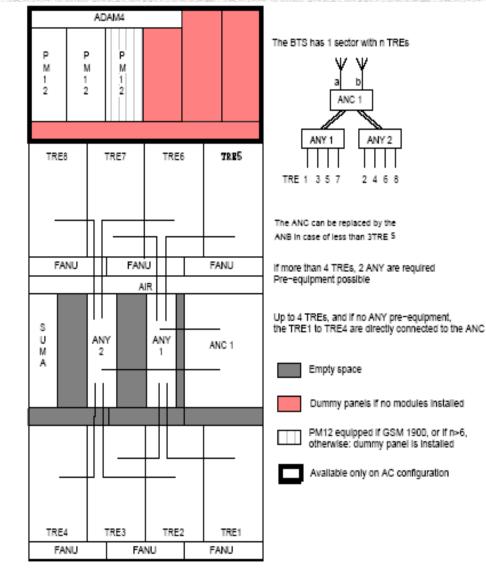


Figure 139: MBO1 - 1x1...8 Configuration

BTS-9100-MBO1-4N,4P,0QG-HU (MBO1 4,4,0G-HU)

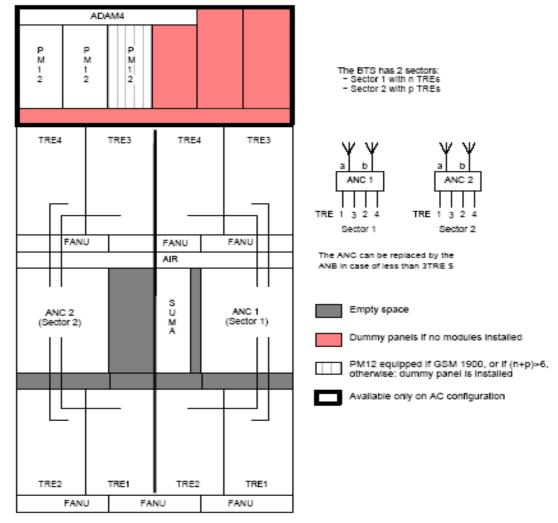


Figure 140: MBO1 - 2x1...4 Configuration

BTS-9100-MBO1-2N,2P,2QG-HU (MBO1 2,2,2G-HU)

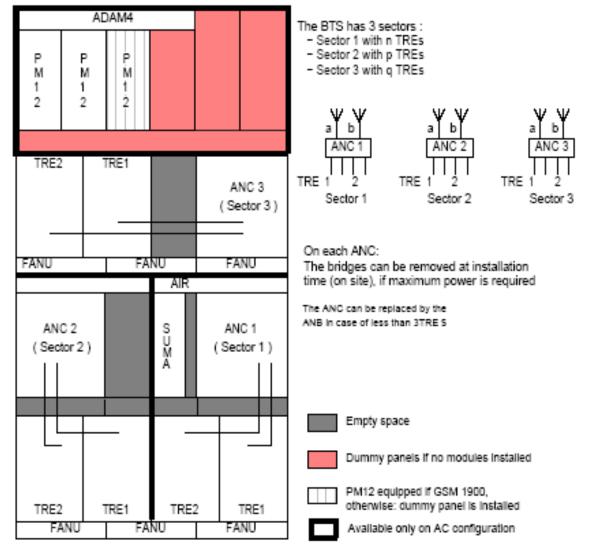
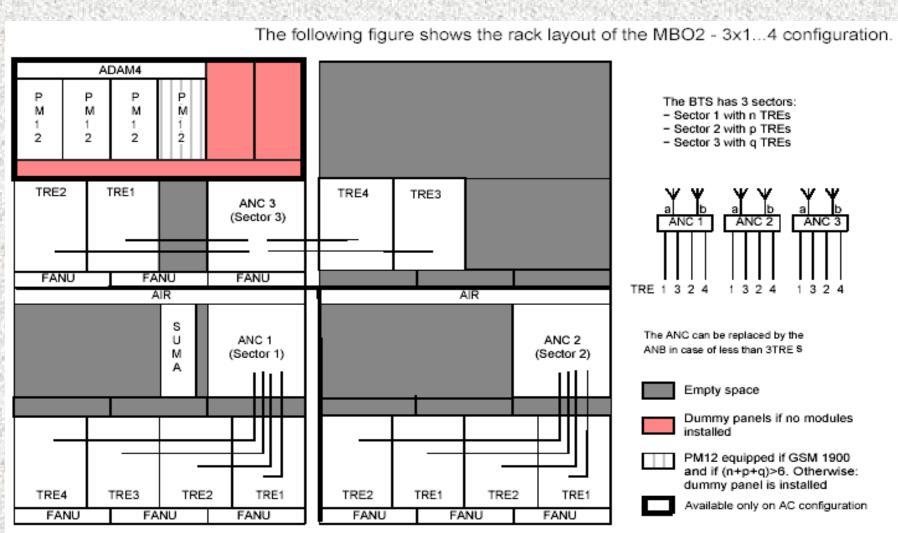



Figure 141: MBO1 - 3x1...2 Configuration

OUTDOOR – BTS BTS-9100-OUT-MBO2-4N, 4P, 4Q TRX900-2HU-BU90 (MBO2-4, 4,4G)

MBO2: Multistandard Base Station Outdoor

Present status of the Product with BSNL QA

-Indoor BTS MBI model with upto GPRS,EDGE compatibility only has been offered till date.
-The BTS offered is for GSM 900 only.
-TSEC is yet to be issued due to want of some GR non compliances

-At present only despatch clearance were issued and no Ics were issued for want of TSEC.

-Out door BTS has not been offered yet for TSEC.

- 1