

GSM Radio Network Engineering Fundamentals

Prerequisite: Introduction to the Alcatel GSM Network

Contents

 Introduction
 RNP Process Overview
 Coverage Planning
 Traffic Planning and Frequency Planning
 Radio Interface / Quality of Service

Abbreviations

GSM Radio Network Engineering Fundamentals

Contents

Standardization

- Documentation
- **V** Radio Network Architecture
- Mobile Phone Systems

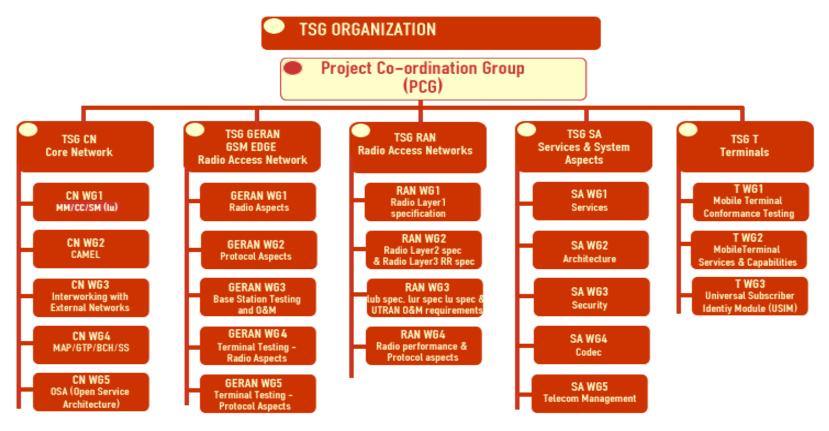
Introduction

Standardization Documentation

www.3GPP.org organizational partners

Project supported by

- ARIB Association of Radio Industries and Businesses (Japan)
- CWTS China Wireless Telecommunication Standard group
- ETSI European Telecommunications Standards Institut
- T1 Standards Committee T1 Telecommunication (US)
- TTA Telecommunications
- Technology Association (Korea)
- TTC Telecommunication Technology Committee (Japan)



- The Organizational Partners shall determine the general policy and strategy of 3GPP and perform the following tasks:
 - Approval and maintenance of the 3GPP scope
 - Maintenance the Partnership Project Description
 - Taking decisions on the creation or cessation of Technical Specification Groups, and approving their scope and terms of reference
 - Approval of Organizational Partner funding requirements
 - Allocation of human and financial resources provided by the Organizational Partners to the Project Co-ordination Group

Technical Specification Group TSG

Specifications and Releases

V GSM/Edge Releases: http://www.3gpp.org/specs/releases.htm

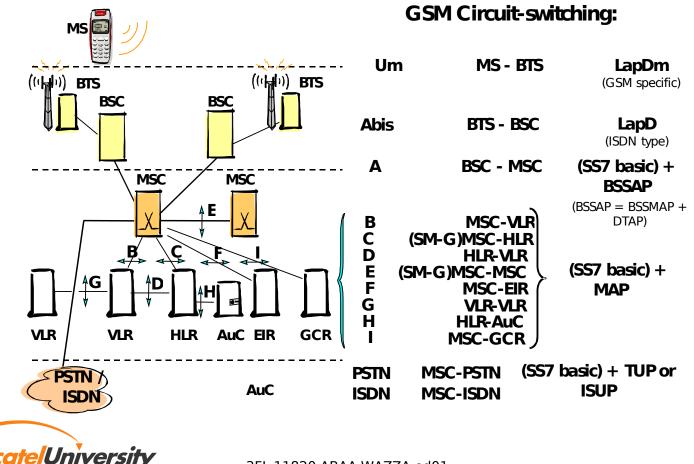
- TR 41.103 GSM Phase 2+ Release 5
 - Freeze date: March June 2002
- **TR 41.102** GSM Phase 2+ Release 4
 - Freeze date: March 2001
- TR 01.01 Phase 2+ Release 1999
 - Freeze date: March 2000
- For the latest specification status information please go to the 3GPP Specifications database:

http://www.3gpp.org/ftp/Information/Databases/Spec_Status/

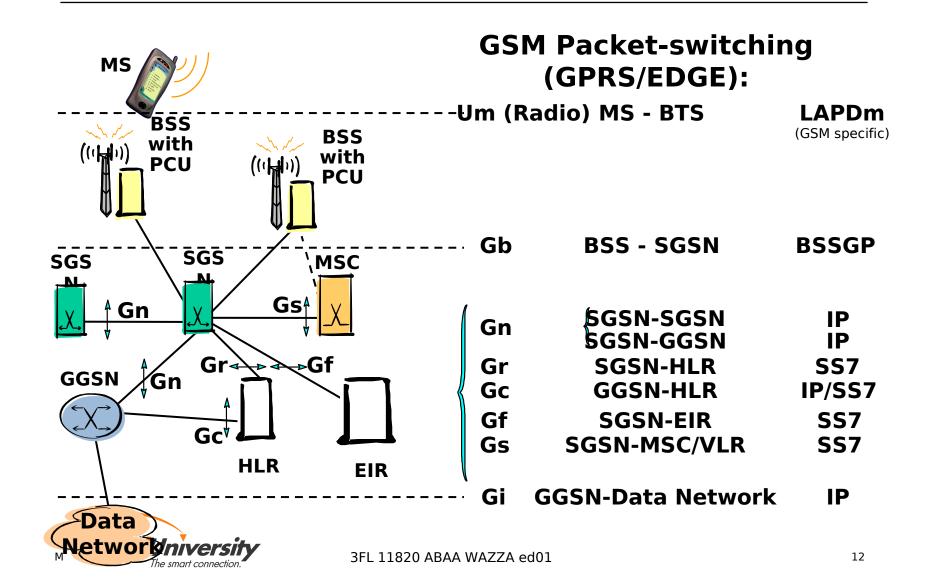
The latest versions of specifications can be found on ftp://ftp.3gpp.org/specs/latest/

Specifications out of Release 1999

- TR 01.04 Abbreviations and acronyms
- TS 03.22 Functions related to Mobile Station (MS) in idle mode and group receive mode
- TR 03.30 Radio Network Planning Aspects
- TS 04.04 Layer 1 General Requirements
- TS 04.06 Mobile Station Base Stations System (MS BSS) Interface Data Link (DL) Layer Specification
- TS 04.08 Mobile radio interface layer 3 specification
- TS 05.05 Radio Transmission and Reception
- TS 05.08 Radio Subsystem Link Control
- TS 08.06 Signalling Transport Mechanism Specification for the Base Station System - Mobile Services Switching Centre (BSS-MSC) Interface
- TS 08.08 Mobile-services Switching Centre Base Station system (MSC-BSS) Interface Layer 3 Specification

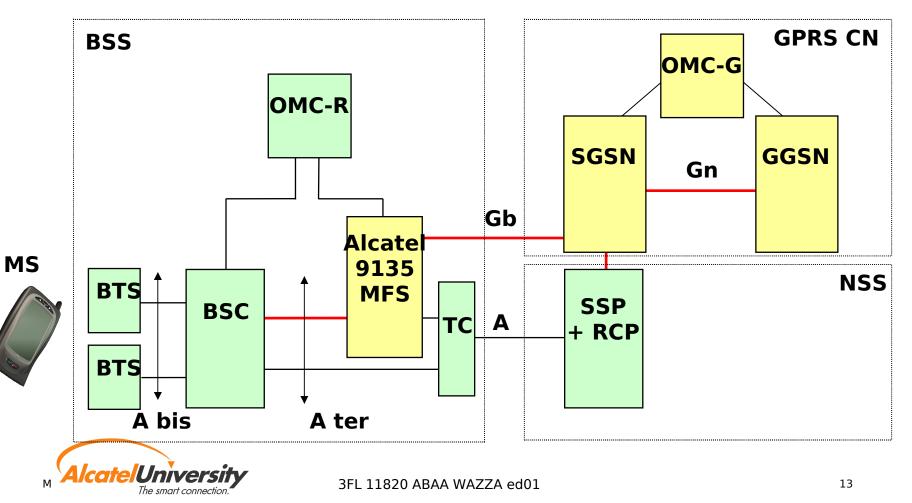


м


The smart connection

GSM RNE Fundamentals

GSM Network Architecture

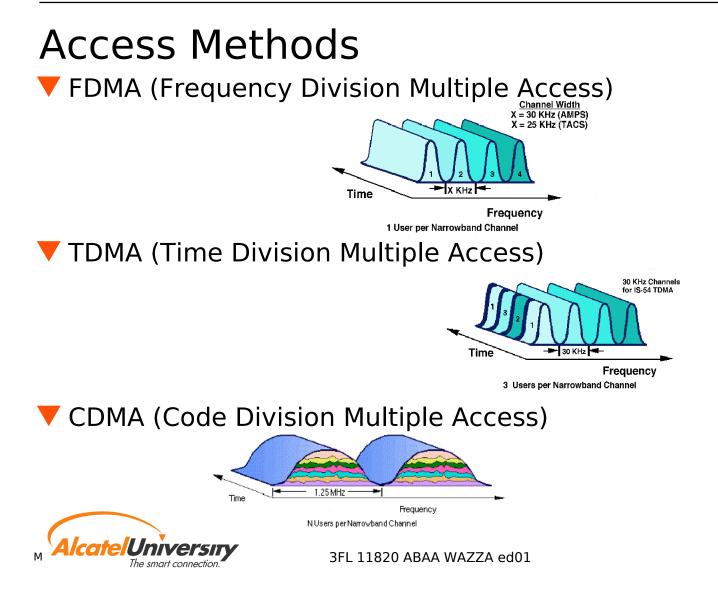


OMC-R

GSM Network Elements

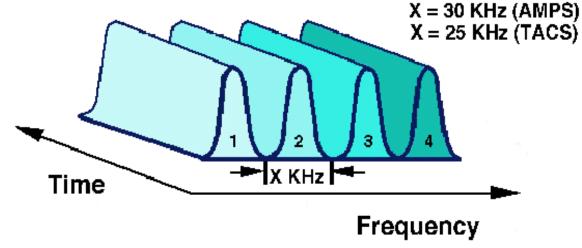
- **V** Base Station System BSS
 - Base Transceiver Station BTS
 - Base Station Controller BSC
- Terminal Equipment
 - Mobile Station MS
- Operation and Maintenance Center-Radio OMC-R

- Network Subsystem NSS
 - Mobile Services Switching Center MSC
 - Visitor Location Register VLR
 - Home Location Register HLR
 - Authentication Center AuC
 - Equipment Identity Register EIR
- Operation and Maintenance Center OMC
- Multi-BSS Fast Packet Server (GPRS) MFS
- Serving GPRS Support Node SGSN
- Gateway GPRS Support Node GGSN



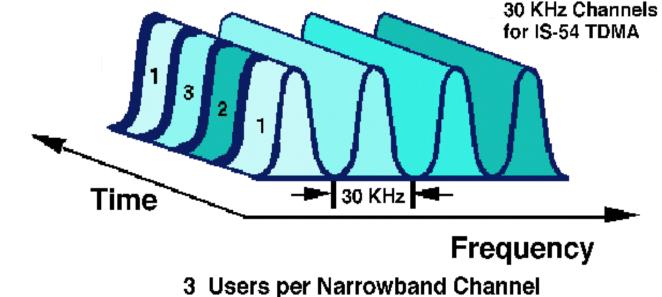
RF Spectrum

System	Total Bandwidth	Uplink frequency band /MHz	Downlink frequency band /MHz	Carrier Spacing
GSM 450	2x7.5MHz	450.4-457.6	460.4-467.6	200 kHz
GSM 480	2x7.2MHz	478.8-486	488.8-496	200 kHz
GSM 850	2x25MHz	824-849	869-894	200 kHz
GSM 900	2x25MHz	890-915	935-960	200 kHz
E-GSM	2x35MHz	880-915	925-960	200 kHz
DCS 1800 (GSM)	2x75MHz	1710-1785	1805-1880	200 kHz
PCS 1900 (GSM)	2x60MHz	1850-1910	1930-1990	200 kHz



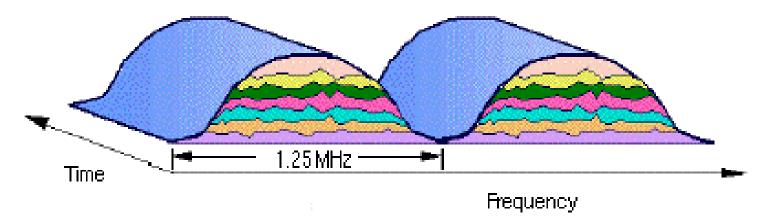
FDMA

- Used for standard analog cellular mobile systems (AMPS, TACS, NMT etc.)
- **T** Each user is assigned a discrete slice of the RF spectrum
- Permits only one user per channel since it allows the user to use the channel 100% of the time.
 Channel Width


1 User per Narrowband Channel

TDMA

- Multiple users share RF carrier on a time slot basis
- Carriers are sub-divided into timeslots
- Information flow is not continuous for an user, it is sent and received in "bursts"



CDMA (Code Division Multiple Access)

- Multiple access spread spectrum technique
- Each user is assigned a sequence code during a call
- No time division; all users use the entire carrier

NUsers per Narrowband Channel

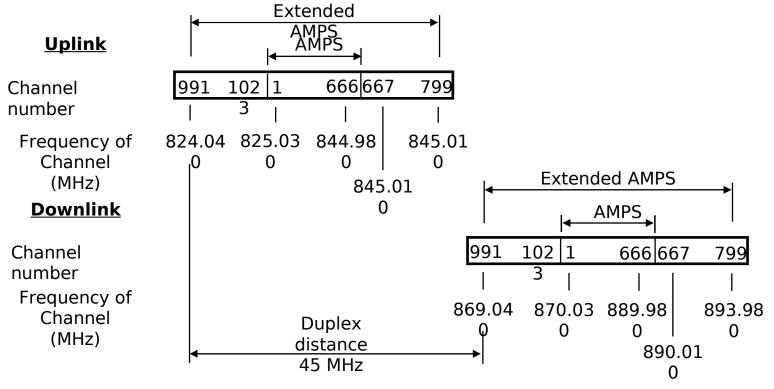
Analogue Cellular Mobile Systems

- Analogue transmission of speech
- One TCH/Channel
- Only FDMA (Frequency Division Multiple Access)
- Different Systems
 - AMPS (Countries: USA)
 - TACS (UK, I, A, E, ...)
 - NMT (SF, S, DK, N, ...)

. . .

AMPS (Advanced Mobile Phone System)

- Analogue cellular mobile telephone system
- Predominant cellular system operating in the US
- Voriginal system: 666 channels (624 voice and 42 control channels)
- EAMPS Extended AMPS Current system: 832 channels (790 voice, 42 control); has replaced AMPS as the US standard
- NAMPS Narrowband AMPS New system that has three times more voice channels than EAMPS with no loss of signal quality
- Backward compatible: if the infrastructure is designed properly, older phones work on the newer systems


AMPS - Technical objectives

Technology	FDMA
RF frequency band	825 - 890 MHz
Channel Spacing	30 kHz
Carriers	666 (832)
Timeslots	1
Mobile Power	0.6 - 4 W
Transmission	Voice, (data)
НО	possible
Roaming	possible

AMPS Advanced Mobile Phone System



TACS Total Access Communications System

Analogue cellular mobile telephone system

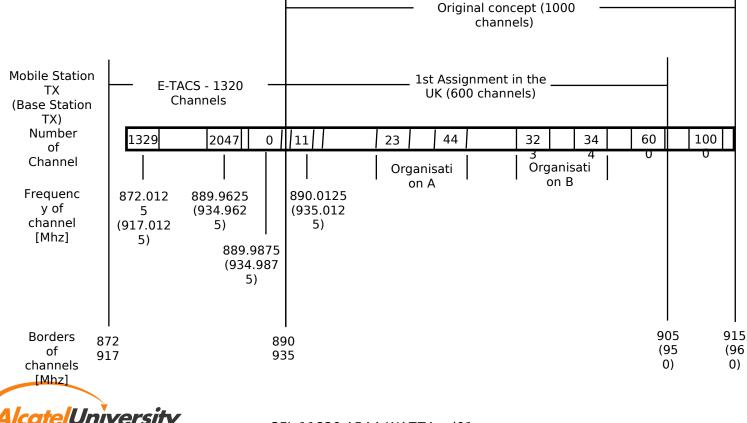
- The UK TACS system was based on the US AMPS system
- TACS Original UK system that has either 600 or 1000 channels (558 or 958 voice channels, 42 control channels)
- RF frequency band: 890 960 Uplink: 890-915 Downlink: 935-960

Channel spacing: 25 KHz

TACS - Technical objectives

Technology	FDMA
RF frequency band	890 - 960 MHz
Channel Spacing	25 kHz
Carriers	1000
Timeslots	1
Mobile Power	0.6 - 10 W
Transmission	Voice , (data)
НО	possible
Roaming	possible

Different TACS-Systems


ETACS - Extended TACS		
Current UK system that has 1320 channels (1278 voice, 42 control)		
and has replaced TACS as the UK standard		
ITACS and IETACS - International (E)TACS		
Minor variation of TACS to allow operation outside of the UK by allowing flexibility in assigning the control channels		
JTACS - Japanese TACS		
A version of TACS designed for operation in Japan		
VTACS - Narrowband TACS		
New system that has three times as many voice channels as ETACS with no loss of signal quality		

The smart connection

TACS (Total Access Communications System)

Why digital mobile communication ?

- Easy adaptation to digital networks
- Digital signaling serves for flexible adaptation to operational needs
- Possibility to realize a wide spectrum of non-voice services
- Digital transmission allows for high cellular implementation flexibility
- Digital signal processing gain results in high interference immunity
- Privacy of radio transmission ensured by digital voice coding and encryption
- Cost and performance trends of modern microelectronics are in favour of a digital solution

GSM - Technical objectives

Technology	TDMA/FDMA
RF frequency band	890 - 960 MHz
Channel Spacing	200 kHz
Carriers	124
Timeslots	8
Mobile Power (average/max)	2 W/ 8 W
BTS Power dass	10 40 W
MS sensitivity	- 102 dBm
BTS sensitivity	- 104 dBm
Transmission	Voice, data
НО	possible
Roaming	possible

DECT (Digital European Cordless Telephone)

European Standard for Cordless Communication

- Vising TDMA-System
- Traditional Applications
 - Domestic use ("Cordless telephone")
 - Cordless office applications
- Combination possible with
 - ISDN
 - GSM
- High flexibility for different applications

DECT - Technical objectives

Technology	TDMA/FDMA	
RF frequency band	1880 - 1900 MHz	
Channel Spacing	1.728 MHz	
Carriers	10	
Timeslots	12 (duplex)	
Mobile Power (average/max)	10 mW/250 mW	
BTS Power class	250 mW	
MS sensitivity	-83 dBm	
BTS sensitivity	-83 dBm	
Transmission	Voice, data	
НО	possible	

CDMA - Technical objectives

- Spread spectrum technology (Code Division Multiple Access)
- Several users occupy continuously one CDMA channel (bandwidth: 1.25 MHz)
 The CDMA channel can be re-used in every cell
- Each user is addressed by
 - A specific code and
 - Selected by correlation processing
- Orthogonal codes provides optimum isolation between users

CDMA - Special Features

- Vocoder allows variable data rates
- Soft handover
- Open and closed loop power control
- Multiple forms of diversity
- Tota, fax and short message services possible

CDMA - Technical objectives

Technology	CDMA	
RF frequency band	869-894 / 824-849	
	or 1900 MHz	
Channel Spacing	1250 kHz	
Channels per 1250 kHz	64	
Mobile Power (average/max)	1-6.3 W / 6.3 W	
Transmission	Voice, data	
HO ("Soft handoff")	possible	
Roaming	possible	

TETRA - Features

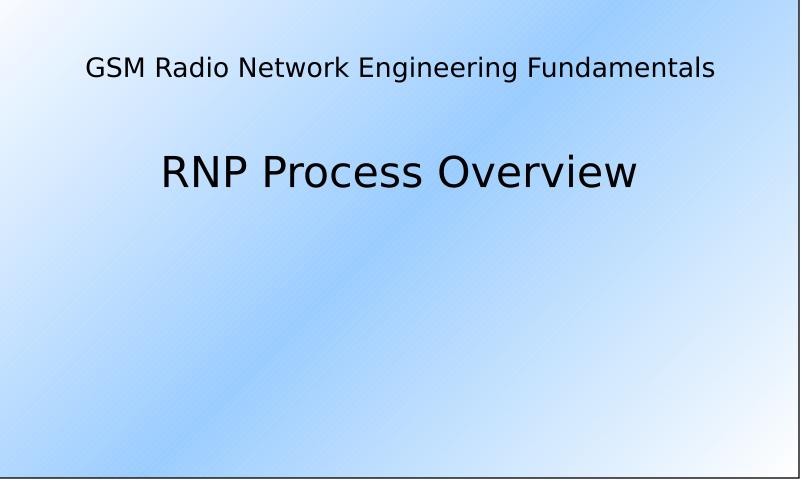
- Standard for a frequency efficient european digital trunked radio communication system (defined in 1990)
- Possibility of connections with simultaneous transmission of voice and data
- Encryption at two levels:
 - Basic level which uses the air interface encryption
 - End-to-end encryption (specifically intended for public safety users)
- Open channel operation
- "Direct Mode" possible
 - Communication between two MS without connecting via a BTS
- MS can be used as a repeater

TETRA - Typical Users

- Public safety
 - Police (State, Custom, Military, Traffic)
 - Fire brigades
 - Ambulance service
- Railway, transport and distribution companies

TETRA - Technical objectives

Technology	TDMA/FDMA
RF frequency band	380 - 400 MHz
Channel Spacing	25 or 12.5 KHz
Carriers	not yet specified
Timeslots	4
Mobile Power (3 Classes)	1, 3, 10 W
BTS Power class	0.6 - 25 W
MS sensitivity	-103 dBm
BTS sensitivity	-106 dBm
Transmission	Voice, data, images,
	short message
НО	possible
Roaming	possible



UMTS (Universal Mobile Telecommunication System)

- Third generation mobile communication system
- Combining existing mobile services (GSM, CDMA etc.) and fixed telecommunications services
- More capacity and bandwidth
- More services (Speech, Video, Audio, Multimedia etc.)
- Worldwide roaming
- "High" subscriber capacity

Definition of RN Requirements

- The Request for Quotation (RfQ) from the customer prescribes the requirements mainly
- Coverage
 - Definition of coverage probability
 - Percentage of measurements above level threshold
 - Definition of covered area
- Traffic
 - Definition of Erlang per square kilometer
 - Definition of number of TRX in a cell
 - Mixture of circuit switched and packed switched traffic
- 🔻 QoS
 - Call success rate
 - RxQual, voice quality, throughput rates, ping time

Preliminary Network Design

- The preliminary design lays the foundation to create the Bill of Quantity (BoQ)
 - List of needed network elements
- Geo data procurement
 - Digital Elevation Model DEM/Topographic map
 - Clutter map
- Definition of standard equipment configurations dependent on
 - clutter type
 - traffic density

- Coverage Plots
 - Expected receiving level
- Definition of roll out phases
 - Areas to be covered
 - Number of sites to be installed
 - Date, when the roll out takes place.
- Network architecture design
 - Planning of BSC and MSC locations and their links
- Frequency spectrum from license conditions

Project Setup and Management

- This phase includes all tasks to be performed before the on site part of the RNP process takes place.
- This ramp up phase includes:
 - Geo data procurement if required
 - Setting up 'general rules' of the project
 - Define and agree on reporting scheme to be used
 - Coordination of information exchange between the different teams which are involved in the project
 - Each department/team has to prepare its part of the project
 - Definition of required manpower and budget
 - Selection of project database (MatrixX)

Initial Radio Network Design

Area surveys

- As well check of correctness of geo data
- Frequency spectrum partitioning design
- RNP tool calibration
 - For the different morpho classes:
 - Performing of drive measurements
 - Calibration of correction factor and standard deviation by comparison of measurements to predicted received power values of the tool
- Definition of search areas (SAM Search Area Map)
 - A team searches for site locations in the defined areas
 - The search team should be able to speak the national language
- Selection of number of sectors/TRX per site together with project management and customer
- Get 'real' design acceptance from customer based on coverage prediction and predefined design level thresholds

Site Acquisition Procedure

- Delivery of site candidates
 - Several site candidates shall be the result out of the site location search
- **Find alternative sites**
 - If no site candidate or no satisfactory candidate can be found in the search area
 - Definition of new SAM
 - Possibly adaptation of radio network design
- Check and correct SAR (Site Acquisition Report)
 - Location information
 - Land usage
 - Object (roof top, pylon, grassland) information
 - Site plan

- Site candidate acceptance and ranking
 - If the reported site is accepted as candidate, then it is ranked according to its quality in terms of
 - Radio transmission High visibility on covered area No obstacles in the near field of the antennas
 - No interference from other systems/antennas
 - Installation costs

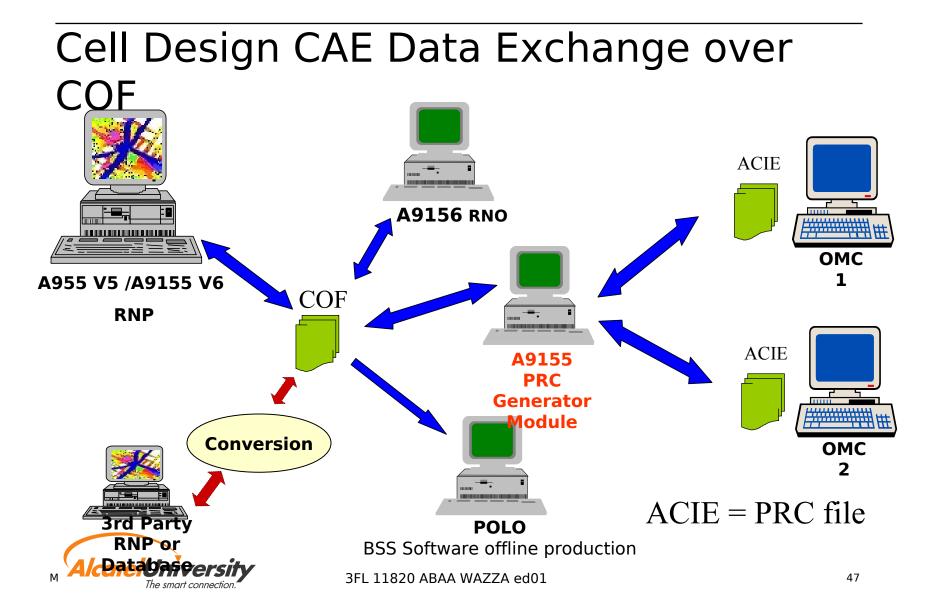
 Installation possibilities
 Power supply
 Wind and heat
 - Maintenance costs Accessibility Rental rates for object Durability of object

Technical Site Survey

- Agree on an equipment installation solution satisfying the needs of
 - RNE Radio Network Engineer
 - Transmission planner
 - Site engineer
 - Site owner
- The Technical Site Survey Report (TSSR) defines
 - Antenna type, position, bearing/orientation and tilt
 - Mast/pole or wall mounting position of antennas
 - EMC rules are taken into account
 - Radio network engineer and transmission planner check electro magnetic compatibility (EMC) with other installed devices

- BTS/Node B location
- Power and feeder cable mount
- Transmission equipment installation
- Final Line Of Site (LOS) confirmation for microwave link planning
 - E.g. red balloon of around half a meter diameter marks target location
- If the site is not acceptable or the owner disagrees with all suggested solutions
 - The site will be rejected
 - Site acquisition team has to organize a new date with the next site from the ranking list

3FL 11820 ABAA WAZZA ed01


Basic Parameter Definition

- After installation of equipment the basic parameter settings are used for
 - Commissioning
 - Functional test of BTS and VSWR check
 - Call tests
- RNEs define cell design data
- Operations field service generates the basic software using the cell design CAE data

- Cell design CAE data to be defined for all cells are for example:
 - CI/LAC/BSIC
 - Frequencies
 - Neighborhood/cell handover relationship
 - Transmit power
 - Cell type (macro, micro, umbrella, ...)

Turn On Cycle

- The network is launched step by step during the TOC
- A single step takes typically two or three weeks
 - Not to mix up with rollout phases, which take months or even years
- For each step the RNE has to define 'TOC Parameter'
 - Cells to go on air
 - Determination of frequency plan
 - Cell design CAE parameter
- Each step is finished with the 'Turn On Cycle Activation'
 - Upload PRC/ACIE files into OMC-R
 - Unlock sites

Site Verification and Drive Test

- RNE performs drive measurement to compare the real coverage with the predicted coverage of the cells.
- If coverage holes or areas of high interference are detected
 - Adjust the antenna tilt and orientation
- Verification of cell design CAE data
- To fulfill heavy acceptance test requirements, it is absolutely essential to perform such a drive measurement.
- Basic site and area optimization reduces the probability to have unforeseen mysterious network behavior afterwards.

HW / SW Problem Detection

- Problems can be detected due to drive tests or equipment monitoring
 - Defective equipment
 - will trigger replacement by operation field service
 - Software bugs
 - Incorrect parameter settings
 - are corrected by using the OMC or in the next TOC
 - Faulty antenna installation
 - Wrong coverage footprints of the site will trigger antenna re-alignments
- If the problem is serious
 - Lock BTS
 - Detailed error detection
 - Get rid of the fault
 - Eventually adjusting antenna tilt and orientation

Basic Network Optimization

Network wide drive measurements

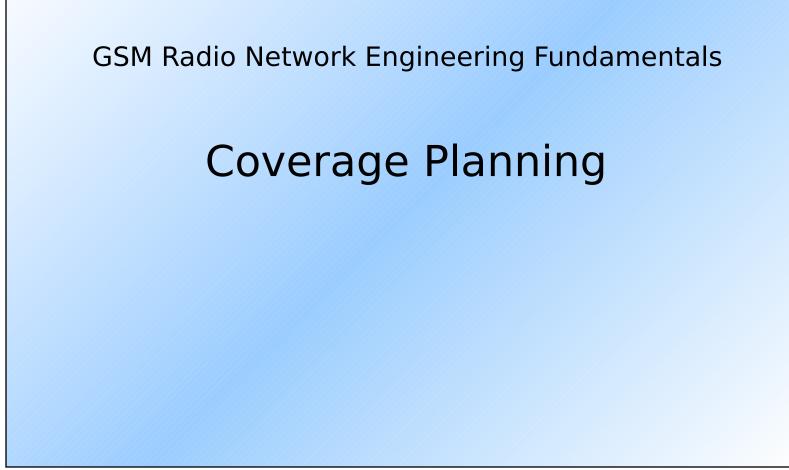
- It is highly recommended to perform network wide drive tests before doing the commercial opening of the network
- Key performance indicators (KPI) are determined
- The results out of the drive tests are used for basic optimization of the network
- Basic optimization
 - All optimization tasks are still site related
 - Alignment of antenna system
 - Adding new sites in case of too large coverage holes
 - Parameter optimization
 - No traffic yet -> not all parameters can be optimized
- Basic optimization during commercial service
 - If only a small number of new sites are going on air the basic optimization will be included in the site verification procedure

Network Acceptance

Acceptance drive test

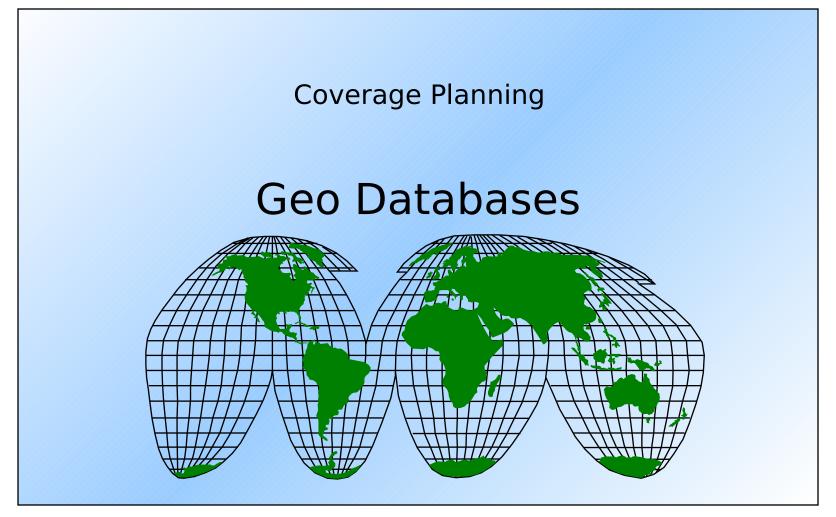
Calculation of KPI according to acceptance requirements in contract

- Presentation of KPI to the customer
- Comparison of key performance indicators with the acceptance targets in the contract
- The customer accepts
 - the whole network
 - only parts of it step by step
- **V** Now the network is ready for commercial launch



Further Optimization

- Network is in commercial operation
- Network optimization can be performed
- Significant traffic allows to use OMC based statistics by using A9156 RNO and A9185 NPA
- End of optimization depends on contract and mutual agreement between Alcatel and customer
 - Usually, Alcatel is only involved during the first optimization activities directly after opening the network commercially



Contents

Introduction 🔻 Geo databases Antennas and Cables Radio Propagation Path Loss Prediction Link Budget Calculation Coverage Probability Cell Range Calculation Antenna Engineering Alcatel BSS Coverage Improvement Antenna Diversity Repeater Systems High Power TRX

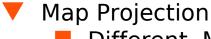
3FL 11820 ABAA WAZZA ed01

Why are geographical data needed for Radio Network Planning ?

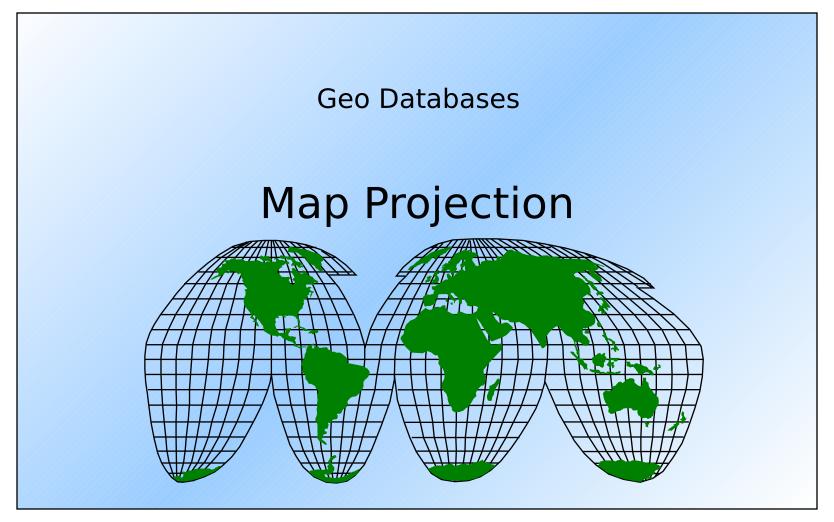
Propagation models depend on geographical data

Geographical information for site acquisition

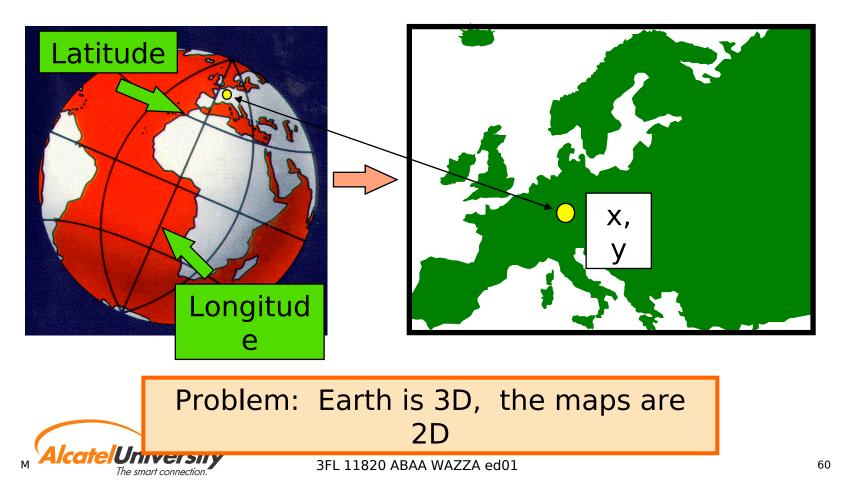
Latitude (East/West) / Longitude (North/South)


Rectangular coordinates (e.g. UTM coordinates)

3FL 11820 ABAA WAZZA ed01

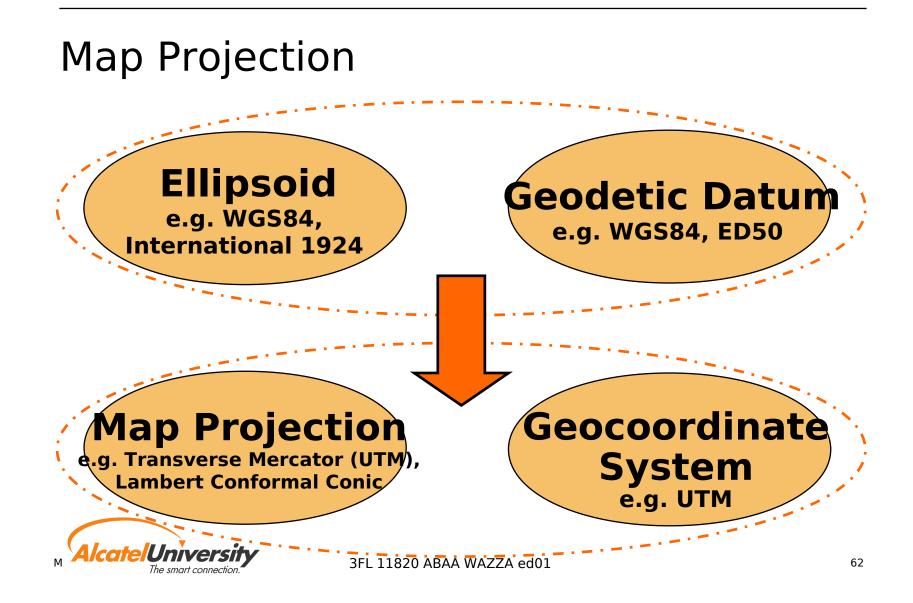

Contents

- Different Map Projections: conical, cylindrical, planar/ azimuthal
- Geodetic Datum: e.g. WGS 84
- Transverse Mercator Projection: e.g. UTM
- Types of Geospatial Data
 - Creation of geospatial databases
 - Raster data: DEM /Topography, Morphostructure/ Clutter, Buildings
 - Vector data: airport, coastline, border line, buildings, etc.
- Geocoordinate Transformation
 - Practical Applications
 - Converting one single point
 - Compare to different geodetic datums
 - Converting a list of points



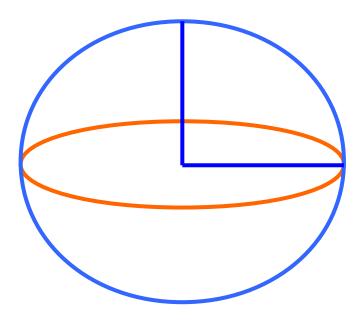
3FL 11820 ABAA WAZZA ed01

Maps are flat



Mapping the earth

- The Earth is a very complex shape
- To map the geography of the earth, a reference model (-> Geodetic Datum) is needed
- The model needs to be simple so that it is easy to use
- It needs to include a Coordinate system which allows the positions of objects to be uniquely identified
- It needs to be readily associated with the physical world so that its use is intuitive



Geodetic Ellipsoid

Definition:

A mathematical surface (an ellipse rotated around the earth's polar axis) which provides a convenient **model** of the size and shape **of the earth**. The ellipsoid is chosen to best meet the needs of a particular map datum system design.

Reference ellipsoids are usually defined by semi-major (equatorial radius) and flattening (the relationship between equatorial and polar radii).

Global & Regional Ellipsoids

Global ellipsoids

- e.g. WGS84, GRS80
 - Center of ellipsoid is "Center of gravity"
 - Worldwide consistence of all maps around the world

Regional ellipsoids

- e.g. Bessel, Clarke, Hayford, Krassovsky
 - Best fitting ellipsoid for a part of the world ("local optimized")
 - Less local deviation

Geodetic Datum

- A Geodetic Datum is a Reference System which includes:
 - A local or global Ellipsoid
 - One "Fixpoint"

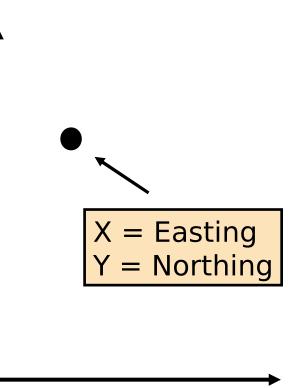
Attention: Referencing geodetic coordinates to the wrong map datum can result in position errors of hundreds of meters

Info:

In most cases the shift, rotation and scale factor of a Map Datum is relative to the "satellite map datum" 3FL 11820 ABAA WWGS84.

Map Projection Cylindrical

- e.g. UTM, Gauss-Krueger
- Conical
 - e.g.Lambert Conformal Conic
- Planar/Azimuthal


Cylinder Plane Cone Normal Transversa Oblique C = Central Point ABAA WAZZA ed01

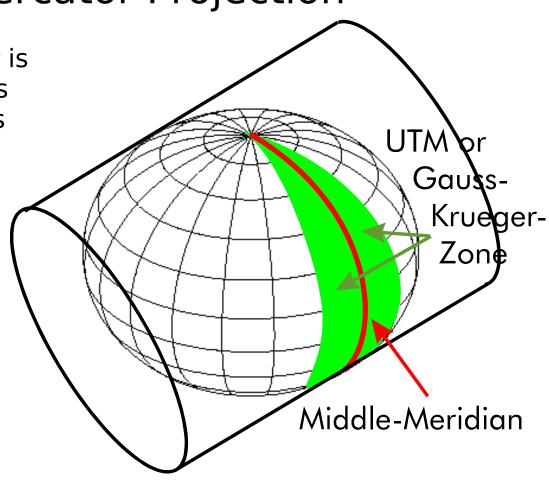
Info: In 90% of the cases we will have a cylindrical projection in 10% of the cases a conical projection

Geo-Coordinate System

- To simplify the use of maps a Cartesian Coordinates is used
- To avoid negative values a
 - False Easting value and a
 - False Northing value is added
- Also a scaling factor is used to minimize the "projection error" over the whole area

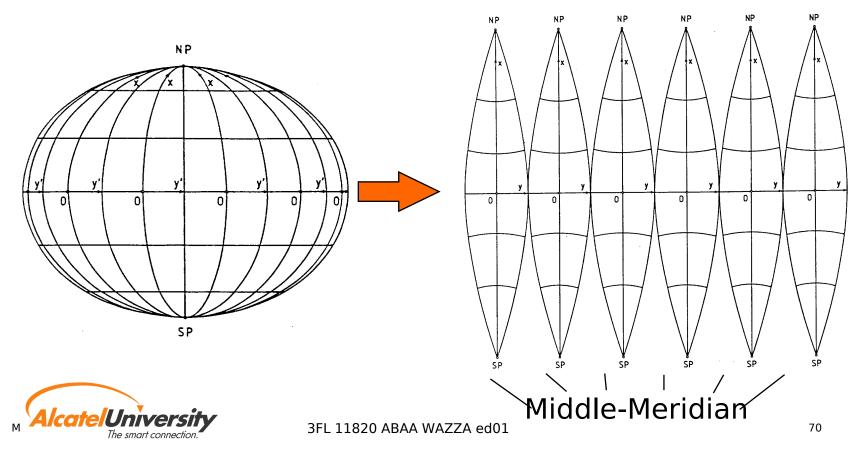
WGS 84 (World Geodetic System 1984)

- Most needed Geodetic Datum in the world today ("Satellite Datum")
- It is the reference frame used by the U.S. Department of Defense is defined by the National Imagery and Mapping Agency (NIMA)
- The Global Positioning System (GPS) system is based on the World Geodetic System 1984 (WGS-84).
- Optimal adaption to the surface of the earth



Transverse Mercator Projection

- Projection cylinder is rotated 90 degrees from the polar axis ("transverse")
- Geometric basis for the UTM and the Gauss-Krueger Map Projection
- Conformal Map projection



3FL 11820 ABAA WAZZA ed01

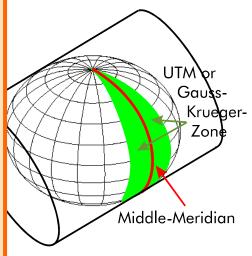
Transverse Mercator Projection (e.g. UTM)

UTM-System (<u>Universal Transverse Mercator System</u>)

- 60 zones, each 6° (60 \cdot 6° = 360°)
- \checkmark ±3^o around each center meridian
- Beginning at 180^o longitude (measured eastward from Greenwich)

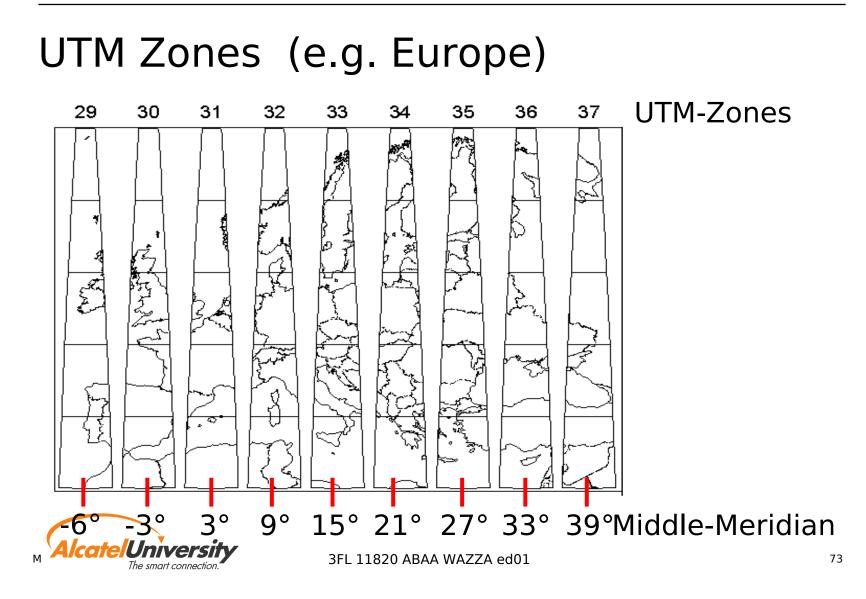
6⁰

3FL 11820 ABAA WAZZA ed01

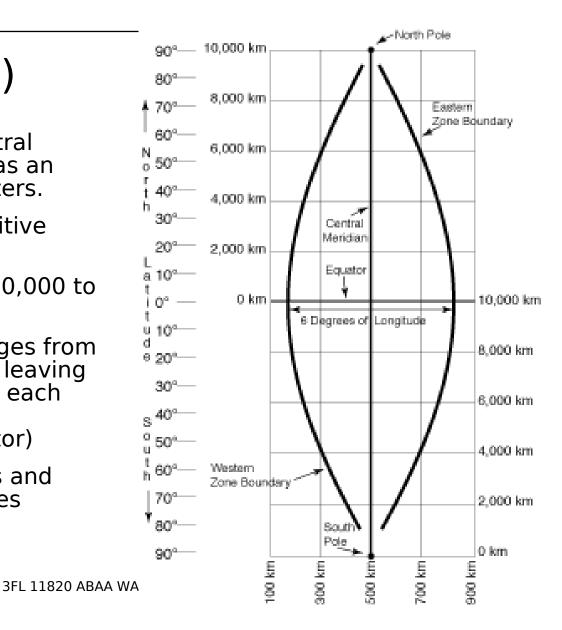


UTM - Definitions

False Easting: 500 000 m (Middle-meridian x = 500 000 m)

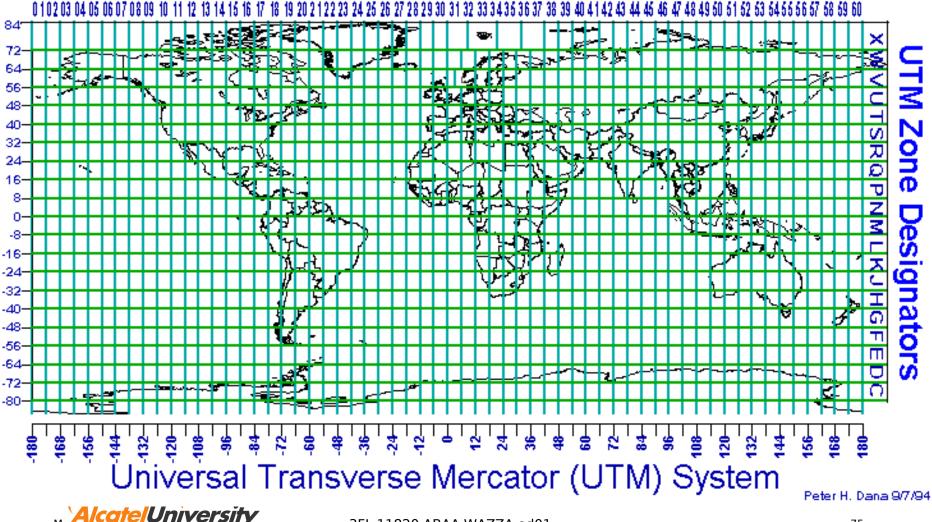

False Northing: Northern Hemisphere: 0 m Southern Hemisphere: 10 000 000 m

Scaling Factor: 0,9996 (used to minimize the "projection error" over the whole area)



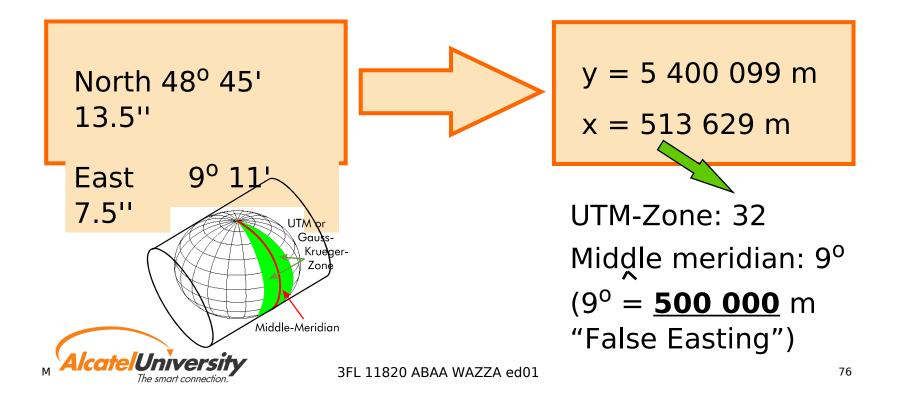
UTM-System (2)

- False origin on the central meridian of the zone has an easting of 500,000 meters.
- All eastings have a positive values for the zone
- Eastings range from 100,000 to 900,000 meters
- The 6 Degree zone ranges from 166,667 to 833,333 m, leaving about a 0.5° overlap at each end of the zone (valid only at the equator)
- This allows for overlaps and matching between zones

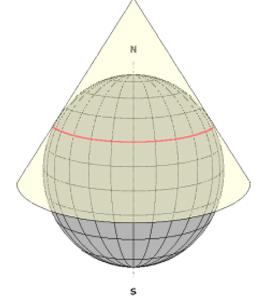


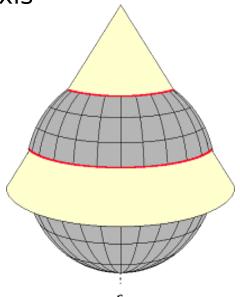
The smart connection

GSM RNE Fundamentals


UTM Zone Numbers

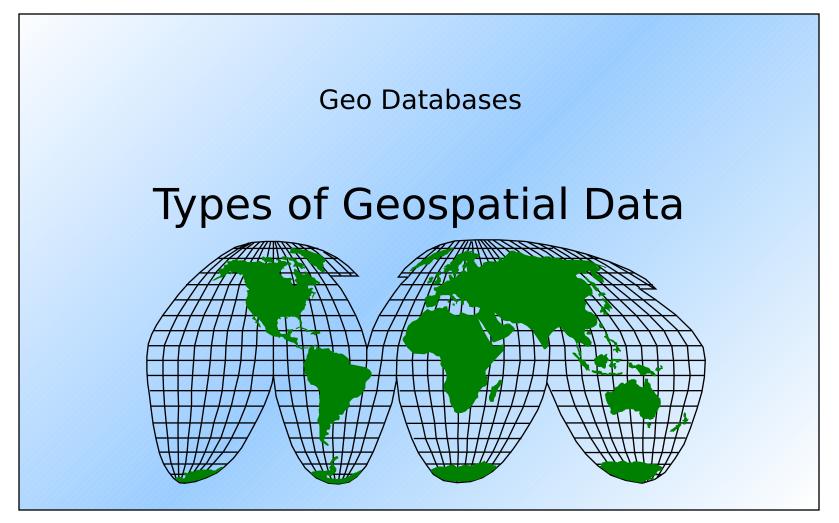
UTM-System: Example "Stuttgart"


Transformation: latitude / longitude \rightarrow UTM system



Lambert Conformal Conic Projection

Maps an ellipsoid onto a cone whose central axis coincides with the polar axis



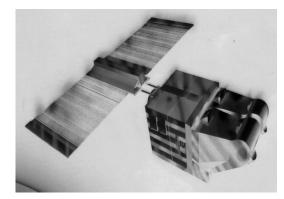
Cone touches the ellipsoid Cutting => One standard parallel (1SP) => Two (e.g. NTF-System in France) (e.g. La BFL 11820 ABAA WAZZA ed01

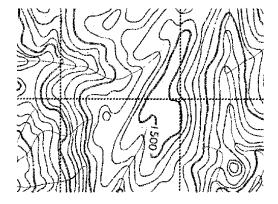
Cutting edges of cone and ellipsoid => Two standard parallels (2SP) (e.g. Lambert-Projection in Austria) WAZZA ed01 77

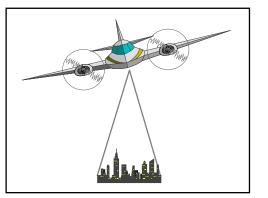

3FL 11820 ABAA WAZZA ed01

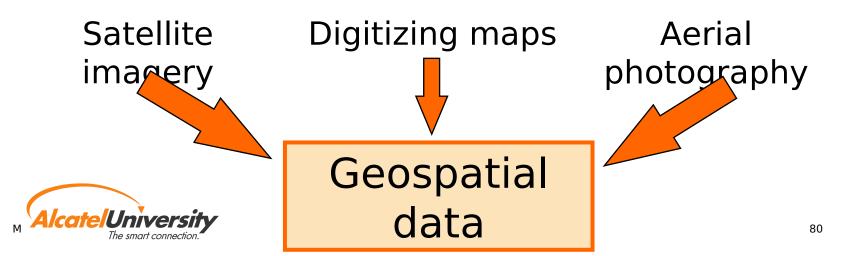
Geospatial data for Network Planning

- V DEM (Digital Elevation Model)/ Topography
- Morphostructure / Land usage / Clutter
- Satellite Photos / Orthoimages
- Scanned Maps
- Background data (streets, borders, coastlines, etc.)
- BuildingsTraffic data

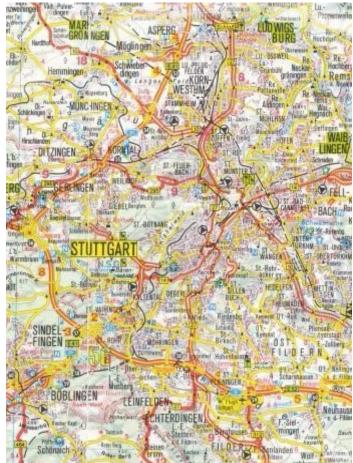





3FL 11820 ABAA WAZZA ed01

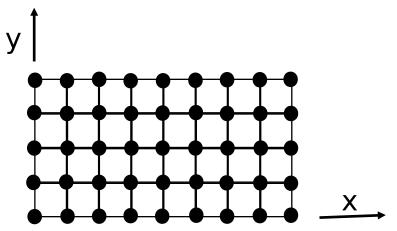


Creation of geospatial databases



Parameters of a Map

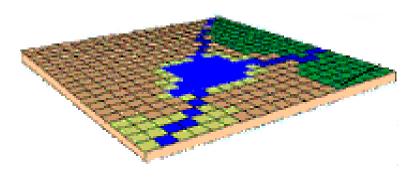
- Coordinate system
- Map Projection (incl. Geodetic Datum)
- Location of the map (Area ...)
- Vert Scale:
 - macrocell planning 1:50000 - 1:100000
 - microcell planning 1:500 -1:5000
- Thematic
- Source
- Date of Production



Raster- and Vectordata

- DEM /Topography
- Morphostructure / Land usage / Clutter
- Traffic density

 Vector data
 Background data (x₁,y₁) (streets, borders, coastlines, etc.)
 Buildings (x_n,y_n)


3FL 11820 ABAA WAZZA ed01

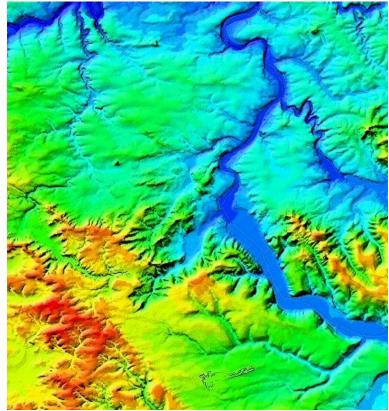
Rasterdata / Grid data

Pixel-oriented data

- Stored as row and column
- Each Pixel stored in one or two byte
- Each Pixel contents information (e.g. morphoclass, colour of a scanned map, elevation of a DEM)

Vectordata

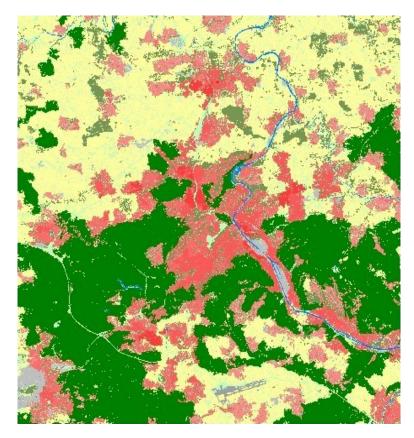
- Vector mainly used are: airport, coastline, highway, main roads, secondary roads, railway, rivers/lakes
- Each vector contents
 - Info about kind of vector (x₁, y₁) (e.g. street, coastline))
 - A series of several points Each point has a corresponded x / y -value (e.g. in UTM System or as Long/Lat)
 - Info about Map projection and used Geodetic Datum



(x_n,y_n

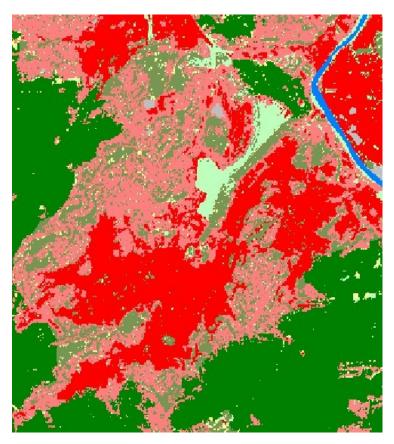
Digital Elevation Model (DEM)

- Raster dataset that shows terrain features such as hills and valleys
- Each element (or pixel) in the DEM image represents the terrain elevation at that location
- Resolution in most cases:
 20 m for urban areas
 50-100 m for other areas
- DEM are typically generated from topographic maps, stereo satellite images, or stereo aerial photographs

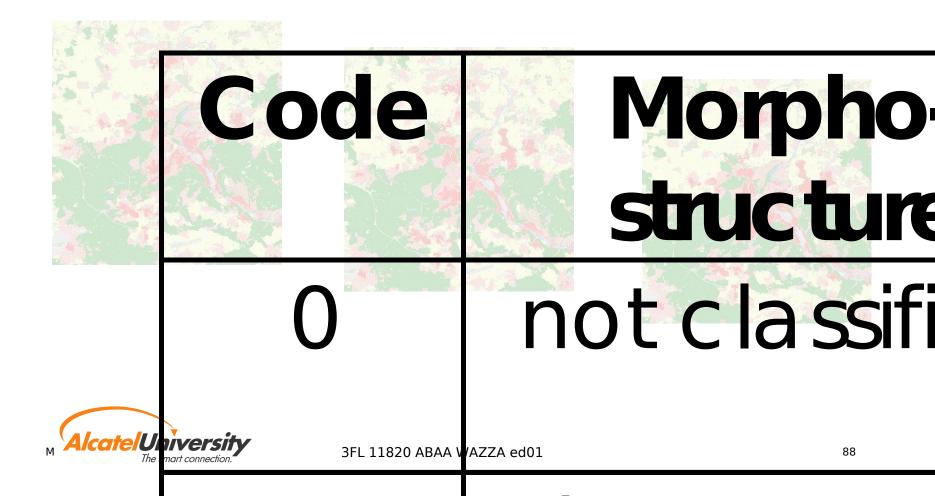


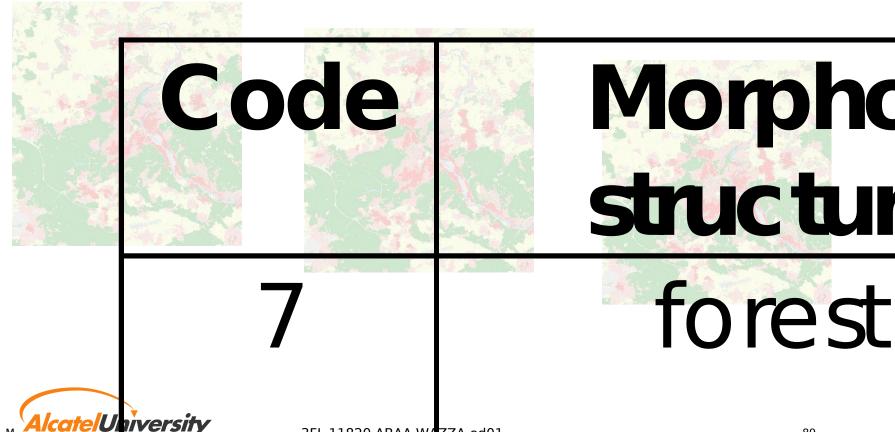
Morphostructure / Land usage / Clutter (1)

- Land usage classification according to the impact on wave propagation
- In most cases: 7...14 morpho classes
 Resolution in most cases: 20 m for cities 50...100m other areas for radio network planning

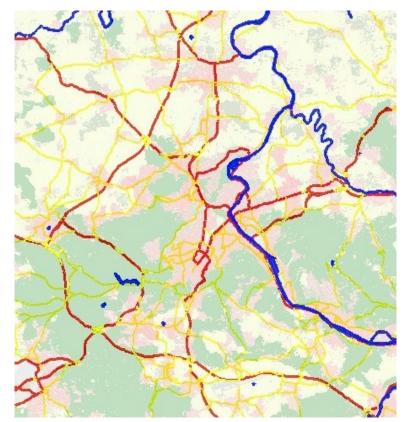


Morphostructure (2)


- Besides the topo database the basic input for radio network planning
- Each propagation area has different obstacles like buildings, forest etc.
 Obstacles which have similar effects on propagation conditions are classified in <u>morphoclasses</u>
- Each morphoclass has a corresponding value for the correction gain
- The resolution of the morpho databases should be adapted to the propagation model
- Morpho correction factor for predictions:
 0 dB ("skyscapers") ... 30 dB ("water")



Morphoclasses

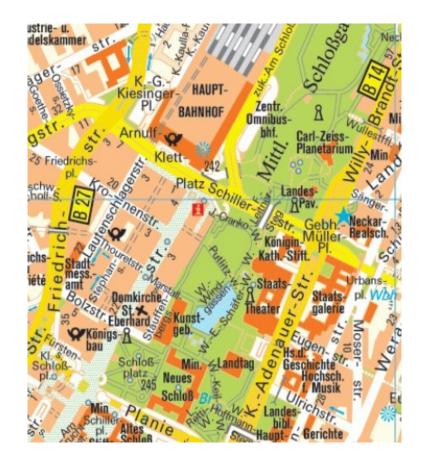

Morphoclasses

Background data (streets, borders etc.)

- All kinds of information data like streets, borders, coastlines etc.
- Necessary for orientation in plots of calculation results
- The background data are not needed for the calculation of the fieldstrength, power etc.

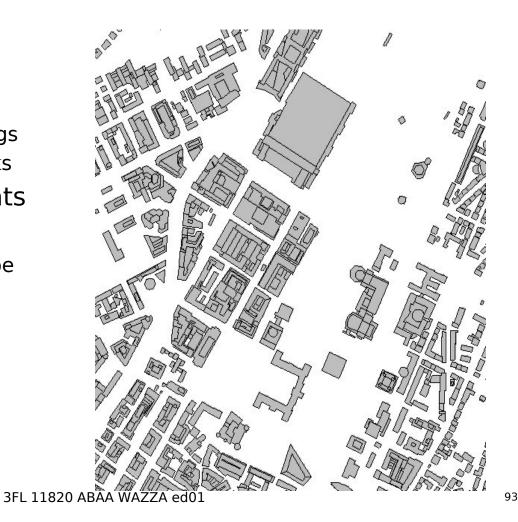
Orthophoto

- Georeferenced Satellite Image
- Resolution: most 10 or 20 m
- ▼ Satellite: e.g. SPOT, Landsat



Scanned Maps

- Mainly used as background data
- Not used for calculation but for localisation
- Has to be geocoded to put it into a GIS (Geographic Information System) e.g. a Radio Network Planning Tool

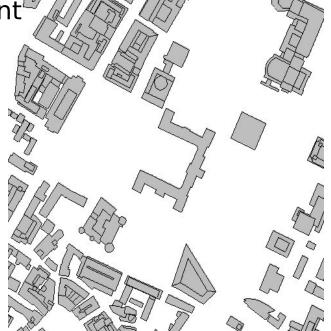

Buildings

Vectordata
 Outlines of

 single buildings
 building blocks

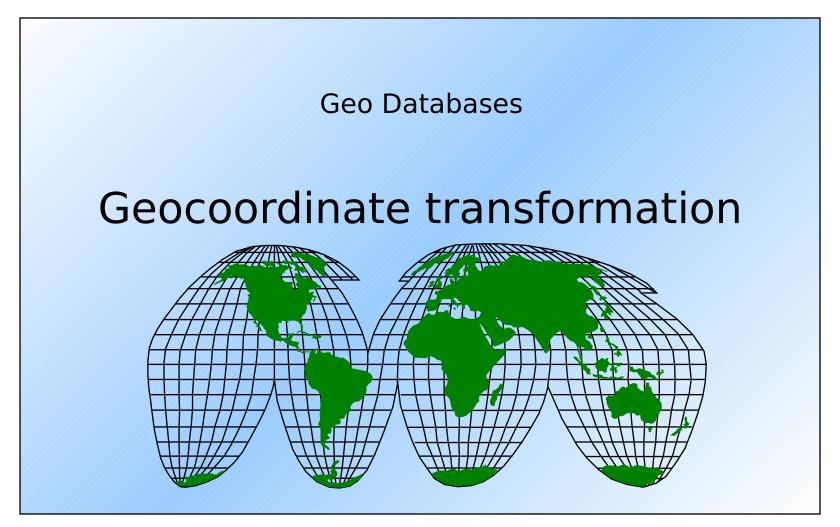
 Building heights
 Material code

 not: roof shape



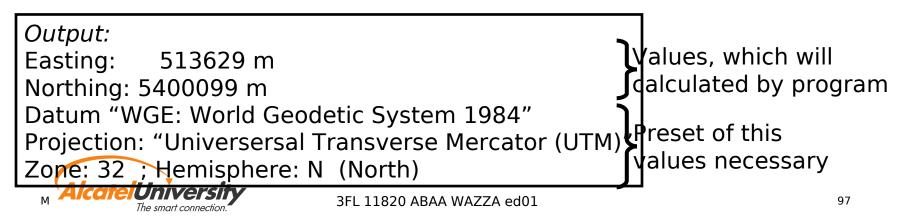
Buildings (2)

- Microcell radio network planning is mainly used in urban environment
- The prediction of mircowave propagation is calculated with a ray-tracing/launching model
- A lot of calculation steps are needed
- Optimum building database required (data reduction) to minimize the pre-calculation time


Traffic density

- Advantageous in the interference calculation, thus for frequency assignment and in the calculation of average figures in network analysis
- Raster database of traffic density values (in Erlangs) of the whole planning area
 Resolution: 20...100 m

3FL 11820 ABAA WAZZA ed01

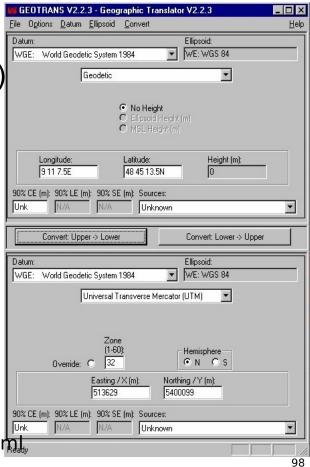


Converting one single point (1a)

Example "Stuttgart" (Example 1) Long/Lat (WGS84) => UTM (WGS84) Exercise: Convert following example with the program "Geotrans":

Input:

Longitude: 9 deg 11 min 7.5 sec Latitude: 48 deg 45 min 13.5 sec Datum "WGE: World Geodetic System 1984"; Projection: "Geodetic"



Converting one single point (1b)

Example "Stuttgart" (Example 1) Long/Lat (WGS84) => UTM (WGS84)

GEOTRANS (Geographic Translator) is an application program which allows you to convert geographic coordinates easily among a wide variety of coordinate systems, map projections, and datums.

Source: http://164.214.2.59/GandG/geotrans/geotrans.htm M The smart connection. 3FL 11820 ABAA WAZZA ed01

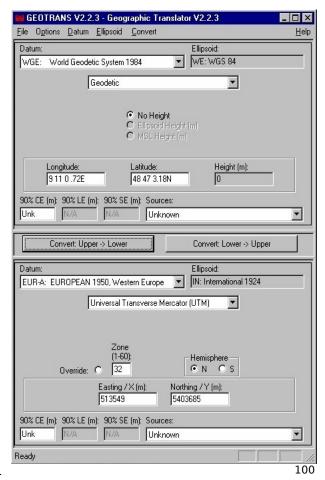
Converting one single point (2a)

Example "Stuttgart" (Example 2) Long/Lat (WGS84) => UTM (ED50) (ED50 = EUR-A = European Datum 1950) Exercise: Convert following example with the program "Geotrans":

Input:

Longitude: 9 deg 11 min 7.5 sec Latitude: 48 deg 45 min 13.5 sec Datum "WGE: World Geodetic System 1984"; Projection: "Geodetic"

Output:		
Easting: 513549 m		Values, which will
Northing: 5403685 m		calculated by program
Datum "EUR-A: EUROPEAN	1950, Western Europe" ㅣ	
Projection: "Universersal T Zone: 32 ; Hemisphere: N	ransverse Mercator (UTM)'	Preset of this
Zone: 32 ; Hemisphere: N	(North)	values necessary
M The smart connection.	3FL 11820 ABAA WAZZA ed01 🖉	99


Converting one single point (2b)

Example "Stuttgart" (Example 2) Long/Lat (WGS84) => UTM (ED50) (ED50 = EUR-A = European Datum 1950)

Diff. X (Ex.2 - Ex.1): 69 m Diff. Y (Ex.2 - Ex.1): 200 m Difference because of different Geodetic Datums

Attention: For flat coordinates (e.g. UTM) as well as for geographic coordinates (Long/Lat) a reference called "Geodetic Datum" is necessary.

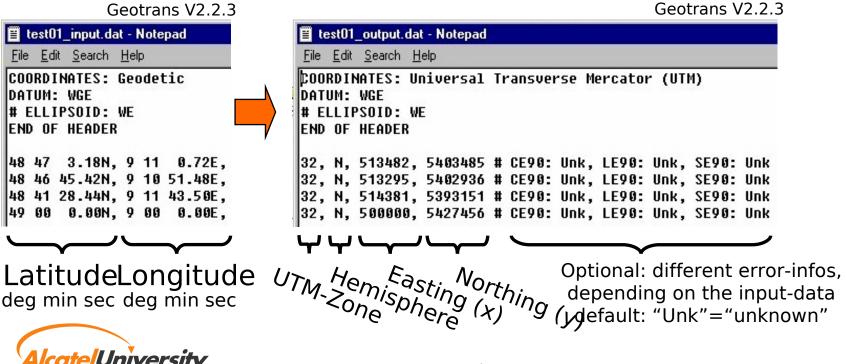
The smart connection

Converting a list of points (3a)

Example "Stuttgart" (Example 3) Long/Lat (WGS84) => UTM (WGS84)

Input: text-file with the values (list) of the longitude and latitude of different points (How to create the *inputfile* see on page 3c)

Output: Datum: "WGE: World Geodetic System 1984" Projection: "Universal Transverse Mercator (UT) Values necessary Zone: 32


Converting a list of points (3b)

Example "Stuttgart"	(Example	23)	
Long/Lat (WGS84)		GEOTRANS File Processing	×
0	(WGS84)	Datum:	INPUT Ellipsoid:
••••	(WGE: World Geodetic System 1984	WE: WGS 84
GEOTRANS V2.2.3 - Geographic Translator V2.2.3 File Options Datum Ellipsoid Convert Open Ctrl+O Ellipsoid:			eodetic Coordinates Ellipsoid Height
Egit Jetic System 1984 VE: WGS 84			
 a) 3_param.dat a) 7_param.dat 		Datum: WGE: World Geodetic System 1984	
ellips.dat test01_input.dat			ansverse Mercator (UTM) Zone (1-60): ride ◯ 32
File name: test01_input.dat	<u>O</u> pen		
Files of type: Data Files (*.dat) Alcate/University The smart connection.	3FL 11820 ABAA WA	ZZA ed01	Help Cancel 102

Converting a list of points (3c)

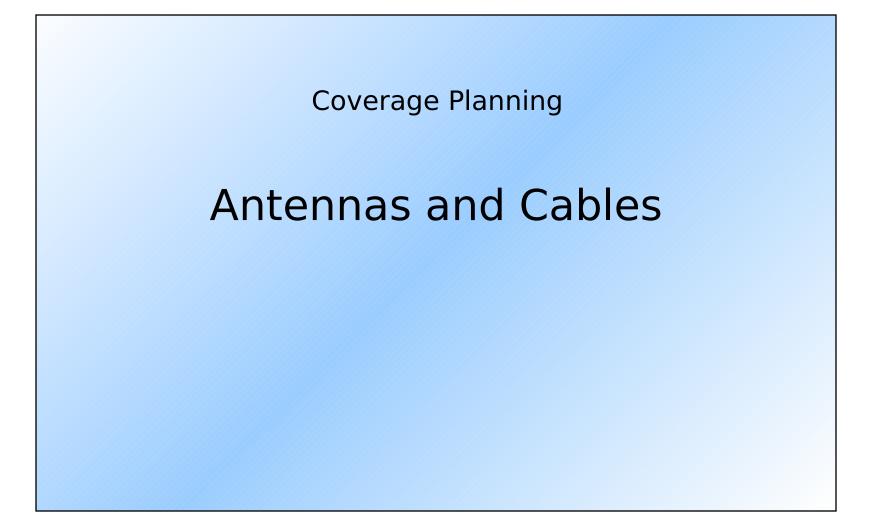
Example "Stuttgart" (Example 3) Long/Lat (WGS84)=> UTM (WGS84)

Provider for Geospatial data

Geodatasupplier	Internet
BKS	www.bks.co.uk
ComputaMaps	www.computamaps.com
Geoimage	www.geoimage.fr
Infoterra	www.infoterra-global.com
Istar	www.istar.fr
RMSI	www.rmsi.com

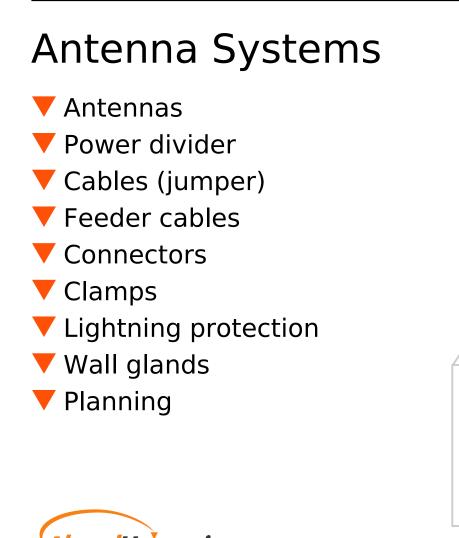
Links for more detailed infos

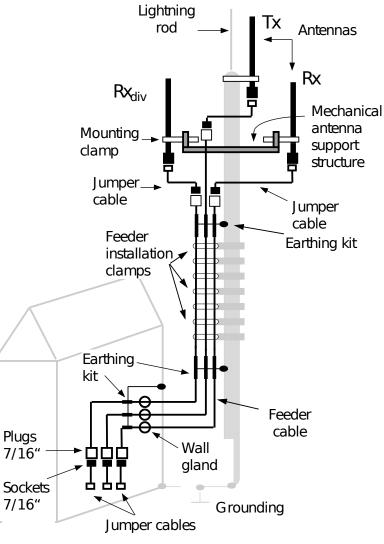
Maps Projection Overview http://www.colorado.edu/geography/gcraft/notes/mapproj/mapproj.html http://www.ecu.edu/geog/faculty/mulcahy/mp/ http://www.wikipedia.org/wiki/Map_projection


Coordinate Transformation (online) http://jeeep.com/details/coord/ http://www.cellspark.com/UTM.html

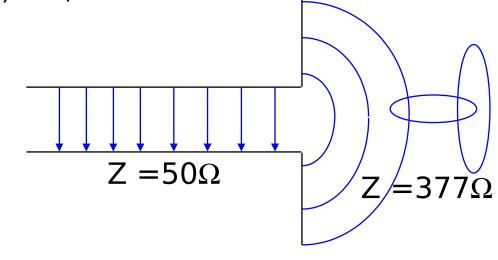
Map Collection http://www.lib.utexas.edu/maps/index.html

Finding out Latitude/Longitude of cities etc. http://www.maporama.com





м

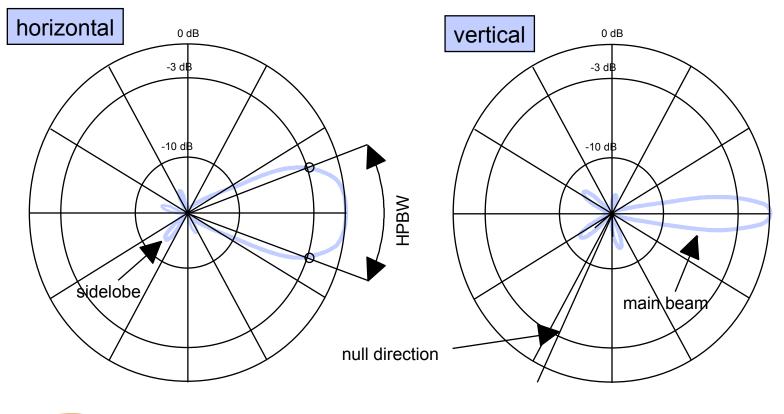


3FL 11820 ABAA WAZZA ed01

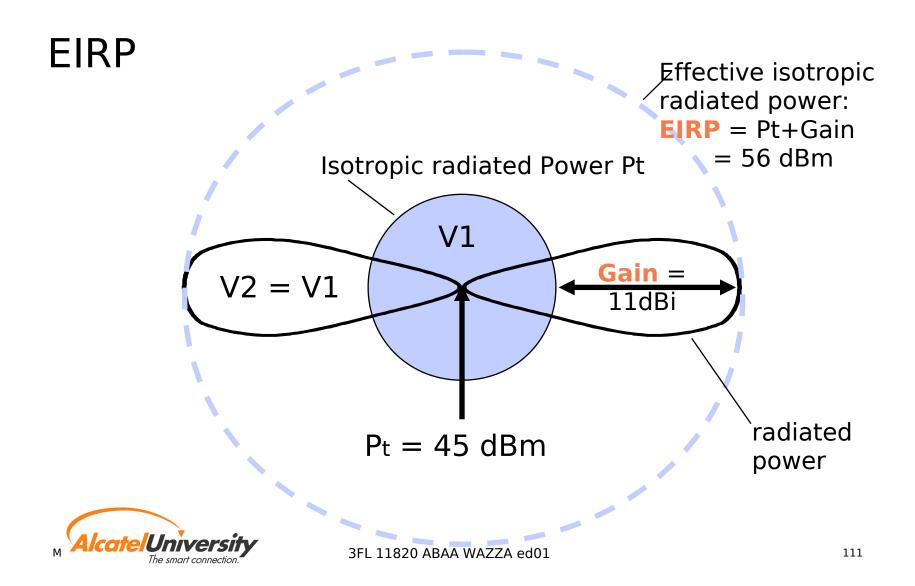
Antenna Theory

- \checkmark 50 Ω is the impedance of the cable
- **\mathbf{\nabla}** 377 Ω is the impedance of the air
- Antennas adapt the different impedances
- They convert guided waves, into free-space waves (Hertzian waves) and/or vice versa

Antenna Data

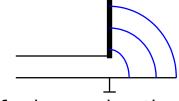

VPolarization

- Specification due to certain wave polarization (linear/elliptic, cross-polarization)
- Half power beam width (HPBW)
 - Related to polarization of electrical field
 - Vertical and Horizontal HPBW
- Antenna pattern
 - Yields the spatial radiation characteristics of the antenna
- Front-to-back ratio
 - Important for interference considerations

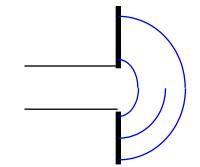


Antenna Pattern and HPBW

M AlcatelUniversity The smart connection.


Linear Antennas: Monopole and Dipole

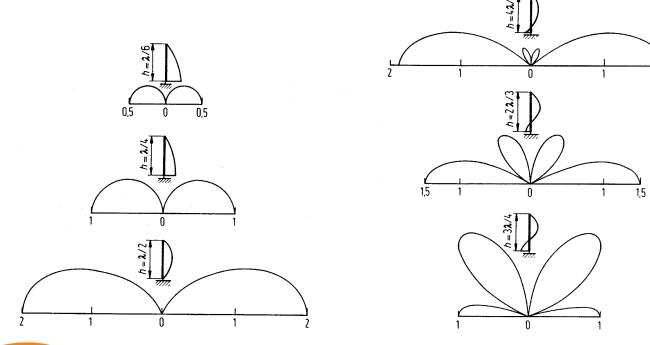
For the link between base station and mobile station, mostly linear antennas are used:


Monopole antennas

MS antennas, car roof antennas

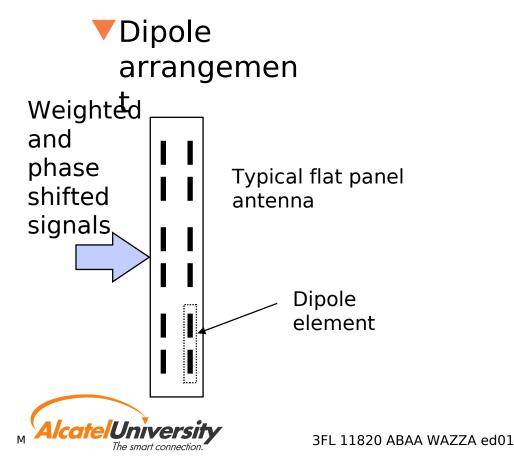
Dipole antennas

 Used for array antennas at base stations for increasing the directivity of RX and TX antennas



Monopole Antenna Pattern

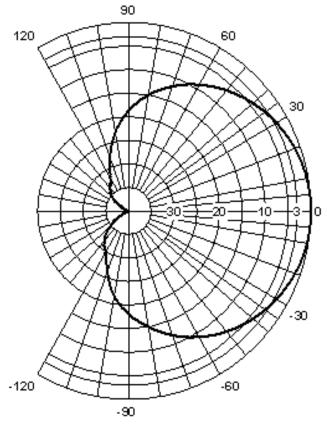
Influence of antenna length on the antenna pattern

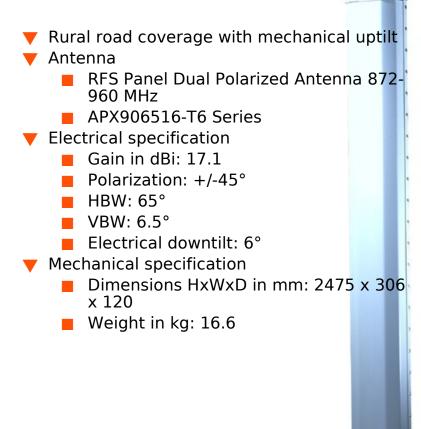

Panel Antenna with Dipole Array

- Many dipoles are arranged in a grid layout
- Nearly arbitrary antenna patterns may be designed
 - Feeding of the dipoles with weighted and phase-shifted signals
 - Coupling of all dipole elements

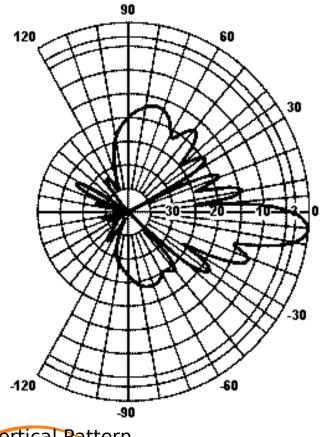
Dipole Arrangement

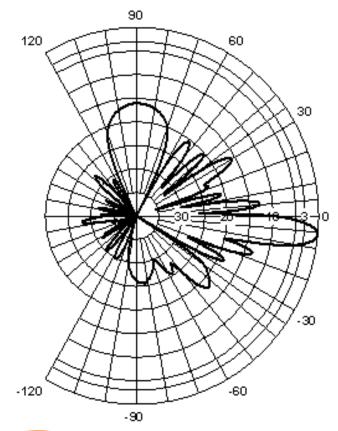
Omni Antenna

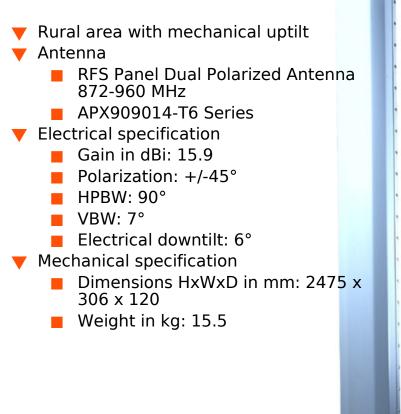

Antenna with vertical HPBW for omni sites


- Large area coverage
- Advantages
 - Continuous coverage around the site
 - Simple antenna mounting
 - Ideal for homogeneous terrain
- V Drawbacks
 - No mechanical tilt possible
 - Clearance of antenna required

X 65° T6 900MHz 2.5m

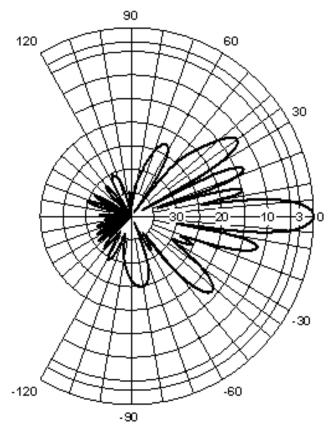



X 65° T6 900MHz 1.9m

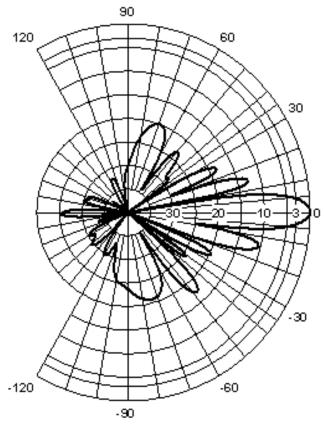


- Dense urban area
 Antenna
 - RFS Panel Dual Polarized Antenna 872-
 - 960 MHz
 - APX906515-T6 Series
- Electrical specification
 - Gain in dBi: 16.5
 - Polarization: +/-45°
 - HBW: 65°
 - VBW: 9°
 - Electrical downtilt: 6°
- Mechanical specification
 - Dimensions HxWxD in mm: 1890 x 306 x 120
 - Weight in kg: 16.6

X 90° T2 900MHz 2.5m

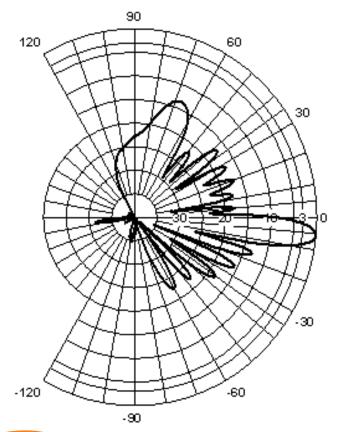


V 65° T0 900MHz 2.0m



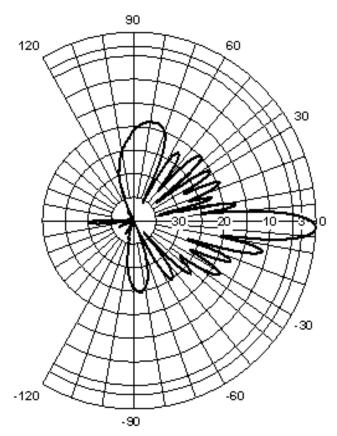
🔻 Highway Antenna RFS CELLite® Panel Vertical Polarized Antenna 872-960 MHz AP906516-T0 Series Electrical specification Gain in dBi: 17.5 Polarization: Vertical HBW: 65° VBW: 8.5° Electrical downtilt: 0° Mechanical specification Dimensions HxWxD in mm: 1977 x 265 x 130 Weight in kg: 10.9

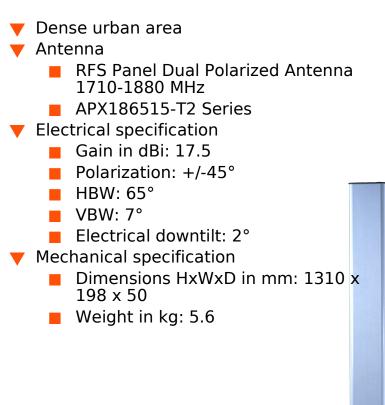
V 90° T0 900MHz 2.0m



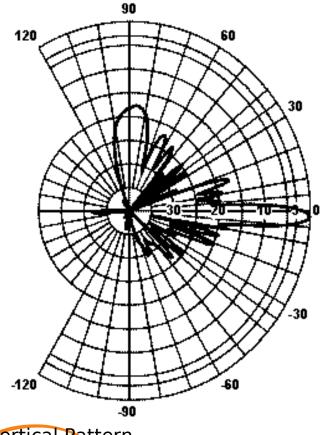
- 🔻 Rural Area
- 🔻 Antenna
 - RFS CELLite® Panel Vertical Polarized Antenna 872-960 MHz
 - AP909014-T0 Series
- Electrical specification
 - Gain in dBi: 16.0
 - Polarization: Vertical
 - HBW: 65°
 - VBW: 8.5°
 - Electrical downtilt: 0°
- Mechanical specification
 - Dimensions HxWxD in mm: 1977 x 265 x 130
 - Weight in kg: 9.5

X 65° T6 1800MHz 1.3m

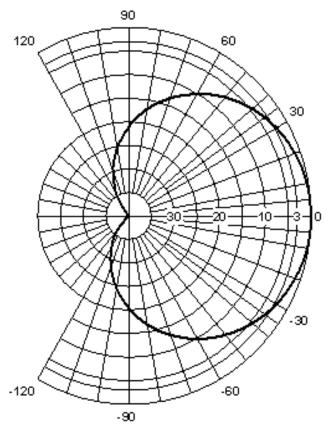




X 65° T2 1800MHz 1.3m



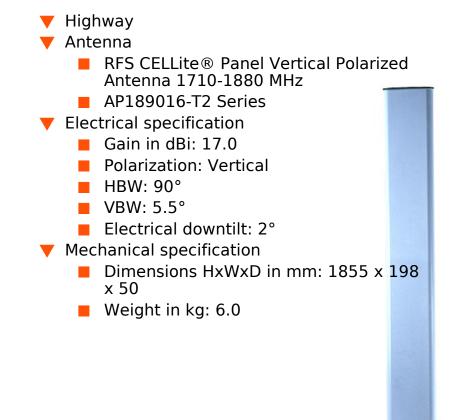
X 65° T2 1800MHz 1.9m



Highway Antenna RFS Panel Dual Polarized Antenna 1710-1880 MHz APX186516-T2 Series Electrical specification Gain in dBi: 18.3 Polarization: +/-45° HBW: 65° VBW: 4.5° Electrical downtilt: 2° Mechanical specification Dimensions HxWxD in mm: 1855 x 198 x 50 Weight in kg: 8.6

Alcate/University

V 65° T2 1800MHz 1.3m


🔻 Highway Antenna RFS CELLite® Panel Vertical Polarized Antenna 1710-1880 MHz AP186516-T2 Series Electrical specification Gain in dBi: 17.0 Polarization: Vertical HBW: 65° VBW: 7.5° Electrical downtilt: 2° Mechanical specification Dimensions HxWxD in mm: 1310 x 198 x 50 Weight in kg: 4.7

V 90° T2 1800MHz 1.9m

7/8" CELLFLEX® Low-Loss Coaxial Cable

v Feeder Cable

- 7/8" CELLFLEX® Low-Loss Foam-Dielectric Coaxial Cable
- LCF78-50J Standard
- LCF78-50JFN Flame Retardant
 - Installation temperature >-25°C
- Electrical specification 900MHz
 - Attenuation: 3.87dB/100m
 - Average power in kW: 2.65
- Electrical specification 1800MHz
 - Attenuation: 5.73dB/100m
 - Average power in kW: 1.79

- Mechanical specification
 - Cable weight kg\m: 0.53
 - Minimum bending radius
 - Single bend in mm: 120
 - Repeated bends in mm: 250
 - Bending moment in Nm: 13.0
 - Recommended clamp spacing: 0.8m

1-1/4" CELLFLEX® Coaxial Cable

🔻 Feeder Cable

- 1-1/4" CELLFLEX® Low-Loss Foam-Dielectric Coaxial Cable
- LCF114-50J Standard
- LCF114-50JFN Flame Retardant
 Installation temperature >-25°C
 - Installation temperature >-25 C
- Electrical specification 900MHz
 - Attenuation: 3.06dB/100m
 - Average power in kW: 3.56
- Electrical specification 1800MHz
 - Attenuation: 4.61dB/100m
 - Average power in kW: 2.36

- Mechanical specification
 - Cable weight kg\m: 0.86
 - Minimum bending radius
 - Single bend in mm: 200
 - Repeated bends in mm: 380
 - Bending moment in Nm: 38.0
 - Recommended clamp spacing: 1.0m

1-5/8" CELLFLEX® Coaxial Cable

🔻 Feeder Cable

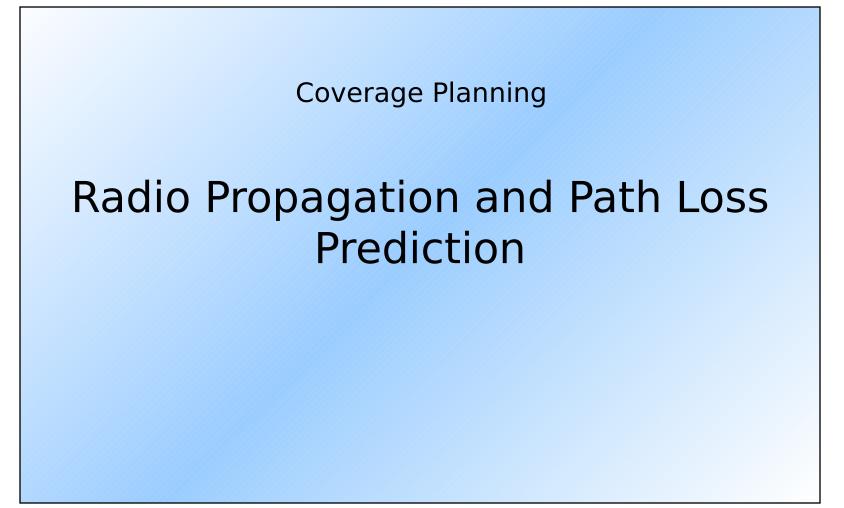
- 1-5/8" CELLFLEX® Low-Loss Foam-Dielectric Coaxial Cable
- LCF158-50J Standard
- LCF158-50JFN Flame Retardant
 - Installation temperature >-25°C
- Electrical specification 900MHz
 - Attenuation: 2.34dB/100m
 - Average power in kW: 4.97
- Electrical specification 1800MHz
 - Attenuation: 3.57dB/100m
 - Average power in kW: 3.26

- Mechanical specification
 - Cable weight kg\m: 1.26
 - Minimum bending radius
 - Single bend in mm: 200
 - Repeated bends in mm: 508
 - Bending moment in Nm: 46.0
 - Recommended clamp spacing: 1.2m

1/2" CELLFLEX® Jumper Cable

CELLFLEX® LCF12-50J Jumpers

Feeder Cable


- LCF12-50J CELLFLEX® Low-Loss Foam-Dielectric Coaxial Cable
- Connectors
 - 7/16" DIN male/female
 - N male/female
 - Right angle
- Molded version available in 1m, 2m, 3m
- Mechanical specification
 - Minimum bending radius
 - Repeated bends in mm: 125

- Electrical specification 900MHz
 - Attenuation: 0.068db/m
 - Total losses with connectors are 0.108dB, 0.176dB and 0.244dB
- Electrical specification 1800MHz
 - Attenuation: 0.099dB/m
 - Total losses with connectors are 0.139dB, 0.238dB and 0.337dB

Propagation effects

Free space loss

Fresnel ellipsoid

Reflection, Refraction, Scattering

in the atmosphere

- at a boundary to another material
- Diffraction
 - at small obstacles
 - over round earth
- Attenuation
 - Rain attenuation
 - Gas absorption
- **V** Fading

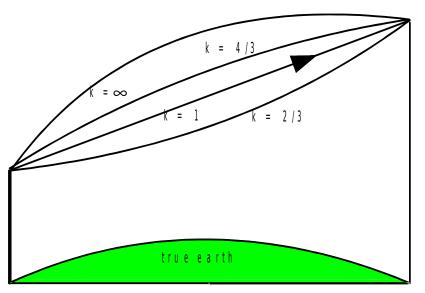
Reflection

$$P_r = R_{h/v} \cdot P_0 R_{h/v} = f(φ, ε, σ, Δh)$$

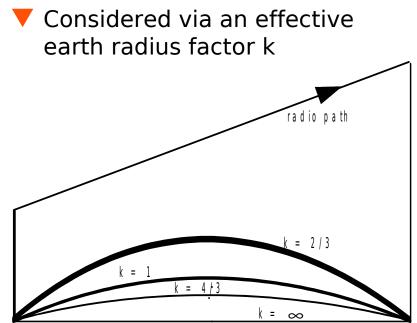
- R horizontal reflection h factor
- R vertical reflection factor
- $_{\Phi}$ angle of incidence
- ε permittivity
- _σ conductivity
 - surface roughness

 Δ

 Δ


h

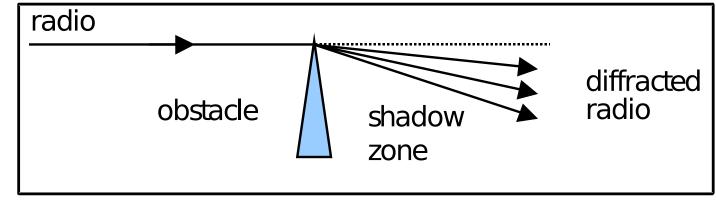
Φ


 P_0

Refraction

Ray paths with different k over true

Radio path plotted as a straight line by changing the earth's radius



Diffraction

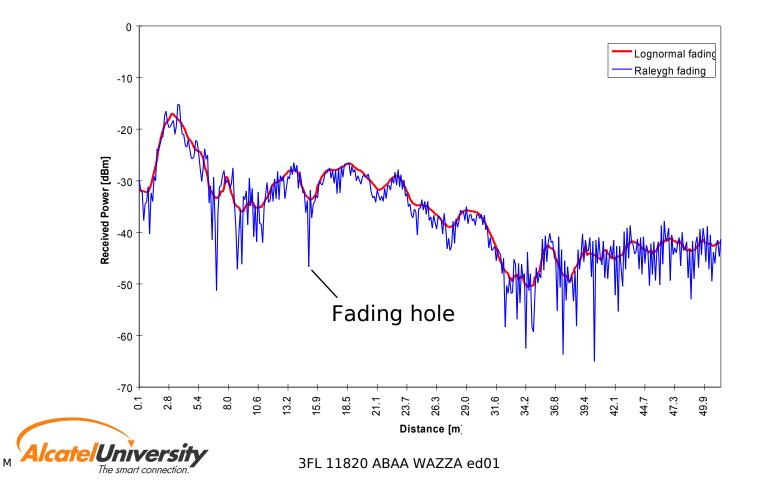
 \checkmark Occurs at objects which sizes are in the order of the wavelength λ

- Radio waves are 'bent' or 'curved' around objects
 - Bending angle increases if object thickness is smaller compared to λ
 - Influence of the object causes an attenuation: diffraction loss

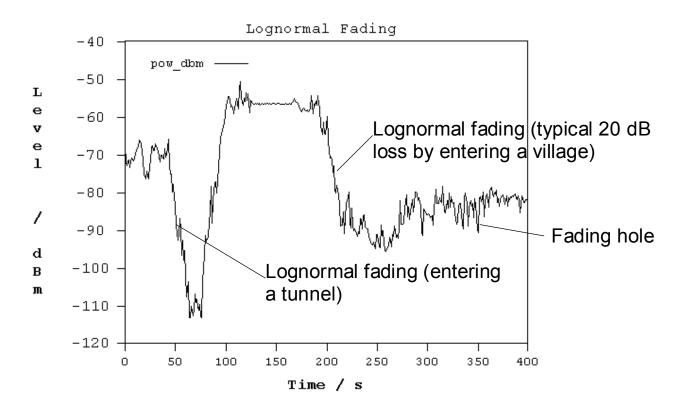
Fading

- Caused by delay spread of original signal
 - Multi path propagation
 - Time-dependent variations in heterogeneity of environment
 - Movement of receiver
- Short-term fading, fast fading
 - This fading is characterised by phase summation and cancellation of signal components, which travel on multiple paths. The variation is in the order of the considered wavelength.
 - Their statistical behaviour is described by the Rayleigh distribution (for non-LOS signals) and the Rice distribution (for LOS signals), respectively.
 - In GSM, it is already considered by the sensitivity values, which take the error correction capability into account.

Fading types


Mid-term fading, lognormal fading

- Mid-term field strength variations caused by objects in the size of 10...100m (cars, trees, buildings). These variations are lognormal distributed.
- Long-term fading, slow fading
 - Long-term variations caused by large objects like large buildings, forests, hills, earth curvature (> 100m). Like the mid-term field strength variations, these variations are lognormal distributed.

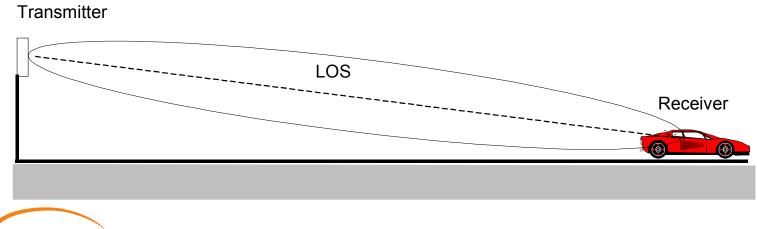


Signal Variation due to Fading

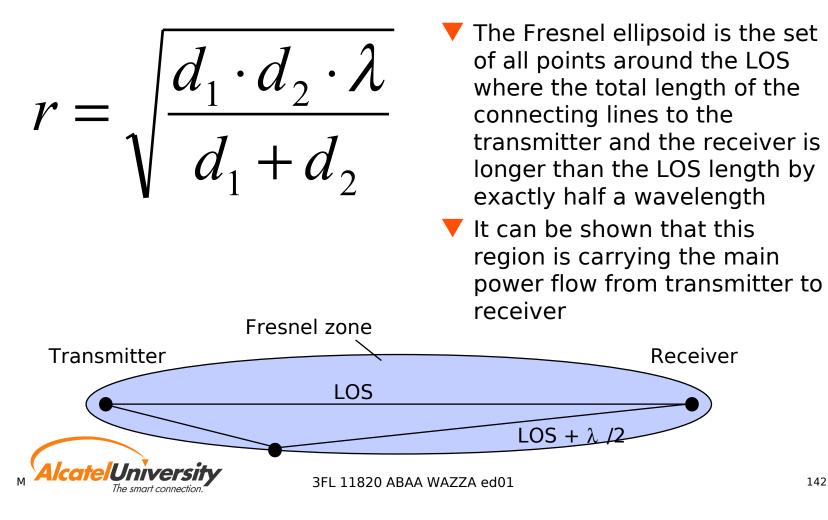
Lognormal Fading

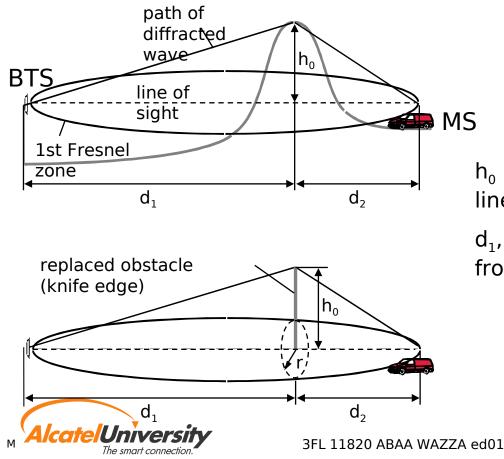
Free Space Loss

- **v** The simplest form of wave propagation is the free-space propagation
- **v** The according path loss can be calculated with the following formula
- **v** Path Loss in Free Space Propagation
 - L free space loss
 - d distance between transmitter and receiver antenna
 - f operating frequency


 $L_{freespace} = 32.4 + 20 \cdot \log \frac{d}{km} + 20 \cdot \log \frac{f}{MHz}$

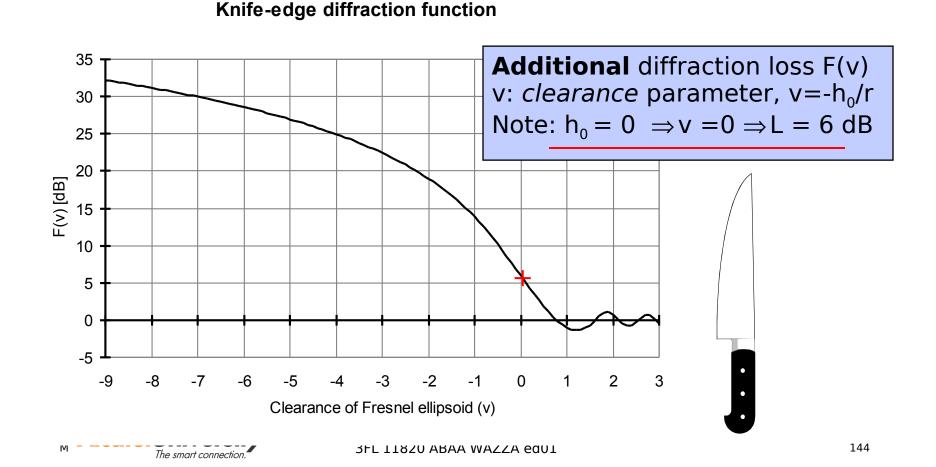
Fresnel Ellipsoid


- The free space loss formula can only be applied if the direct line-ofsight (LOS) between transmitter and receiver is not obstructed
- This is the case, if a specific region around the LOS is cleared from any obstacles
- The region is called Fresnel ellipsoid



Fresnel Ellipsoid

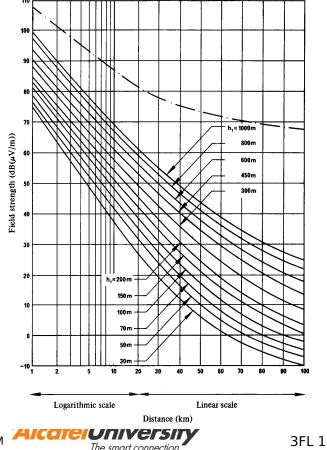
Knife Edge Diffraction



 h_0 = height of obstacle over line of sight

 d_1 , d_2 = distance of obstacle from BTS and MS

Knife Edge Diffraction Function

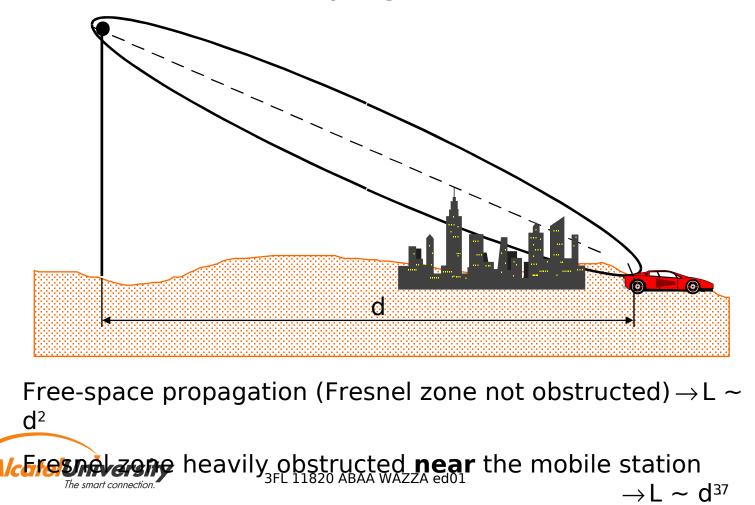

Computers: the "Final Solution" for Wave Propagation Calculations?

- Exact field solution requires too much computer resources!
 - Too much details required for input
 - Exact calculation too time-consuming
 - Field strength prediction rather than calculation
- Requirements for field strength prediction models
 - Reasonable amount of input data
 - Fast (it is very important to see the impact of changes in the network layout immediately)
 - Accurate (results influence the hardware cost directly)
 - Tradeoff required (accurate results within a suitable time)
 - Parameter tuning according to real measurements should be possible

CCIR Recommendation

- The CCIR Recommendations provide various propagation curves
 - Based on Okumura (1968)
 - Example (CCIR Report 567-3):
 - Median field strength in urban area
 - Frequency = 900 MHz

$$h_{MS} = 1.5 \text{ m}$$

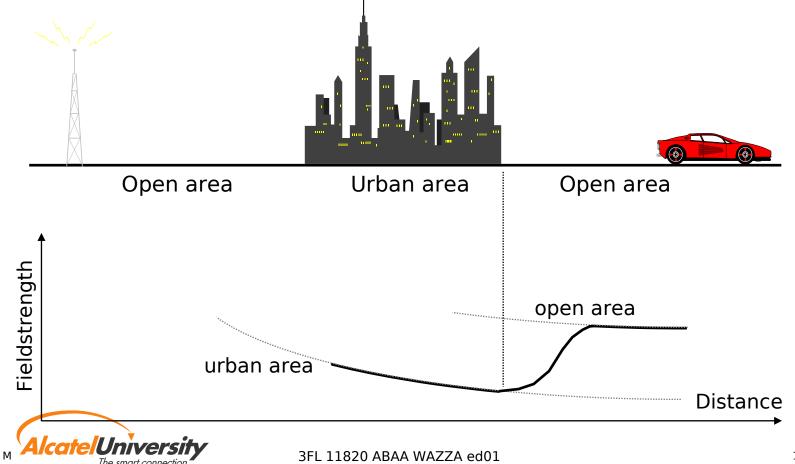

- Dashed line: free space
- How to use this experience in field strength prediction models?
 - Model which fits the curves in certain ranges → Hata's model

was modified later by the European Cooperation in Science and Technology (COST): COST 231 Hata/Okumura

147

Mobile Radio Propagation

Terrain Modeling



- Topography
 - Effective antenna height
 - Knife edge diffraction
 - single obstacles
 - multiple obstacles
- Surface shape/Morphostructure
 - Correction factors for Hata-Okumura formula

Effect of Morphostructure on Propagation Loss

Hata-Okumura for GSM 900

V Path loss (Lu) is calculated (in dB) as follows:

 $Lu = A_1 + A_2 \log(f) + A_3 \log(h_{BTS}) + (B1 + B2\log(h_{BTS})) \log d$

The parameters A1, A2, A3, B1 and B2 can be user-defined. Default values are proposed in the table below:

Parameters		Cost-Hata F>1500 MHz
Aı	69.55	46.30
A2	26.16	33.90
Аз	-13.82	-13.82
B1	44.90	44.90
B2	-6.55	-6.55

3FL 11820 ABAA WAZZA ed01

CORRECTIONS TO THE HATA FORMULA

As described above, the Hata formula is valid for urban environment and a receiver antenna height of 1.5m. For other environments and mobile antenna heights, corrective formulas must be applied.

Lmodel1=Lu-a(hms) for large city and urban environments

Lmodel1=Lu-a(hмs) -2log² (f/28) -5.4 for suburban area

Lmodel1=Lu -a(hмs) - 4.78log² (f) + 18.33 log(f) – 40.94 for rural area

a(h_{Ms}) is a correction factor to take into account a receiver antenna height different

from 1.5m.

Environments	A(hмs)
Rural/Small city	(1.1log(f) – 0.7)hмs – (1.56log(f) -0.8)
Large city	3.2log² (11.75hмs) – 4.97

t**e:** When receiver antenna height equals 1.5m, a(hms) is close to 0 dB regardless of freque

COST 231 Hata-Okumura for GSM 900

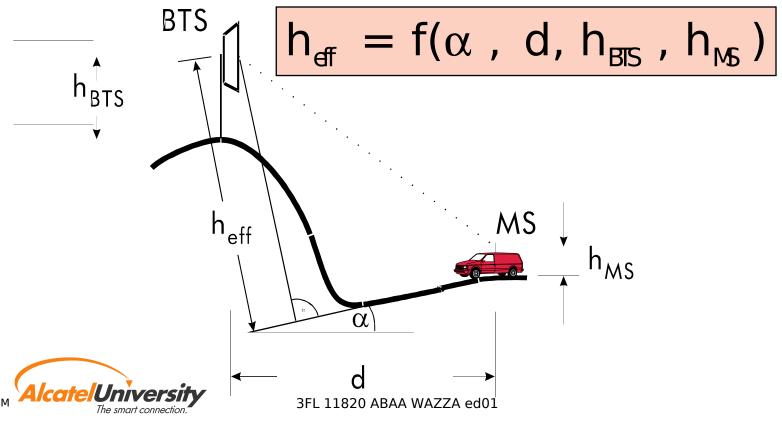
$$\begin{split} \text{Loss}_{\text{Hata}} &= 69.55 + 26.16 \log (\text{f}) - 13.82 \log (\text{h}_{\text{BTS}}) \\ &- a(\text{h}_{\text{MS}}) + (44.9 - 6.55 \log (\text{h}_{\text{BTS}})) \log (\text{d}) - \text{L}_{\text{morpho}} \end{split}$$
a (h_{MS}) = (1.1 log (f) - 0.7) h_{MS} - (1.56 log (f) - 0.8)

Formula valid for frequency range: 150...1000 MHz

 L_{monto} [dB]Morpho/surface shape-Correction factor
0 dB: 'Skyscrapers'->27 dB: 'open area'
f [MHz]f [MHz]Frequency (150 - 1000 MHz)
Height of BTS (30 - 200 m) h_{MS} [m]Height of BTS (30 - 200 m) h_{MS} [m]Height of Mobile (1 - 10m)d [km]Distance between BTS and MS (1 - 20 km)
Power law exponent shown colored

COST 231 Hata-Okumura GSM 1800

- **F**ormula is valid for frequency range: 1500...2000 MHz
- Hata's model is extended for GSM 1800
 - Modification of original formula to the new frequency range
- For cells with small ranges the COST 231 Walfish-Ikegami model is more precisely



154

Alcatel Propagation Model

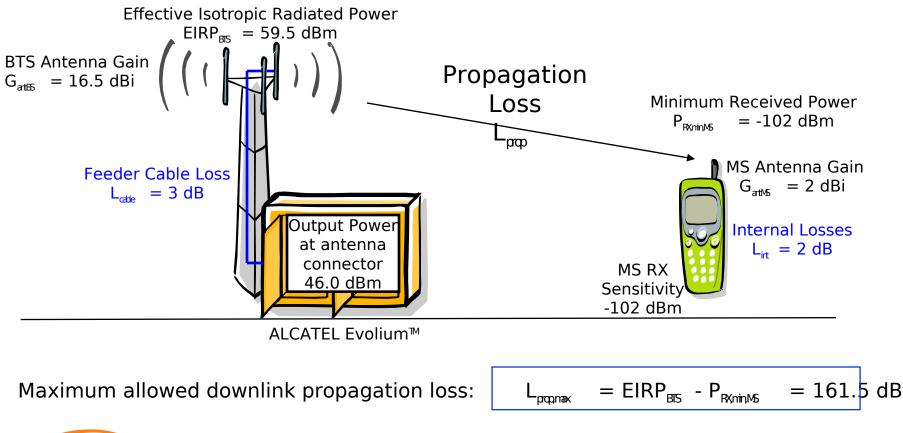
Using of effective antenna height in the Hata-Okumura formula:

Exercise 'Path Loss'

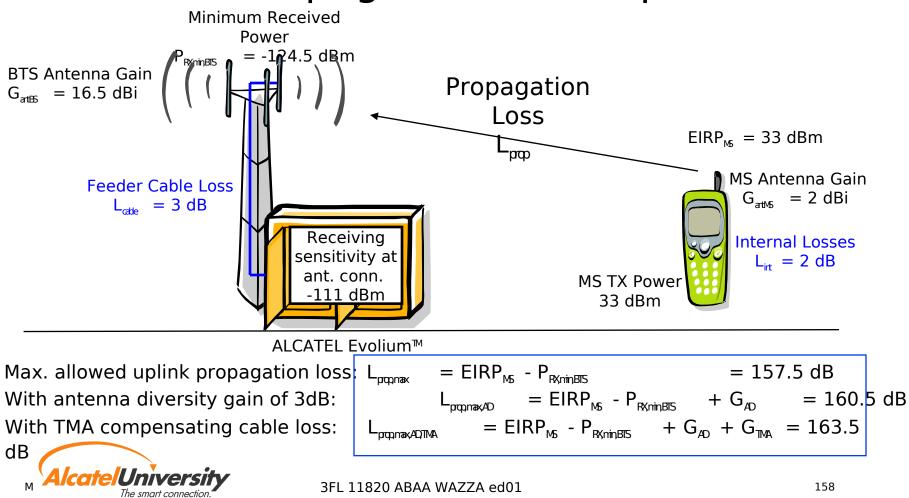
🔻 Scenario

- Height BTS = 40m
- Height MS = 1.5m
- D (BTS to MS) = 2000m
- ▼ 1. Calculate free space loss for
 - A.) f=900MHz
 - B.) f=1800MHz
- **7** 2. Calculate the path loss for f = 900MHz
 - A.) Morpho class 'skyscraper'
 - B.) Morpho class 'open area'
- **T** 3. Calculate the path loss for f = 1800MHz
 - A.) Morpho class 'skyscraper'
 - B.) Morpho class 'open area'

Coverage Planning


Link Budget Calculation Coverage Probability Cell Range

3FL 11820 ABAA WAZZA ed01


Maximum Propagation Loss (Downlink)

3FL 11820 ABAA WAZZA ed01

Maximum Propagation Loss (Uplink)

Link Budget (1)

GSM RNE Fundamentals

GSM900 Macro Evolium Evolution A9100 BTS

	MS to BS		BS to MS	
тх	Uplink		Downlink	
Internal Power	33,0	dBm	41,0	dBm
Comb+Filter Loss, Tol.	0,0	dB	3,0	dB
Output Power	33,0	dBm	38,0	dBm
Cable,Connectors Loss	2,0	dB	3,0	dB
Body/Indoor Loss	4,0	dB		
Antenna Gain	2,0	dBi	11,0	dBi
EIRP	29,0	dBm	46,0	dBm

RX	Uplink		Downlink	
Rec. Sensitivity	-104,0	dBm	-102,0	dBm
Body/Indoor Loss			4,0	dB
Cables, Connectors Loss	3,0	dB	2,0	dB
Antenna Gain	11,0	dBi	2,0	dBi
Diversity Gain	3,0	dB		
Interferer Margin	3,0	dB	3,0	dB
Lognormal Margin 50% $ ightarrow$	8,0	dB	8,0	dB
90,9%				
Degradation (no FH)	0,0	dB	0,0	dB
Antenna Pre-Ampl.	0,0	dB		
Isotr. Rec. Power:	-104,0	dBm	-87,0	dBm

Max. Pathloss	133,0 dB	133.0 dB
Max. 1 attito35	155,6 46	155,0 0.5

LB_1800_1

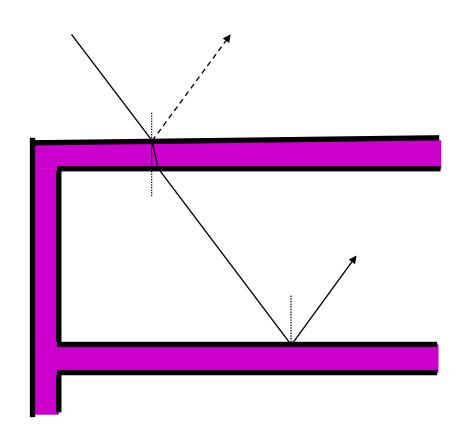
GSM1800 Link Budget

GSM 1800, Danse urban, 95 % ooverage probability

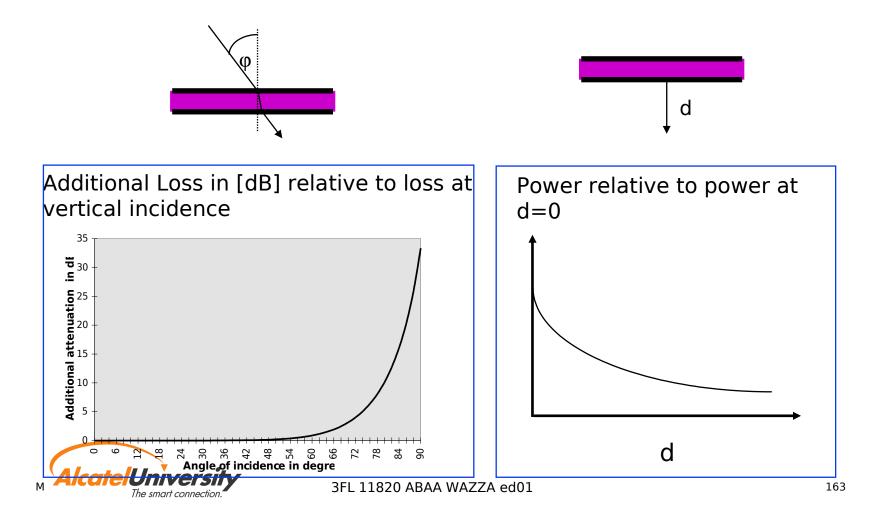
	Ublink Downlink		
RX Parameter			
RX Sensitivity	-111D	-102.0 /	
Antenna Diversity Gain	60		4B
Feeder Loss (26m LCF 7/9*)	1.4	0.00	4B
Jumper and Connector Loss	0.7		B B
TMA Contribution	0.0		1B
RX Antenna Gain	17.5	0.00	
Loss of External Devices	00		ЗB
Isotropic Power	-132.4	-102.0	dBm
<u>TX Parameter</u>			
TX Output Power	30.0	44.4 (
Feeder Loss (26m LCF 7/8*)	00	1.4 (
Jumper and Connector Loss		0.7 (
TMA Insertion Loss		0.00	
TX Antenna Gain	00	17.5 (
Slant Polarization Loss		ם ס ס ס	
Loss of External Devices		0.00	
EIRP	30.0	59.8 (dBm
Margins			
Slow Fading Margin (sigma=7.6)	8.1	8.1 (
Interference Margin	30	30 0	
Body Loss	30	30 (
Penetration Margin	18.0	18 ມ ເ	
Other Margins	10.0	10.0 (
Total Margins	40.1	40.1 (1 8
Results			
Path Loss per Link	122.2		
Maximum Allowable Pathloss	12	1.6 0	ЗB
Design Level	-71	19 6	dBm
Acceptance Level			Bm
	~		<u></u>
Propagation			
BTS Antenna Height	3		n l
MS Antenna Height			n –
Area Coverage Probability	9	-	ñ.
Propagation model	Hata-0	kumura	
Cell Range	0,	17 li	km –
oen rvange	1 07	+i jr	

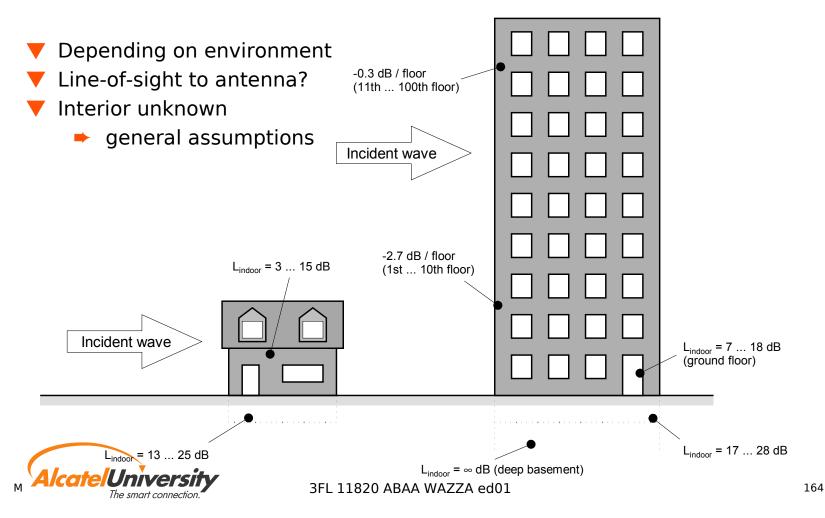
3FL 11820 ABAA WAZZA ed01

Additional Losses Overview

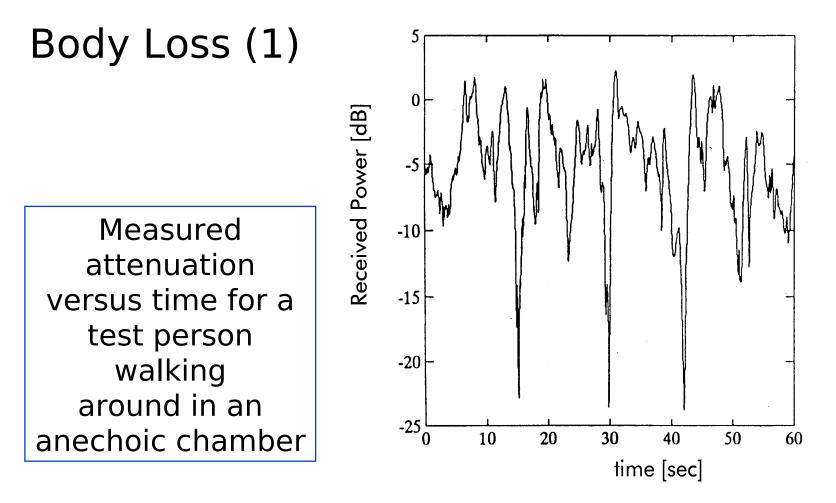

Loss type	Reason	Value
Indoor loss	Electrical properties of wall material	20dB (330dB)
Incar loss	Brass influencing radio waves	7dB (410dB)
Body loss	Absorption of radio waves by the human body	3dB (08dB)
Interferer margin	Both signal-to-noise ratio and C/I lov	3 dB
Lognormal margin	Receiving the minimum field strength with a higher probability	According to probability

Indoor propagation aspects

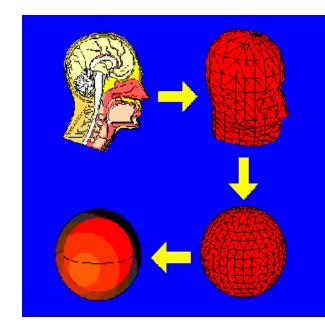

- Penetration Loss
- Multiple Refraction
- Multiple Reflection
- Exact modeling of indoor environment not possible
- Practical solution: empirical model!



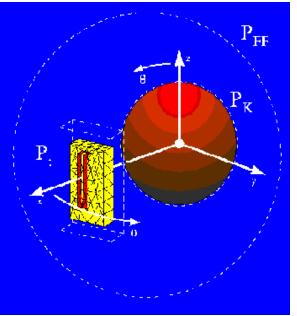
Indoor propagation: empirical model



Indoor Penetration



Body Loss (2)

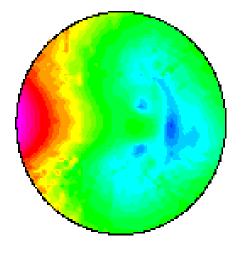


Head modeled as sphere

Near field of MS antenna • without head • with head

7.00

Calculation model


3FL 11820 ABAA WAZZA ed01

Body Loss (3)

Test equipment for indirect field strength measurements

Indirect measured field strength penetrated into the head (horizontal cut)

Interference Margin

- In GSM, the defined minimum carrier-to-interferer ration (C/I) threshold of 9 dB is only valid if the received server signal is not too weak.
- In the case that e.g. the defined system threshold for the BTS of -111dBm is approached, a higher value of C/I is required in order to maintain the speech quality.
- According to GSM, this is done by taking into account a correction of 3 dB.

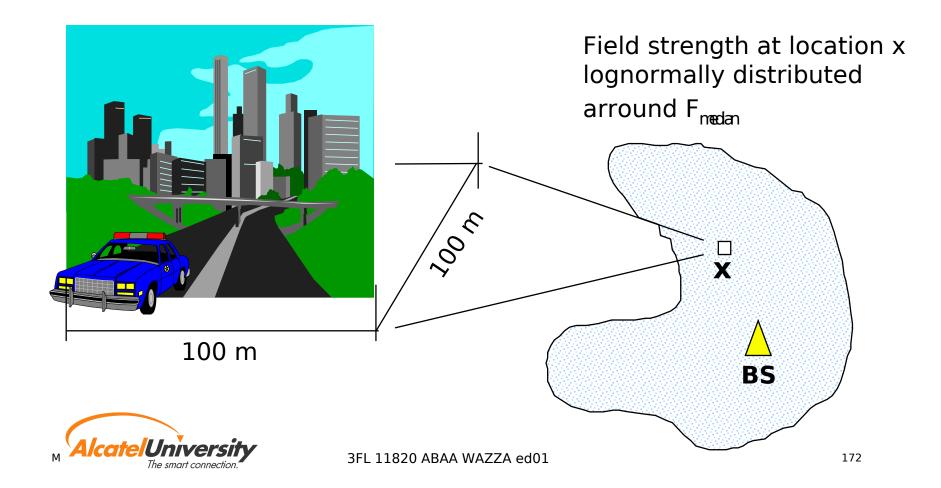
Degradation (no FH)

- GSM uses a frame correction system, which works with checksum coding and convolutional codes.
- Under defined conditions, this frame correction works successfully and copes even with fast fading types as Rayleigh or Rician fading.
- For lower mobile speed or stationary use, the fading has a bigger influence on the bit error rate and hence the speech quality is reduced.
- In such a case, a degradation margin must be applied. The margin depends on the mobile speed and the usage of slow frequency hopping, which can improve the situation for slow mobiles again.

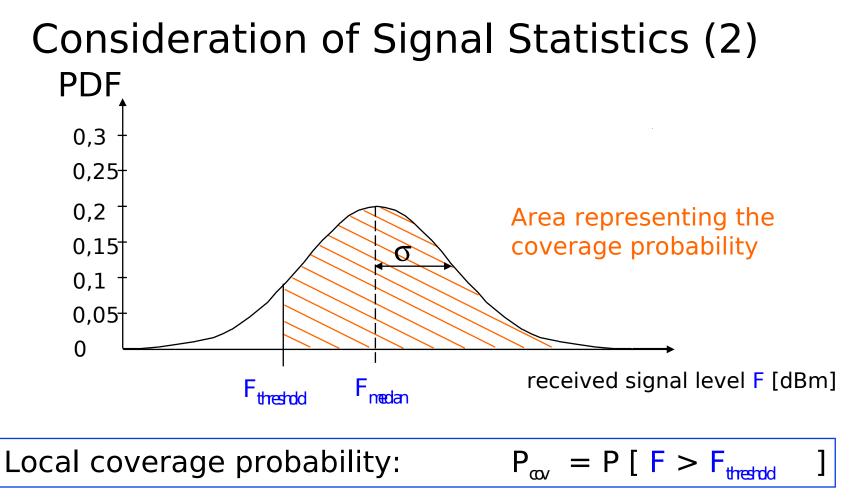
Diversity Gain

- This designates the optional usage of a second receiver antenna.
- The second antenna is placed in a way, which provides some decorrelation of the received signals.
- In a suitable combiner, the signals are processed in order to achieve a sum signal with a smaller fading variation range.
- Depending on the receiver type, the signal correlation, and the antenna orientation, a diversity gain from 2...6 dB is possible.

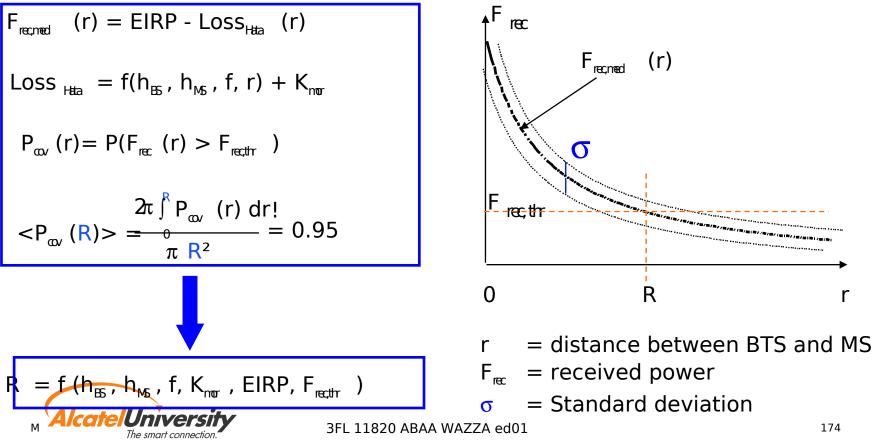
Lognormal margin

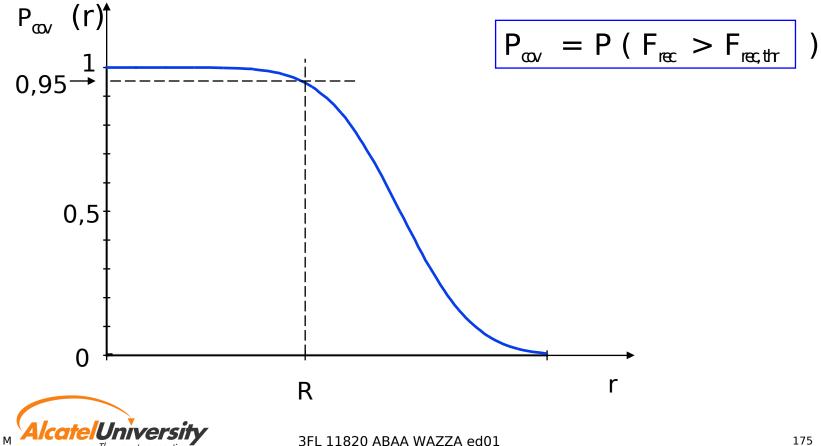

- Lognormal margin is also called fading margin
- **v** Due to fading effects, the minimum isotropic power is only received with a certain probability
 - Signal statistics, lognormal distribution with median power value F_{med} and standard deviation σ (sigma)
- Vithout any margin, the probability is 50%, which is not a sufficient value in order to provide a good call success rate.
- \checkmark A typical design goal should be a coverage probability of 90...95%. The following normalised table can be applied to find fading margins for different values of σ . The fading margin is calculated by multiplying the value of k (in the table) with the standard deviation:
- Lognormal/Fading Margin = kσ.

k	-∞	-0.5	0	1	1.3	1.65	2	2.33	+∞
Coverage Probability	0%	30%	50%	84%	90%	95%	97.7 %	99%	100 %

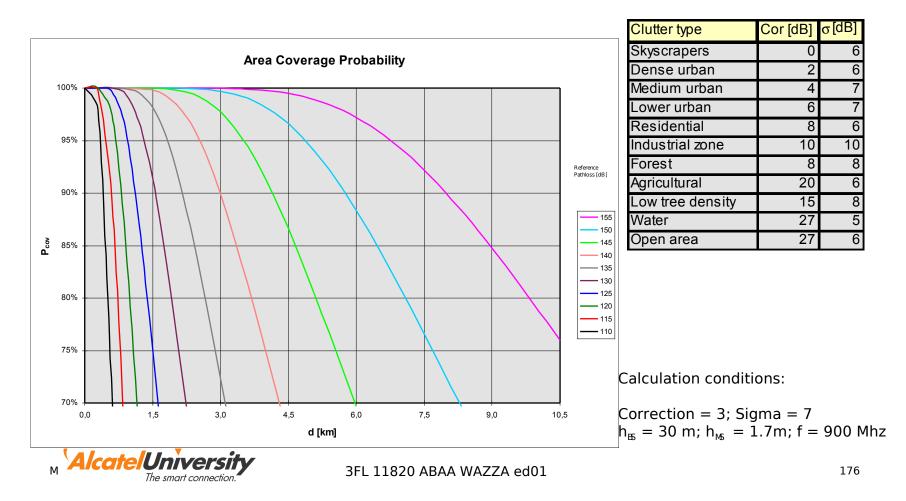


Consideration of Signal Statistics (1)



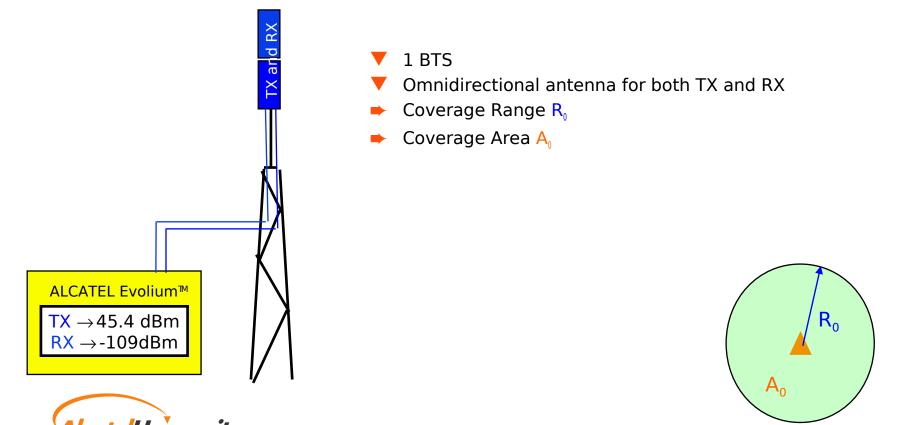

Calculation of Coverage Radius R

For what Radius R is the <u>average</u> coverage probability in the cell area 95% ?



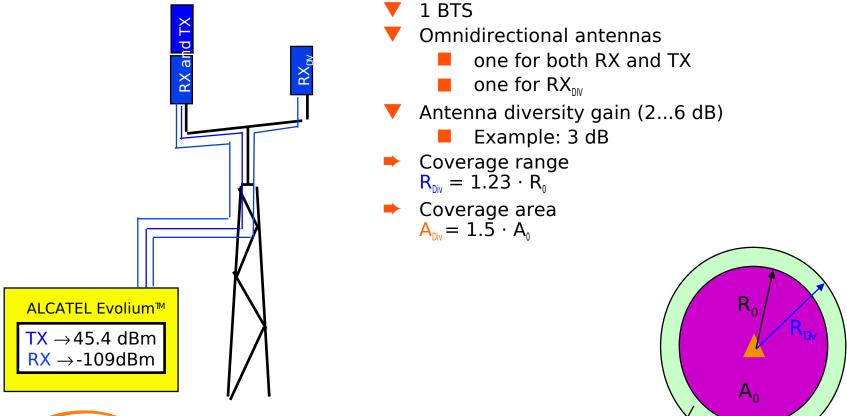
Coverage Probability

Coverage Ranges and Hata Correction Factors

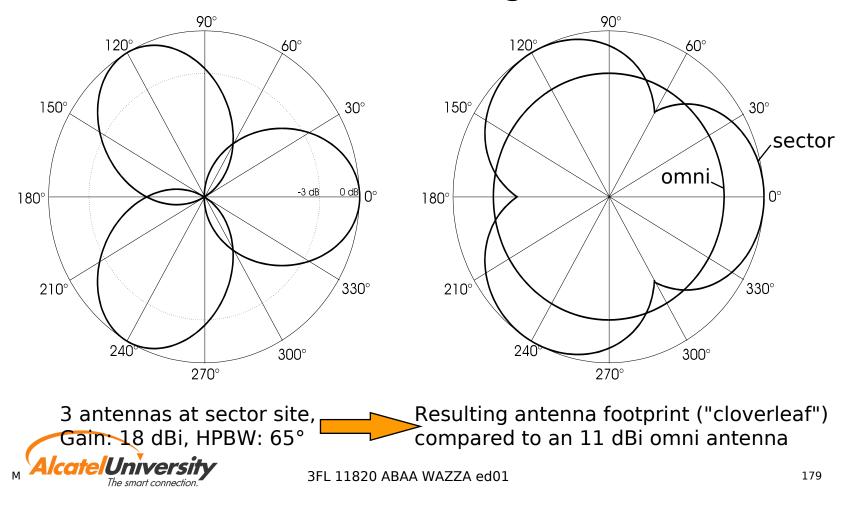


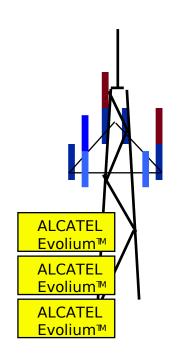
м

GSM RNE Fundamentals

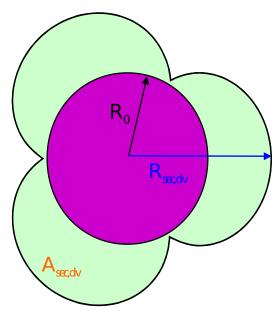

Conventional BTS Configuration

 A_{Dv}


Coverage Improvement by Antenna Diversity

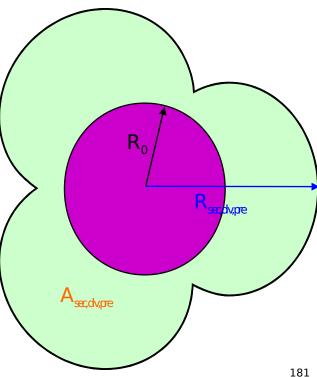


Radiation Patterns and Range



Improvement by Antenna Diversity and Sectorization

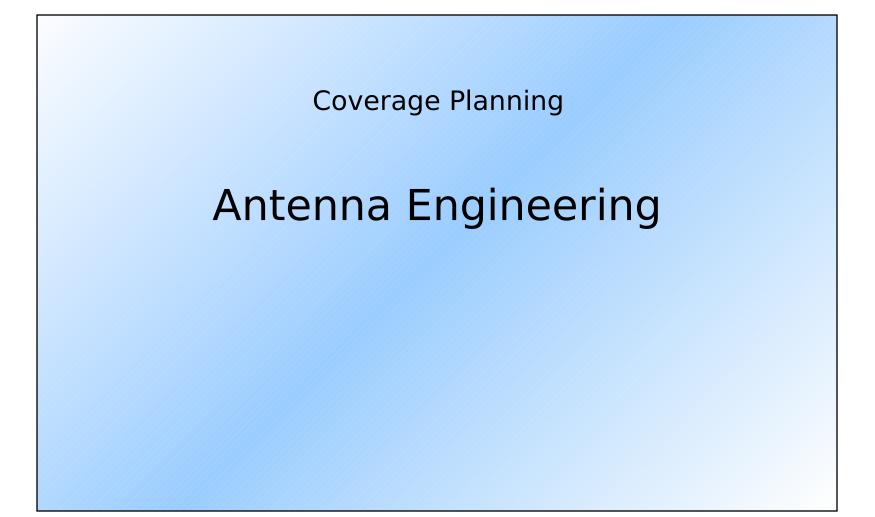
- **3** BTS
- Directional antennas (18 dBi)
- Antenna diversity (3 dB)
- Max. coverage range $R_{sec,div} = 1.95 \cdot R_0$
- Coverage area $A_{sec,div} = 3 \cdot A_0$


3FL 11820 ABAA WAZZA ed01

GSM RNE Fundamentals

Improvement by Antenna Preamplifier

3 BTS Directional antennas (18 dBi) Antenna diversity (3 dB) Antenna preamplifier (3dB) Max. coverage range $R_{sectivore} = 2.22 \cdot R_{o}$ Coverage area $= 3.9 \cdot A_0$ Asecdy.pre General: $A_{sec} = g \cdot A_0$ g: Area gain factor ALCATEL Evolium™ ALCATEL **Evolium**[™] ALCATEL



Evolium™

3FL 11820 ABAA WAZZA ed01

3FL 11820 ABAA WAZZA ed01

GSM RNE Fundamentals

Omni Antennas

- Application
 - Large area coverage
 - Umbrella cell for micro cell layer

Advantages

- Continuous coverage around the site
- Simple antenna mounting
- Ideal for homogeneous terrain

🔻 Drawbacks

- No mechanical tilt possible
- Clearance of antenna required
- Densification of network difficult

Sector Antenna

- Antenna with horizontal HPBW of e.g. 90° or 65°
- Advantages
 - Coverage can be focussed on special areas
 - Low coverage of areas of no interest (e.g. forest)
 - Allows high traffic load
 - Additional mechanical downtilt possible
 - Wall mounting possible
- V Drawbacks
 - More frequencies needed per site compared to omni sites
 - More hardware needed
 - Lower coverage area per sector

Typical Applications

Vide horizontal beam width (e.g. 90°)

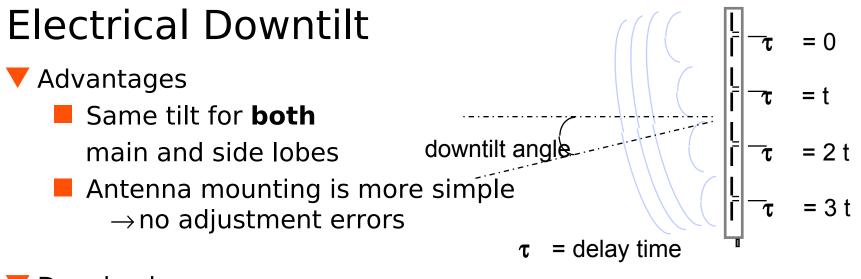
- For areas with few reflecting and scattering objects (rural area)
- Area coverage for 3-sector sites
- Sufficient cell overlap to allow successful handovers
- Small horizontal beam width (e.g. 65°)
 - For areas with high scattering (city areas)
 - Coverage between sectors by scattering and by adjacent sites (mostly site densification in urban areas)

Antenna Tilt

- Downtilting of the Antenna main beam related to the horizontal line
- ▼ Goals:
 - Reduction of overshoot
 - Removal of insular coverage
 - Lowering the interference
 - Coverage improvement of the near area (indoor coverage)
 - Adjustment of cell borders (handover zones)
 - Mechanical / Electrical or Combined downtilt

Mechanical Downtilt

Advantages


- Later adjustment of vertical tilt possible
- Antenna diagram is not changed, i.e. nulls and side lobes remain in their position relative to the main beam
- Cost effective (single antenna type may be used)
- Fast adjustments possible

Drawbacks

- Side lobes are less tilted
- Accurate adjustment is difficult
- Problems for sites with difficult access

Drawbacks

- Introduction of additional antenna types necessary
- New antenna installation at the site if downtilting is introduced
- Long antenna optimization phase
 - Adjustment of electrical tilt mostly not possible

Combined Downtilt

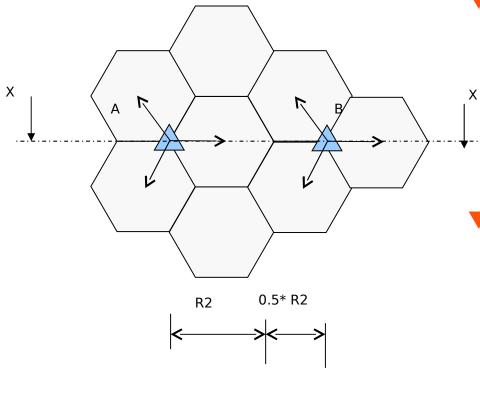
Combination of both mechanical and electrical downtilt

- High electrical downtilt: Distinct range reduction in sidelobe direction (interference reduction)
- Less mechanical uptilt in main beam direction
- Choose sector antennas with high electrical downtilt (6°...8°) and apply mechanical uptilt installation for optimum coverage range in main beam direction

Assessment of Required Tilts

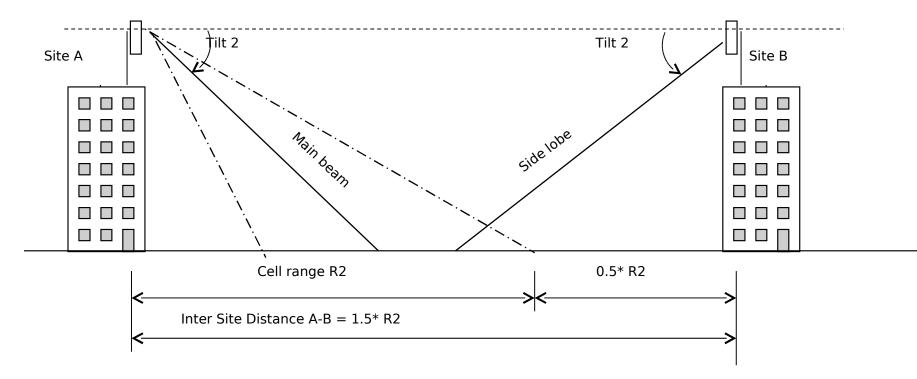
V Required tilt is estimated using *Geometrical Optics*

Consideration of


- Vertical HPBW of the antenna
- Antenna height above ground
- Height difference antenna/location to be covered
- Morpho-structure in the vicinity of the antenna
- Topography between transmitter and receiver location

Tilt must be applied for both TX and RX antennas!

Inter Site Distance in Urban Area


- Using sectorized sites with antennas of 65° horizontal half power beam width
 - The sidelobe is approximately reduced by 10dB.
 - This is a reduction of cell range to 50%.
- The inter site distance calculation factor depends on
 - Type of antenna
 - Type of morpho class
 - Multi path propagation
 - Scattering
 - Sigma (fading variations)

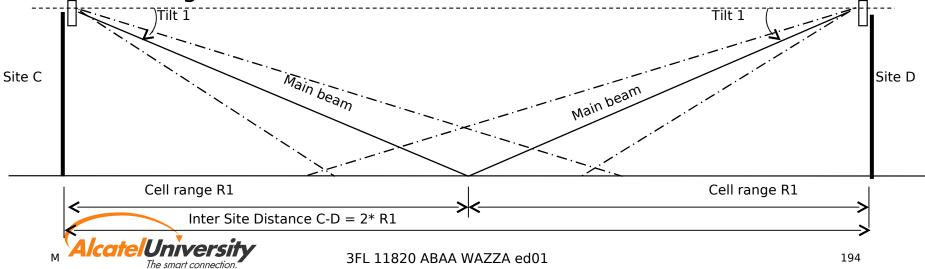
3FL 11820 ABAA WAZZA ed01

Downtilt in Urban Area

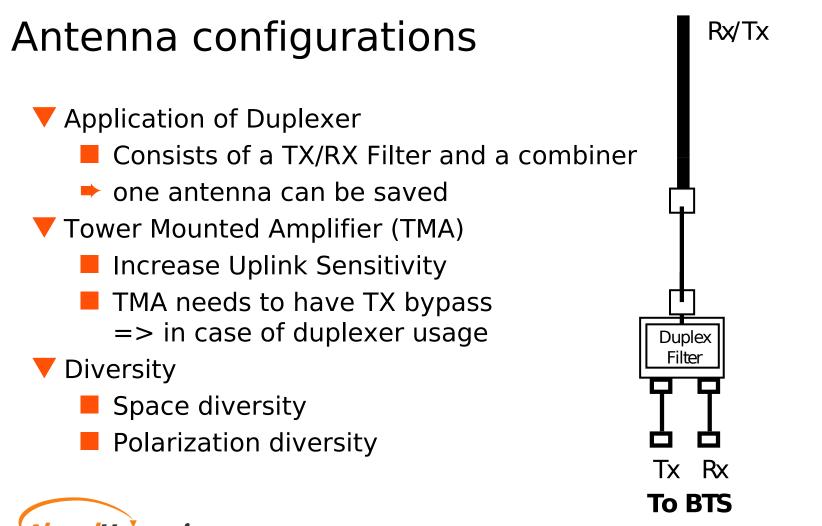
3FL 11820 ABAA WAZZA ed01

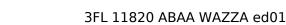
Downtilt in Urban Area

- The upper limit of the vertical half power beam width is directed towards the ground at maximum cell range
 - Upper -3dB point of the vertical antenna pattern
- To be used in areas with
 - Multi path propagation condition
 - Good scattering of the beam
- 🔻 Aim
 - Reduction of interference
- Optimization
 - Coverage Optimization in isolated cases using less downtilt
 - Interference Reduction in isolated cases using more downtilt

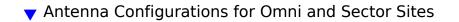


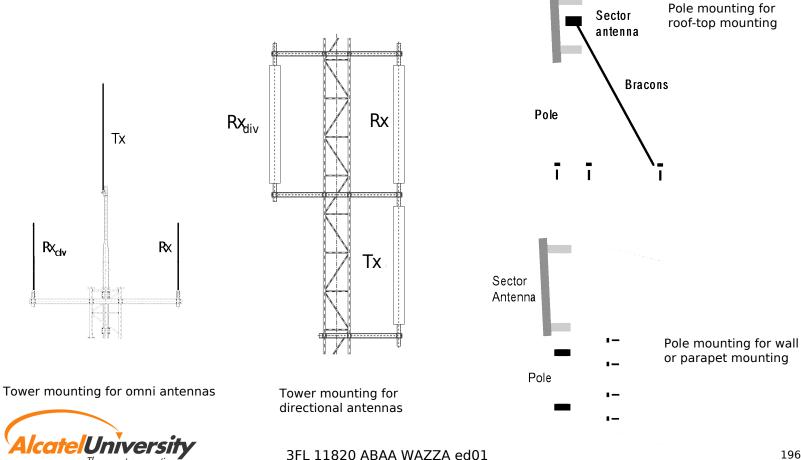
GSM RNE Fundamentals


Downtilt in Suburban and Rural Area


Downtilt planning for

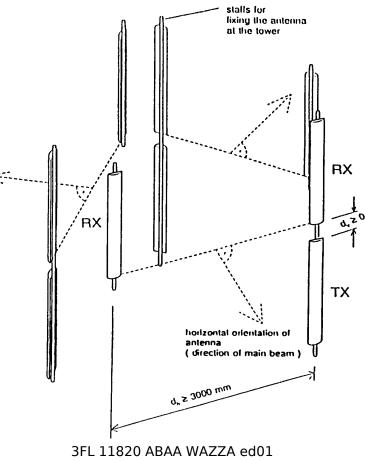
- Suburban
- Rural
- Highway Coverage
- The main beam is directed towards the ground at maximum cell range





М

The smart connection

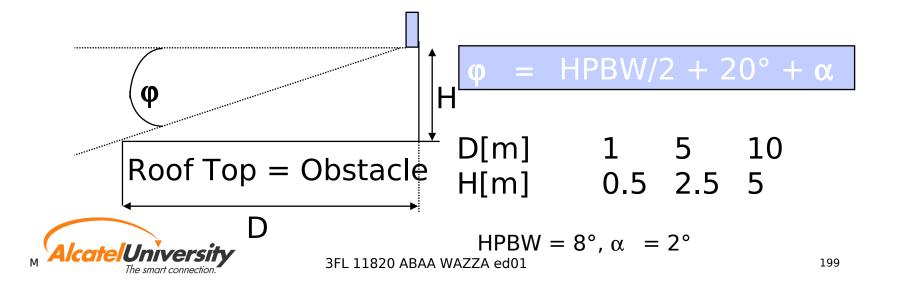

GSM RNE Fundamentals

Three Sector Antenna Configuration with AD

Antenna Engineering Rules

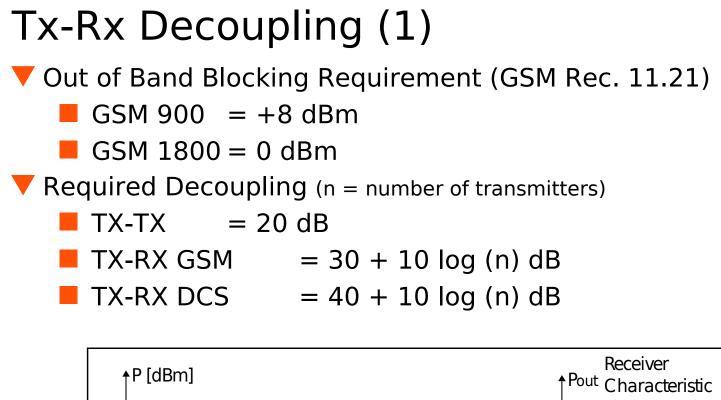
Distortion of antenna pattern: No obstacles within

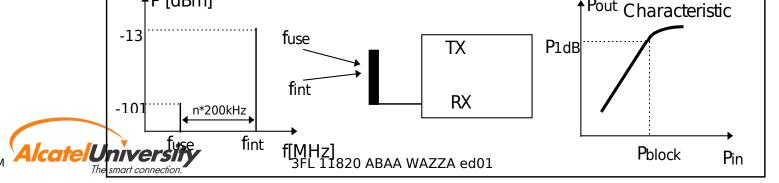
- Antenna near field range
- HPBW Rule plus security margin of 20°
- First fresnel ellipsoid range (additional losses!)
- TX-RX Decoupling to avoid blocking and intermodulation
 - Required minimum separation of TX RX antennas dependent on antenna configuration (e.g. duplexer or not)
- Diversity gain
 - Required antenna separation for space diversity


Distortion of antenna pattern

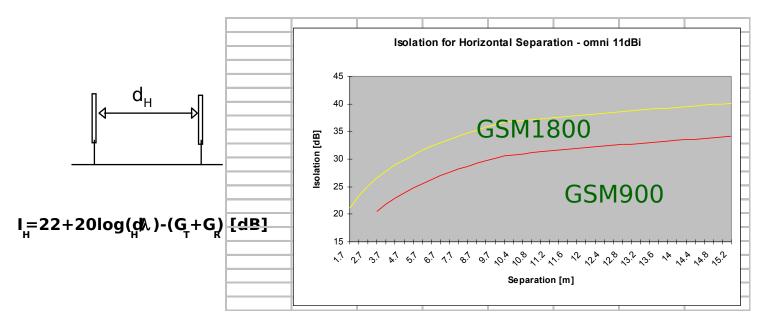
V Antenna Near Field Range: Rmin = $2D^2/\lambda$

D = Aperture of antenna (e.g. 3m)


= => R_{min} = 60 / 120m for GSM / DCS

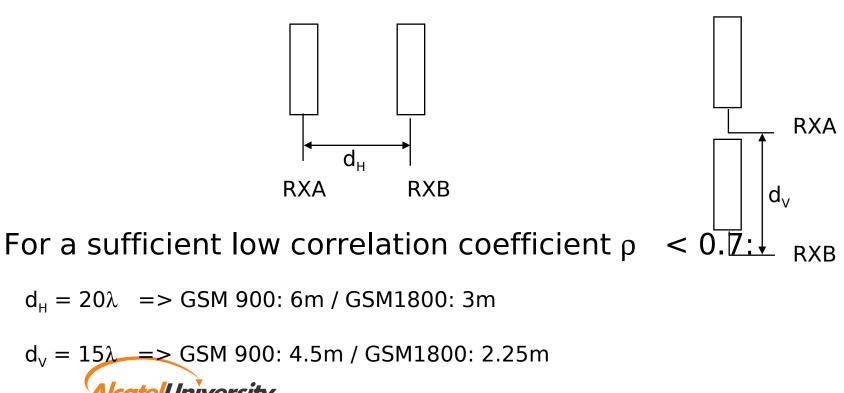

T HPBW Rule with securtiy margin of 20° and tilt α

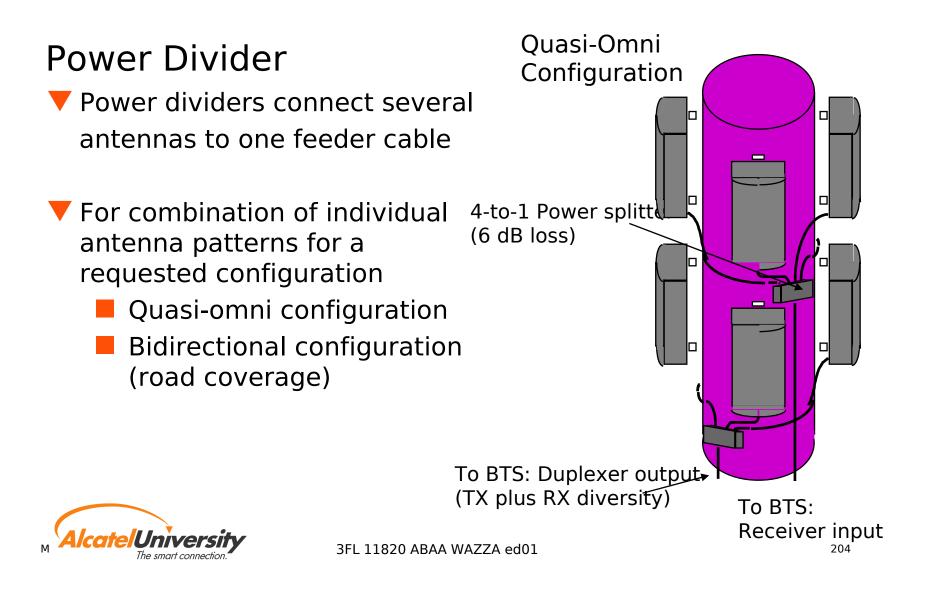
200



TX-RX Decoupling (2)

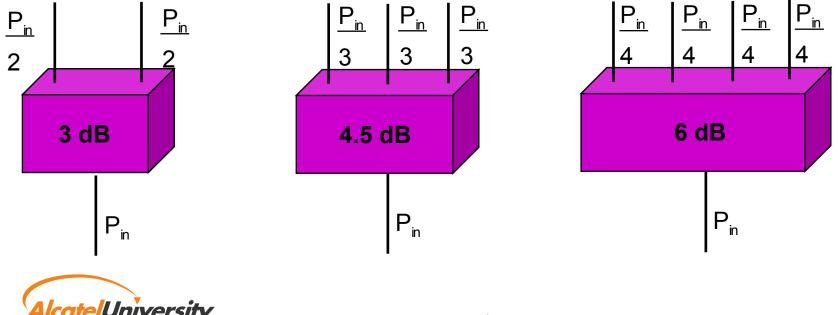
Horizontal separation (Approximation)

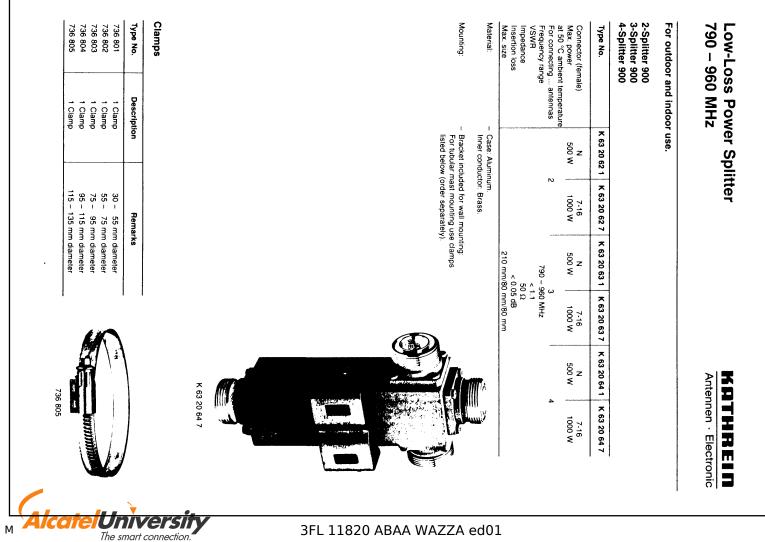

TX-RX Decoupling (3) Vertical separation (Approximation) Isolation for Vertical Separa 70 60 Mast GSM1800 50 **Isolation [dB]** 30 dm **GSM900** 20 l,=28+40log(d, 𝒫) [dB] 10 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Separation [n


Space Diversity

T Required separation for max. diversity gain = $F(\lambda)$

3FL 11820 ABAA WAZZA ed01



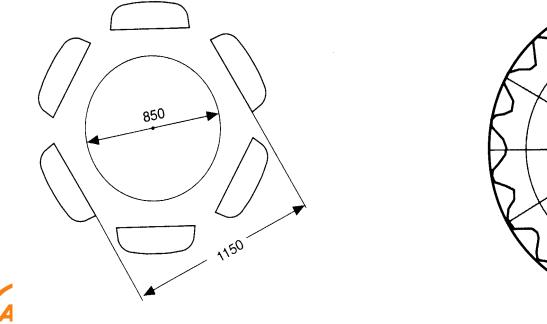


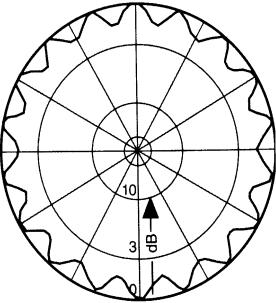
Power divider

- Also called "power splitter" or "junction box"
- Passive device (works in both (transmit and receive) direction)

Example: Power Splitter

ALCATEL

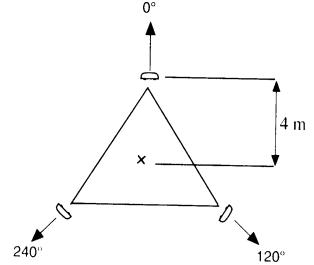

GSM RNE Fundamentals

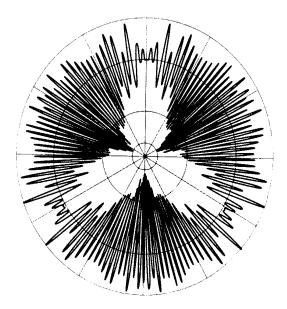


Panel Configurations (1)

V Radial Arrangement

of 6 Panel Antennas with horizontal beamwidth = 105 ° gain = 16.5 dBi, mast radius = 0.425 m, mounting radius = 0.575 m

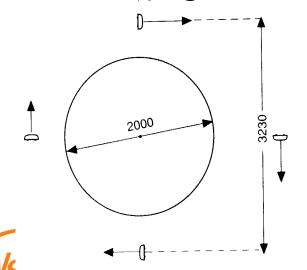


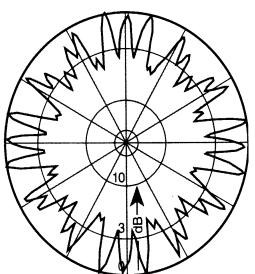

Panel Configurations (2)

T Example 2: Quasi Omni Arrangement

of 3 antennas with horizontal beamwidth = 105 °, gain = 13.5 dBi,

mounting radius = 4 m

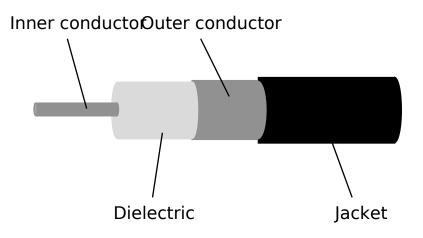




Panel Configurations (3)

V Example 3: Skrew Arrangement

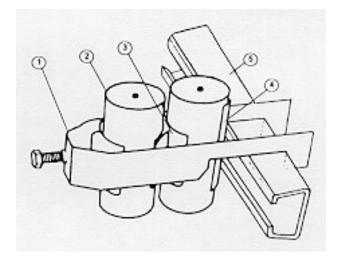
of 4 Panel Antennas with horizontal beamwidth = 65 °, gain = 12.5 dBi, mast radius = 1 m, mounting radius = 1.615 m



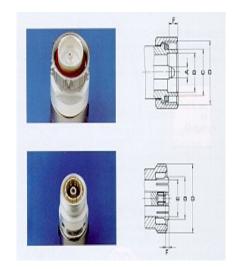
GSM RNE Fundamentals

Feeders

- Technical summary
- Inner conductor: Copper wire
- Dielectric: Low density foam PE
- Outer conductor: Corrugated copper tube
 - Jacket:


Polyethylene (PE)

black


GSM RNE Fundamentals

Feeder Installation Set and Connectors

1Cable Clamps 2Antenna Cable 3Double Bearing 4Counterpart 5Anchor tape

7/16 Connector: Coaxial Connector Robust Good RF-Performance

Feeder Parameters

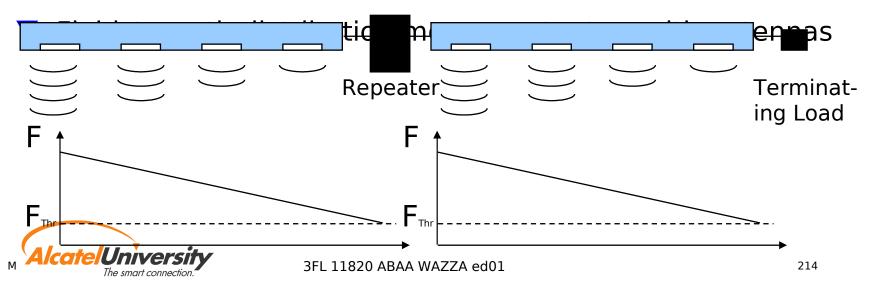
Туре	Minimum b	ending radius	Jacket (outer diameter)	Weight (m)	Recommended clamp spacing
	Single bending	Repeated bending			
LCF 1/2"	70 mm	210 mm	16 mm	0.35 kg	0.6 m
LCF 7/8"	120 mm	360 mm	28 mm	0.62 kg	0.8 m
LCF 1 5/8"	300 mm	900 mm	49.7 mm	1.5 kg	1.2 m

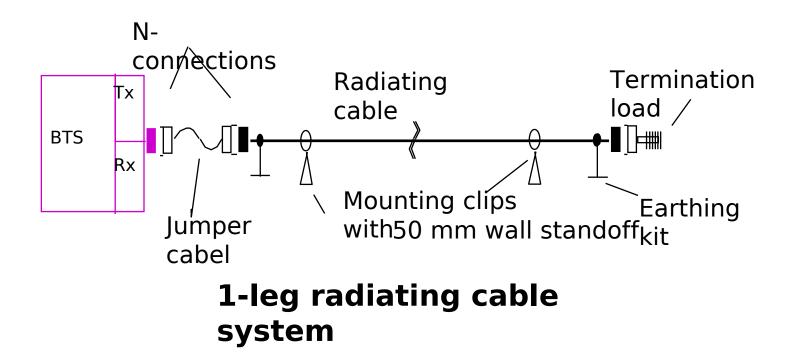
	G SM 900		GSM 1800		GSM 1900	
Туре	Attenuation /100 m [dB]	Recommended max length [m]	Attenuation /100 m [dB]	Recommended max length [m]		Recommended max length [m]
LCF 1/2"	6.6	45	10.3	30	10.6	28
LCF 7/8"	4.0	75	6.0	50	6.3	47
LCF 1_5/8"	2.6	115	4.0	75	4.2	71

These values are based on feeder types with an impedance of 50 ohms

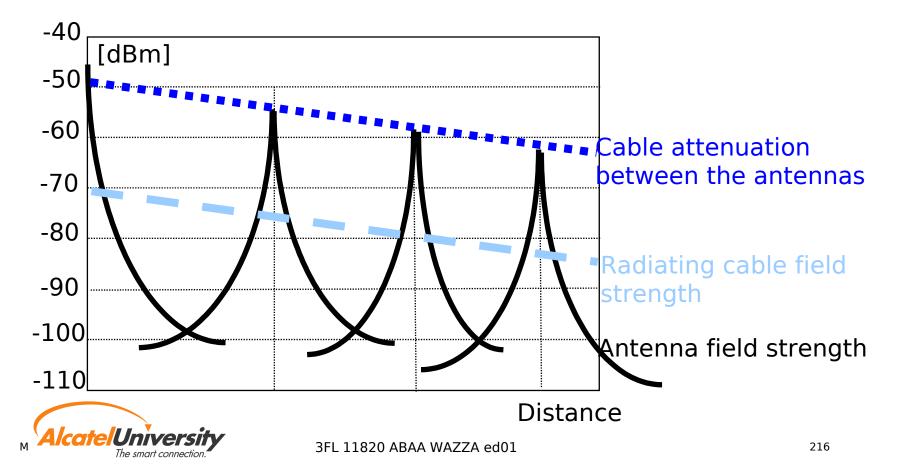
м

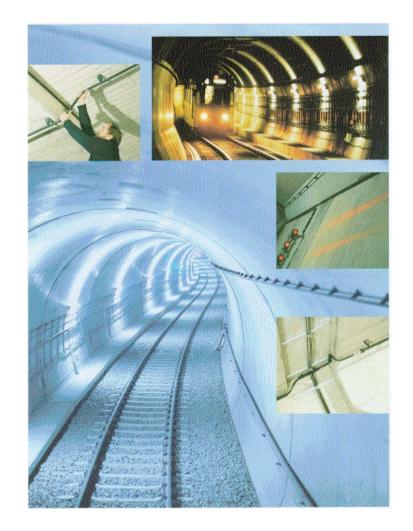
Feeder attenuation (1)


Main contribution is given by feeder loss
 Feeder Cable 4dB/100m => length 50m Loss =2.0dB
 Jumper Cable 0.066dB/1m => 5m Loss =0.33dB
 Insertion Loss of connector and power splitter < 0.1dB
 Total Loss 2.0dB+2x0.33dB+5x0.1dB+0.1dB=3.26dB
 Cable type is trade off between
 Handling flexibility
 Cost
 Attenuation


Radiating Cables

- Provide coverage in Tunnels, buildings, along side tracks or lines
- Principle: Radiate a weak but constant electromagnetic wave
- Suitable for coverage over longer distances (Repeater)


Components of a radiating cable Systemonents are shown with black lines



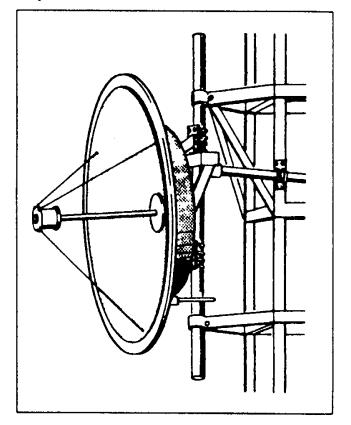
Comparison of field strength: Radiating cable and standard antenna

Example of a radiating cable in a tunnel

Microwave antennas, feeders and accessories

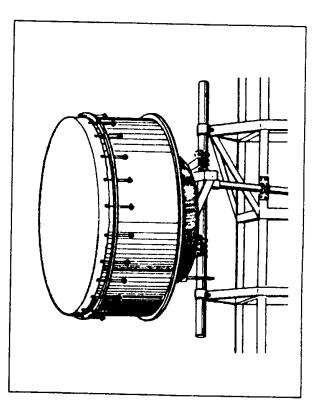
Microwave point to point systems use highly directional antennas

🔻 Gain


$$G = 10 \lg \frac{4\pi A}{\lambda^2} e$$

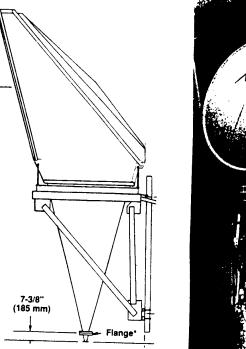
- with G = gain over isotropic, in dBi
 - A = area of antenna aperture
 - e = antenna efficiency
- Used antenna types
 - parabolic antenna
 - high performance antenna
 - horn lens antenna
 - 🕂 horn antenna

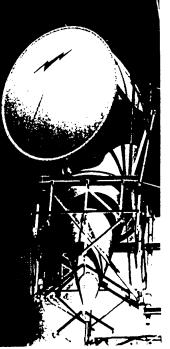
Parabolic antenna


- Parabolic dish, illuminated by a feed horn at its focus
- Available sizes: 1' (0.3 m) up to 16' (4.8) m)
- Sizes over 4' seldom used due to installation restrictions
- Single plane polarized feed vertical (V) or horizontal (H)
- Also: dual polarized feeder (DP), with separate V and H connections (lower gain)
- Front-to-back ratios of 45 dB not high enough for back-to-back configuration on the same frequency
- Antenna patterns are absolutely necessary for interference calculations

High performance antenna

- Similar to common parabolic antenna, except for attached cylindrical shield
- Improvement of front-to-back ratio and wide angle radiation discrimination
- Available in same sizes as parabolic, single or dual polarized
- Substantially bigger, heavier, and more expensive than parabolic antennas
- Allow back-to-back transmission at the same frequency in both directions (refer to interference calculation)


Horn antennas


🔻 Horn lens antenna

- For very high frequencies > 25 GHz
- Replacement for small parabolic antennas (1')
- Same electrical data, but easier to install due to size and weight

Version Reflector antenna

- Large parabola, energy from the feed horn is reflected at right angle (90°)
- Gain like 10' parabolic antenna (60 dBi), but higher front-to-back ratios > 70 dB

Big and heavy, requires a complex installation procedure

Only used on high capacity microwave backbones (e.g. MSC-MSC interconnections)

Specific Microwave Antenna Parameters (1)

- Cross polarization discrimination (XPD)
 - highest level of cross polarisation radiation relative to the main beam; should be > 30 dB for parabolic antennas
- Inter-port isolation
 - isolation between the two ports of dual polarised antennas; typical value: better than 35 dB
- 🔻 Return loss (VSWR)
 - Quality value for the adaption of antenna impedance to the impedance of the connection cable

Return loss is the ratio of the reflected power to the power fed at the antenna input (typical> 20 dB)

Specific Microwave Antenna Parameters (2)

- Radiation pattern envelope (RPE)
 - Tolerance specification for antenna pattern (specification of antenna pattern itself not suitable due to manufacturing problems)
 - Usually available from manufacturer in vertical and horizontal polarisation (worst values of several measurements)

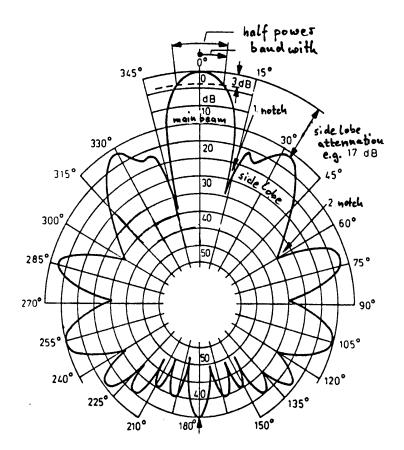
Veight

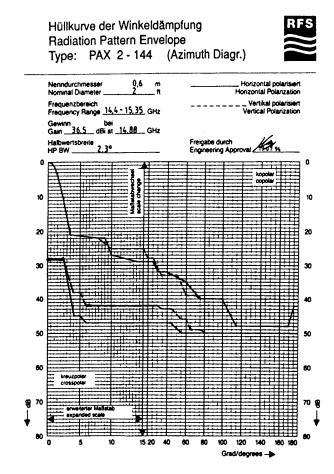
Wind load

Data sheet 15 GHz

Bandwidth	(GHz)	14.4 - 15.3	5 4.4 - 15.3	5 4.4 - 15.3
Model number		PA 2 - 14	4PA 4 - 14	4PA 6 - 14
Nominal diameter	(m)	0.6	1.2	1.8
	(ft)	2	4	6
Half-power beamwidth	(deg)	2.3	1.2	0.8
Gain low band	(dBi)	36.2	42.3	45.8
Gain mid band	(dBi)	36.5	42.5	46.0
Gain high band	(dBi)	36.7	42.8	46.3
Front-to-back ratio	(dB)	42	48	52
Cross polar discrimina	tion(dB)	28	30	30
Return loss	(dB)	26	26	28
Weight	(kg)	19	43	73
Windload				
Elevation adjustment	(deg)	+/- 5	+/- 5	+/- 5

Bandwidth	(GHz)	14.4 - 15.	354.4 - 15.	3154.4 - 15.
M odel number		DA 2 - 14	4 D A 4 - 14	4DA6-1
Nominal diameter	(m)	0.6	1.2	1.8
	(ft)	2	4	6
Half-power beamwidt	h (deg)	2.3	1.2	0.8
Gain low band	(dBi)	36.2	42.3	45.8
Gain mid band	(dBi)	36.5	42.5	46.0
Gain high band	(dBi)	36.7	42.8	46.3
Front-to-back ratio	(dB)	65	68	68
Cross polar discrimina	tion(dB)	28	30	30
Return loss	(dB)	26	26	26
Weight	(kg)	28	55	130
Windload				
Elevation adjustment	(deg)	+/- 12	+/- 12	+/- 12


Parabolic antenna 15 GHz


High performance antenna 15 GHz

Radiation pattern envelope

Feeders (1)

- Coaxial cables or waveguides (according to frequency)
- Most important characteristic: loss and return loss
- Coaxial cables
 - Used between 10 MHz and 3 GHz
 - Dielectric material: foam or air
 - Parameters of common coaxial cables:

type	dielectric	diameter	loss	power	bending
		(mm)	(dB/100m)	rating (kW)	radius (mm)
LCF 1/2' CU2Y	foam	16.0	10,9 / 2 GHz	0.47	200
			13.8 / 3 GHz		
LCF 7/8' CU2Y	foam	28.0	6.5 / 2 GHz	0.95	360
			8.5 / 3 GHz		
LCF 1 5/8' CU2Y	foam	49.7	4.4 / 2 GHz	1.7	380
			5.6 / 3 GHz		

Feeders (2)

Vaveguides

- Used for frequency bands above 2.7 GHz
- Three basic types available: circular, elliptical and rectangular
- Rigid circular waveguide
 - Very low loss
 - Supports two orthogonal polarisations
 - Capable to carry more than one frequency band
 - Usually, short components of this type are used
 - Disadvantages: cost, handling and moding problems

Feeders (3)

- Elliptical semiflexible waveguides
 - Acceptable loss, good VSWR performance
 - Low cost and easy to install
 - Various types optimised for many frequency bands up to 23 GHz
 - Used for longer distances (easy and flexible installation)
 - Can be installed as a "single run" (no intermediate flanges)

type	loss / 100 m	Frequency
EW 34	2.0	4 GHz
EW 52	4.0	6GHz
EW 77	5.8	8GHz
EW 90	10.0	11 GHz
EW 220	28.0	23 GHz
-	•	

Feeders (4)

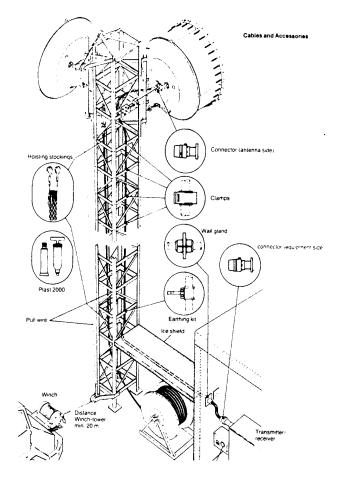
Solid and flexible rectangular waveguides

- Solid rectangular waveguides
 - Combination of low VSWR and low loss
 - High cost and difficult to install
 - Used for realising couplers, combiners, filters

type	loss / 100 m	Frequency
WR 229	2.8	4 GHz
WR159	4.5	6GHz
WR112	8.5	8GHz
WR 90	11.7	11 GHz
WR 75	15.0	13 GHz

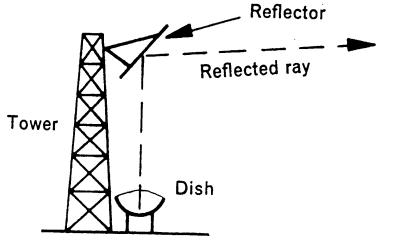
Feeders (5)

- Flexible rectangular waveguides
 - Worse VSWR and losses than for solid waveguides
 - Often used in short lengths (<1 m), where position between connection points depends on actual installation place
 - Common applications: connection of microwave system to antenna (close together on rooftops or towers) for frequencies >13 Ghz


type	loss / m	Frequency
PDR140	0.5	15GHz
PDR180	1	18 GHz
PDR220	2	23 GHz

Antenna feeder systems (1)

- Direct radiating system
 - Most commonly used for frequencies up to 13 Ghz
 - Depending on accepted feeder loss/length, higher frequencies may be possible
 - Excessive attenuation and costs in long runs of wave guide
 - Occurence of echo distortion due to mismatch in long runs of waveguide possible

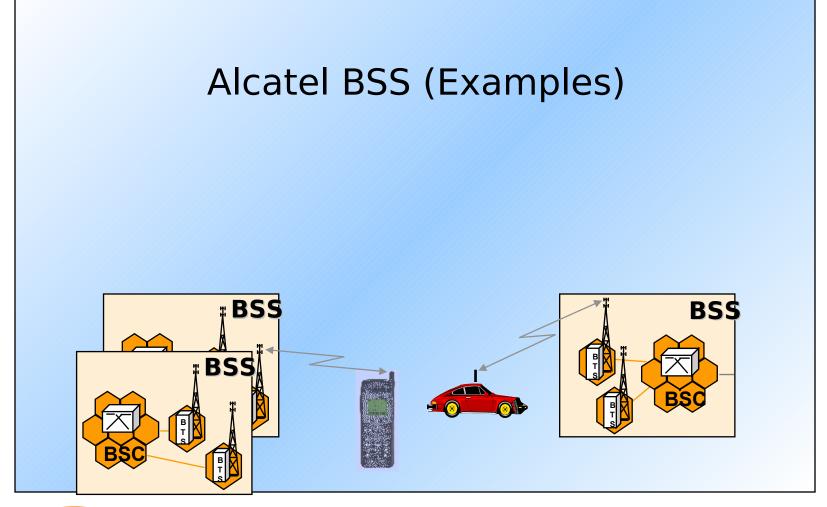

232

GSM RNE Fundamentals

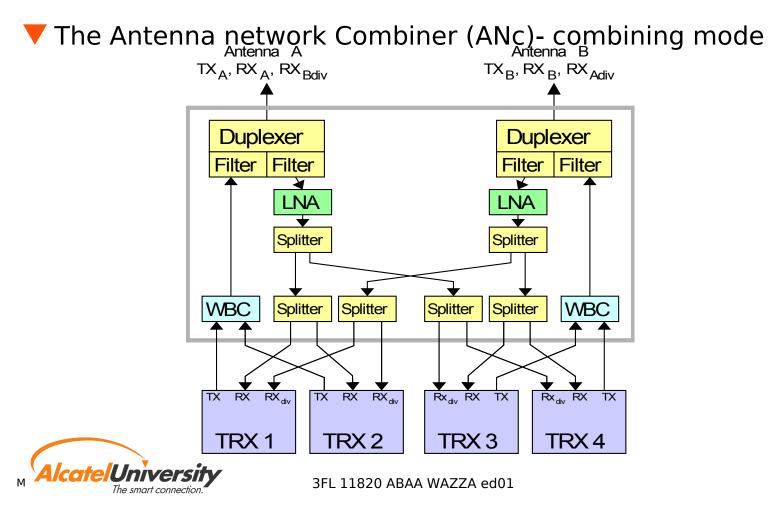
Antenna feeder systems (2)

🔻 Periscope antenna system

- Used for
 - considerable antenna heights
 - waveguide installation problems
- Negligible wave guide cost and easy installation
- System gain is a function of antenna and reflector size, distance and frequency
- Used above 4 GHz , because reflector size is prohibitive for lower frequencies

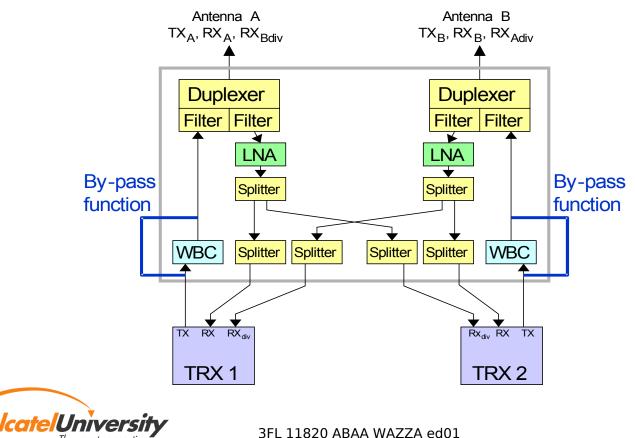

Antenna feeder systems (3)

- Combined antenna with transceiver
 - Antenna and transceiver are combined as a single unit to cut out wave guide loss (higher frequencies)
 - Units are mounted on top of a mast and connected to multiplex equipment via cable


Architecture of BTS - Evolium Evolution A9100 Air interface 3 levels Antenna network stage Antenna network stage ANc ANc Antenna coupling level Combiner stage (ANy) Combiner stage (ANy) TRX level TRX TRX Station unit module **BCF** level Abis interface Abbreviations

BCF Base station Control Function TRX Transceiver

EVOLIUM[™] A9100 Base Station (1)

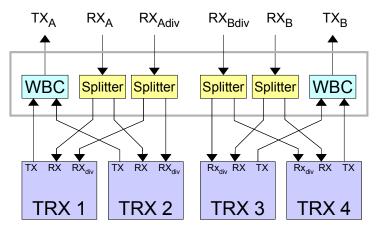

м

The smart connection

GSM RNE Fundamentals

EVOLIUM[™] A9100 Base Station (2)

The Antenna network Combiner (ANc)- bypass mode



The smart connection

GSM RNE Fundamentals

EVOLIUM[™] A9100 Base Station (3)

ANy: Twin Wide Band Combiner Stage

▼2 types of Any For GSM 900 and GSM 1800, two versions each are available:

	Band	Variant	Function
	GSM 900	3BK 07237 🗛 🗙	Up to four standard TRX, up to \underline{two} high-power TRX
		3BK 07237 ABxx	Up to four standard TRX, up to four high-power TRX
	GSM 1800	3BK 07245 🗛🗙	Up to four standard TRX, up to two high-power TRX
		3BK 07245 ABxx	Up to four standard TRX, up to <u>four</u> high-power TRX
Univer	sitv		

EVOLIUM[™] BTS Features (1)

Standard Features according to GSM

- DR (Dual Rate), EFR (Enhanced Full Rate coder), AMR (Adaptive Multi Rate) requires that the BSS software release and the other network elements also support these codecs
- HW supports GSM 850, E-GSM, GSM 900, GSM 1800 and GSM 1900 bands
- Multi Band Capabilities (supporting of 850/1800 TRX, 850/1900TRX, and, 900 /1800 can be located in the same cabinet)
- All known A5 algorithms to be supported; HW provisions done
- **V** Standard Features due to new Architecture and new SW Releases
 - SUS (Station Unit Sharing) Only one central control unit (SUM) for all BTS per cabinet
 - Multiband BTS (GSM 900/1800) in one cabinet
 - Static (Release 4) and statistical (Release 6) submultiplexing on Abis
 - Better use of Abis-interface capacity: More BTS/TRX to be supported in a multidrop loop
 - Introduction of GPRS and HSCSD without HW changes
 - EDGE compatible TRX

EVOLIUM[™] BTS Features (2)

v Features specific to Radio Performance

TX Output Power

	Frequency band	TX output power, GMSK	TX output power, 8-PSK (EDGE)
	GSM 850	45 W = 46.5 dBm -0.5/+1 dB	15 W = 41.8 dBm –0.5/+1 dB (4.7dB backoff included)
	GSM 900 MP	45 W = 46.5 dBm –0.5/+1 dB	15 W = 41.8 dBm –0.5/+1 dB (4.7dB backoff included)
	GSM 900 HP	60 W = 47.8 dBm -0.5/+1 dB	25 W = 44.0 dBm –0.5/+1 dB (3.8dB backoff included)
	GSM 1800 MP	35 W = 45.4 dBm -0.5/+1 dB	12 W = 40.8 dBm -0.5/+1 dB (4.7dB backoff included)
	GSM 1800 HP	60 W = 47.8 dBm –0.5/+1 dB	25 W = 44.0 dBm -0.5/+1 dB (3.8dB backoff included)
RX Se	GSM 1900	45 W = 46.5 dBm0.5/+1 dB	25 W = 44.0 dBm -0.5/+1 dB (2.5dB backoff included)

Synthesized Frequency Hopping as general solution

- Standard RF hopping mode
- Pseudo baseband RF hopping mode
- Antenna Diversity in general
 - Two antennas per sector
 - One cross-polarized antenna
- Duplexer (TX and RX on one antenna) as general solution

Generic Configurations for A9100 G4 BTS

- The configurations for indoor (MBI) and outdoor (MBO) cabinet are presented in the next slides
- Iarger configurations with more than one cabinet can be derived from the tables
- configurations are valid for EDGE capable TRX (Evolution step 2)
- availability of multiband configurations other than GSM 900 / GSM 1800 must be checked with product management (authorization required)
- **V**Notation:
 - BBU Battery Backup Unit
 - BATS Small Battery Backup
 - LBBU Large Battery Backup Unit

Generic configurations for cabinets MBI

K Standard con MBI3 MBI3 MBI3	1x14 1x18		BBU	BAIS		(2)	900 X	1800 X	1900
MBI3 MBI3 MBI3	1x14 1x18	X	X	X		(2)	x	v	V
MBI3 MBI3	1x18	X	X	X		(2)	X	x	v
MBI3		X						Л	X
-						(2)	X	X	(1)
	2x12		X	X		(2)	X	X	X
MBI3	2x14	X				(2)	X	X	(1)
MBI3	3x1		X	X		(2)	X	X	X
MBI3	3x12	X				(2)	X	X	X
MBI5	1x18	X	X	X	X	X	X	X	X
MBI5	1x912	X	X	X		(2)	X	X	(1)
MBI5	2x14				X	(2)	X	X	X
MBI5	2x16	X	X	x		X	X	X	(1)
MBI5	1x18+1x14	X	X	X		(2)	X	X	
MBI5	3x12				X	(2)	X	X	X
MBI5	3x14	X	X	X		X	X	X	(1)
MBI5	4x13	X				X	X	X	(1)
MBI5	2x4+2x2	X				X	Х	X	(1)

(2)

Generic configurations for cabinets MBI

RAC	CONFIGURATION TYPE	DC	AC w/o	AC with	AC with	GSM	GSM	GSM	GSM
K			BBU	BATS	LBBU	850	900	1800	1900
Low L	osses configurations								
MBI3	1x34	Х	Х	Х		(2)	Х	Х	X
MBI5	1x38	Х	Х	Х	Х	(2)	Х	Х	X
MBI5	1x912	Х	Х	Х		(2)	Х	Х	(1)
MBI5	2x36	Х				(2)	Х	Х	(1)
High P	ower configurations								
MBI3	2x1	Х	Х	Х			Х	Х	
MBI5	1x14	Х	Х	Х			Х	Х	
MBI5	2x14	Х	Х	Х			Х	Х	
MBI5	3x13	Х	Х	Х			Х	Х	
Extend	led Cells configurations								
MBI5	1x14LL/1x14	Х	Х	Х	X		Х		
MBI5	1x14/1x14 with TMA	Х	Х	Х	X		Х		
(1) MB (2) dB	Limitation to +40°C othe	erwise	(+45⁰C p	ossible if po	ower is red	luced to			

Generic configurations for cabinets MBO (1)

RAC	CONFIGURATION TYPE	DC	AC w/o	AC with		GSM	GSM	GSM	GSM
K			BBU	BBU		850	900	1800	1900
Standa	rd configurations								
CBO	1x12			Х		(1)	Х	(2)	(1)
СВО	2x1			Х		(1)	Х	(2)	(1)
MBO1	1x16			Х					Х
MBO1	1x18			Х		Х	Х	Х	
MBO1	2x13			Х					Х
MBO1	2x14			Х		Х	Х	Х	
MBO1	3x12			Х		Х	Х	Х	X
MBO2	1x912			Х		Х	Х	Х	X
MBO2	2x16			Х		Х	Х	Х	X
MBO2	1x18+1x14			Х		Х	Х	Х	X
MBO2	3x14			Х		Х	Х	Х	X
MBO2	4x13			Х		Х	Х	Х	X
MBO2	2x4 + 2x2			Х		Х	Х	Х	X
	 CBO for GSM 850 and GSN product management (autho CBO for GSM 1800 planner 	rization	required).		aila	ability, cl	neck with	n SD or t	he

(2) CBO for GSM 1800 planned for Q4 2003 (check with SD)

Generic configurations for cabinets MBO

(2)

RAC	CONFIGURATION TYPE	DC	AC w/o	AC with		GSM	GSM	GSM	GSM
K			BBU	BBU		850	900	1800	1900
Low L	osses configurations					-	-	-	-
MBO1	1x56			Х					Х
MBO1	1x58			Х		X	Х	Х	
MBO2	2x36			Х		X	Х	Х	Х
MBO2	3x34			Х		X	Х	Х	X
High P	ower configurations								
CBO	1x12			Х			Х	(2)	
CBO	2x1			Х			Х	(2)	
MBO1	1x14			Х			Х	Х	
MBO1	2x12			Х			Х	Х	
MBO1	3x12			Х			Х	Х	
MBO2	2x14			Х			X	Х	
MBO2	3x14			Х			X	Х	
	 CBO for GSM 850 and GSM product management (autho CBO for GSM 1800 planned 	rization	required).		vai	lability,	check wi	ith SD o	the

TRX Types

- This slide is referring only to Evolium macro BTS A9100
- Overview on TRX types of A9100 Evolution BTS (G4)

Module		Output power			
name		GMSK		8PSK	
Evolution Step 1					
TRGM	GSM 900	35 Watts	45.44 dBm		
TRDM	GSM 1800	35 Watts	45.44 dBm		
TRDH	GSM 1800	60 Watts	47.78 dBm		
Evolution Ste	p2			·	
TRAL	GSM 850	45 Watts	46.53 dBm	15 Watts	41.76 dBm
TRAG	GSM 900	45 Watts	46.53 dBm	15 Watts	41.76 dBm
TAGH	GSM 900	60 Watts	47.78 dBm	25 Watts	43.98 dBm
TRAD	GSM 1800	35 Watts	45.44 dBm	12 Watts	40.79 dBm
TADH	GSM 1800	60 Watts	47.78 dBm	25 Watts	43.98 dBm
TRAP	GSM 1900	45 Watts	46.53 dBm	25 Watts	43.98 dBm

BTS Output Power

- What is monitored during validation is the BTS output power at antenna connector
- The individual losses for duplexer, combiner and internal cabling are not systematically measured
- for detailed info consult the BTS product description

Feature Power Balancing

- G4 BTS it is allowed to use TRXs of different power within the same sector, or to use of different combining path for TRX belonging to the same sector.
- Reason: the G4 BTS is able to detect unbalanced losses/powers within a sector and automatically compensate it for GMSK modulation.
- Consequence: All TRX connected to one ANc are automatically adjusted to the GMSK output power of the weakest TRX (required for BCCH recovery)

Cell Split Feature

V Principle

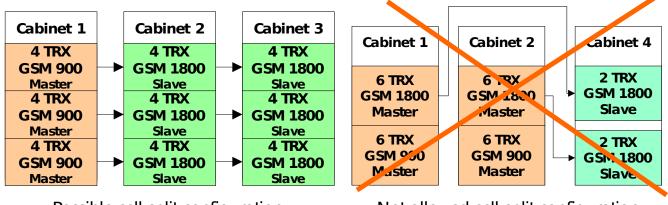
Cell Split allows to provide one logical cell with one common BCCH over several BTS cabinets. The cabinets must be synchronized

V Benefits

- Same number of TRX in fewer racks
- No need to touch/modify the configuration of existing BTS (cabling)
- Take full benefit of 12 TRX per cabinet
- Trawback: more complex antenna system

Applications

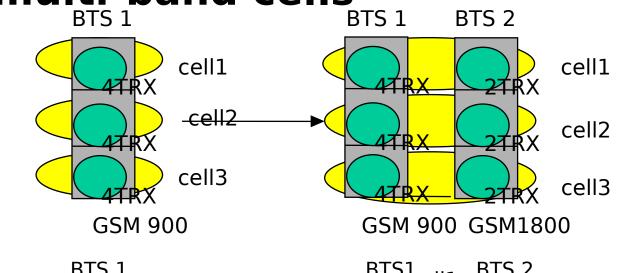
- Multi-band cells
- Configuration extension of sites by adding TRX
- Large configurations

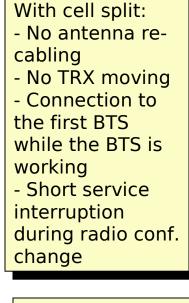

Condition: BTS must be synchronized

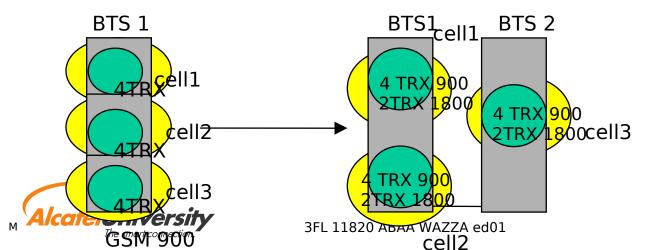
Influence of Cell Split feature on BTS configurations

One slave cabinet can only have one master

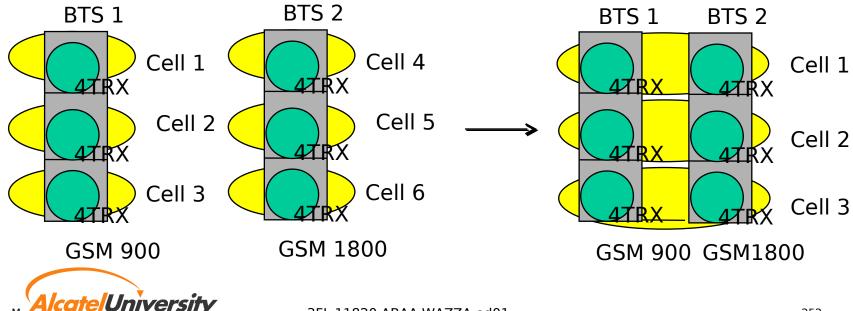
One master can control three slave cabinets

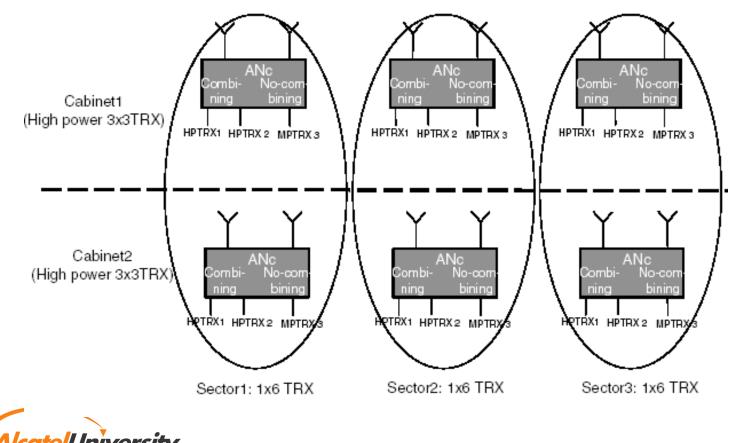

Possible cell split configuration


Not allowed cell split configuration

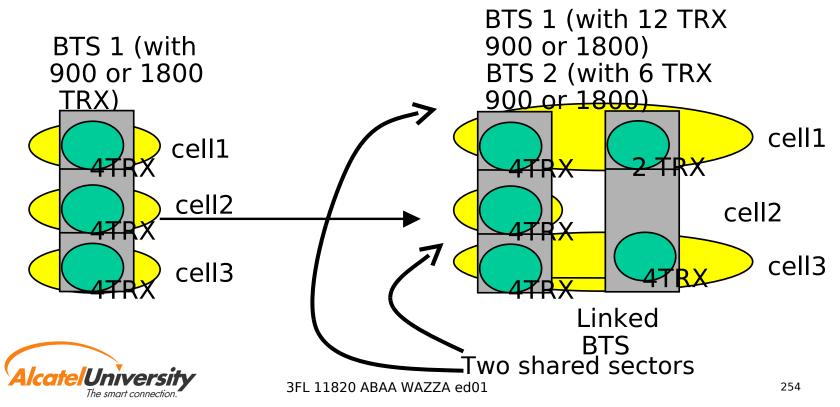


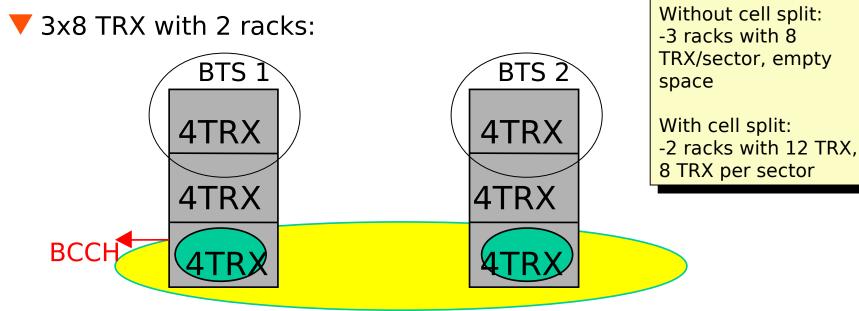
Cell Split Example: Deployment of multi-band cells


Without cell split: - Complete reconfiguration


Cell Split Example: Migration to multiband cells

- Example: Migration from multiband BSS (single BCCH) to multiband cells (dual BCCH)
- No more limitation to have the 900 and the 1800 TRX's installed inside the same cabinet


Cell Split Example: High Power Configuration

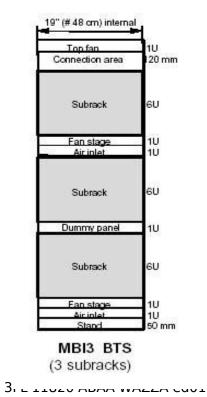

Cell Split Example: Configuration extension

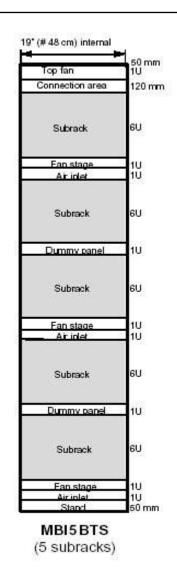
3x4 sector cells extended to cell 1(6 TRX), cell 2 (4 TRX), cell 3 (8 TRX)

Cell Split Example: Large configurations

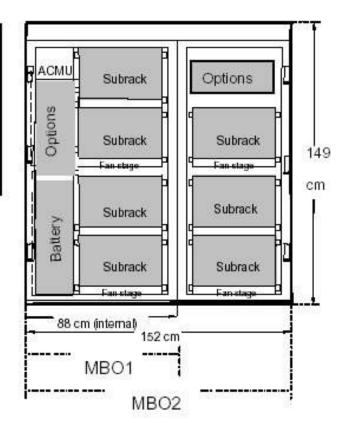
🔻 16 TRX's per cell

3FL 11820 ABAA WAZZA ed01



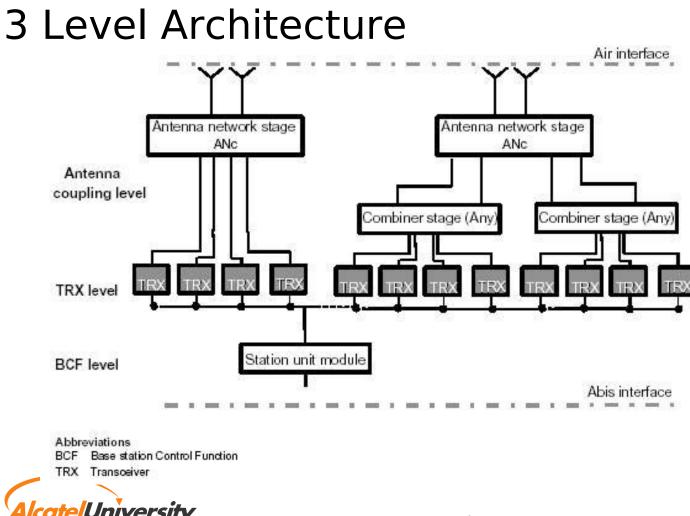

Indoor BTS Rack Layo

External dimensions	MBI3 BTS	MB15 BTS
Depth	45 cm	45 cm
Height	130 cm	194 cm
Width	60 cm	60 cm
Max. TRX capacity	8 TRX	12 TRX



Outdoor BTS Rack Layout

External dimensions	MB01 BTS	MBO2 BTS	
Depth	74 cm	74 cm	
Height	149 cm	149 cm	
Width	90 cm	152 cm	
Max TRX capacity	8 TRX	12 TRX	


3FL 11820 ABAA WAZZA ed01

М

The smart connection

GSM RNE Fundamentals

Micro BTS types

V EVOLIUM A910 Micro Base Station (internal reference M4M)

- still operational in a large number
- is being out phased
- up to 6 TRX-es
- M5M EVOLIUM A9110 Micro-BTS (M5M)
 - Introduced in Q3 2003
 - up to 12 TRX-es
 - site configurations can mix older A910 with newer A9110-E
 - support for GPRS and EDGE (release dependent)

Technical Data

	A910 (2 TRX)	A9110 (2 TRX)
Frequency band	GSM 850, E-GSM, GSM900, GSM 1800, GSM 1900	GSM 850, E-GSM, GSM900, GSM 1800, GSM 1900
Tx output power (at antenna connector)	Up to 4.5 W	7 W
Rx sensitivity	-107 dBm	-110 dBm
Radio FH	Yes	yes
Temperature range (max.)	55 °C	55 °C
Max. power consumption	130 W	145 W
Size (volume)	54 litres	54 litres
Weight	39.6 kg (incl. connection box)	32.5

Evolium[™] BSC Characteristics

Capacity

- Maximum physical capacity: 352 FR TRX or 176 DR TRX in 255 BTS
- Traffic and signalling capacity: up to 1500 erlang->Ø13,5 erl/BTS traffic capacity
- 🔻 Flexibility
 - 6 Abis interfaces per SM module with integrated cross connect function
 - Integrated in BSC subracks (no cabling), 100% Alcatel
 - No BSC internal recabling for network extensions/modifications

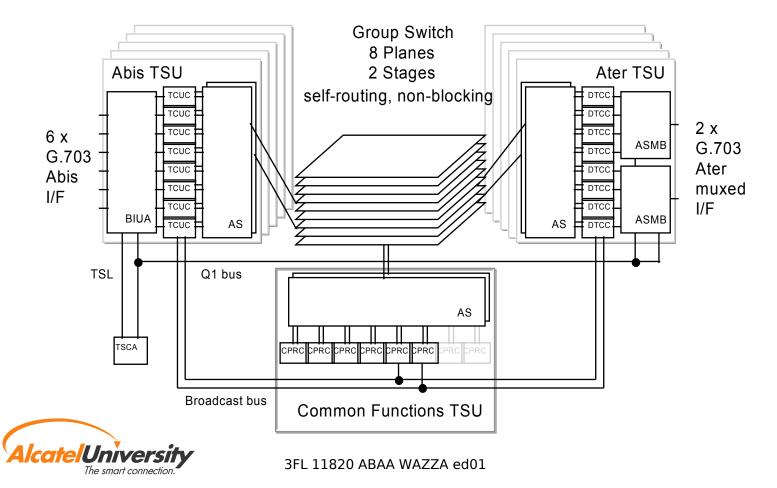
Compactness

Maximum BSC configuration in three standard Alcatel 1000 S12 cabinets (90 cm width, 52 cm depth)

Technology

- Two stage Alcatel 1000 S12 switching technology
- Distributed processing in trunk control units and processing resources
- Same application SW running on both BSC generations

Alcate/University


3FL 11820 ABAA WAZZA ed01

М

GSM RNE Fundamentals

BSC Architecture

BSC Rack Layouts

6 Configurations possible

Group Switch Stage 2	GS Stage 2		GS Stage 2		
A-TER TS	U	A-	A-BIS TSU		
A-BIS TSU	J	А-В		BIS TSU	
A-TER TSU		A-TER TSU			
GS Stage 1	A-BIS TSU Clock			Clock	
TSCA CO				GS age 2	

Group Switch Stage 2	GS Stage 2		GS Stage 2	
A-TER TS	SU	A-	BIS TSU	
A-BIS TS	U	A-I	BIS TSU	
A-TER TSU		A-TER TSU		
GS Stage 1	A-BIS TSU Clock			
TSCA	A-BIS T	SU	GS Stage 2	

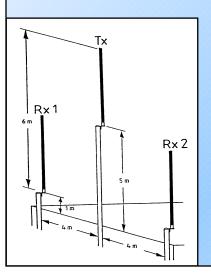
A-TER T	รบ	A-BIS TSU		su
A-BIS TS	SU	А-В	A-BIS TSU	
A-TER TSU		A-TER TSU		
GS Stage 1	A-BIS TSU Clock			Clock
TSCA A-BIS TSU				

Cabinet #3

Cabinet #1

3FL 11820 ABAA WAZZA ed01

Cabinet #2



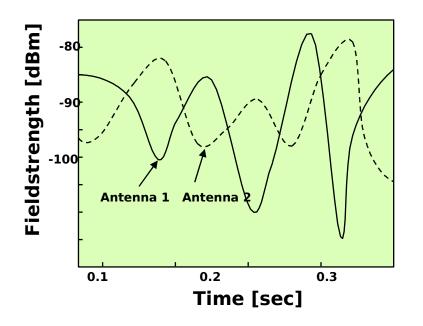
3FL 11820 ABAA WAZZA ed01

Antenna Diversity

3FL 11820 ABAA WAZZA ed01

Diversity

🔻 Purpose


- Improvement in fading probability statistics
- leads to a better total signal level or better total S/N ratio
- 🔻 Principle
 - Combining signals with same information from different signal branches

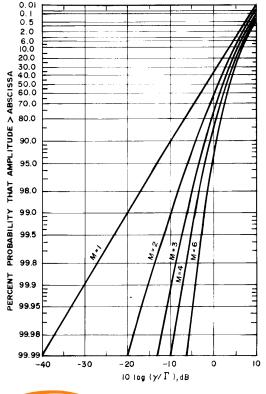
- 🔻 Demands
 - correlation between different signal branches should be low
- Combining methods
 - Selection Diversity
 - Maximum Ratio Combining
 - Equal Gain Combining

Selection Diversity (1)

- Principle
 - selection of the highest baseband signal-to-noise ratio (S/N) or of the strongest signal (S+N)
- Correlation of signal levels
 - a lower correlation between signal levels of different branches
 - improves the total signal level
- Correlation of signal levels should be low

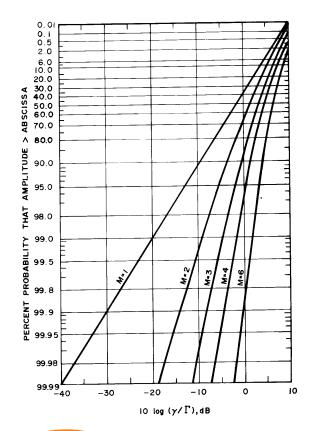
0.4

Selection Diversity (2)


- ▼ Difference in signal level
 - a high difference in signal levels of two branches doesn't improve the total signal level
 - Difference in signal levels should be low

0.4

Selection Diversity (3)



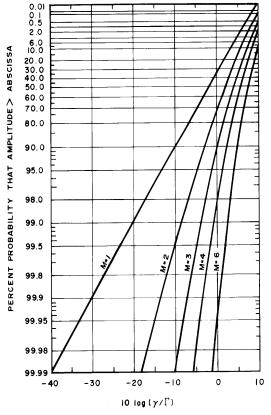
- Theoretical diversity gain
 - 10dB for two-branch diversity at the 99% reliability level
 - 16dB for four branches at the 99% reliability level
 - The theoretical diversity gain doesn't improve linear with the number of branches

Equal Gain Combining (1)

V Principle

- cophase signal branches
- sum up signals
- Coherent addition of signals and incoherent addition of noises
- Theoretical diversity gain
 - 11dB for two-branch diversity at the 99% reliability level

Equal Gain Combining (2)


- Correlation of signal levels
 - a lower correlation between signal levels of different branches improves the total S/N ratio
- Correlation of signal levels should be low

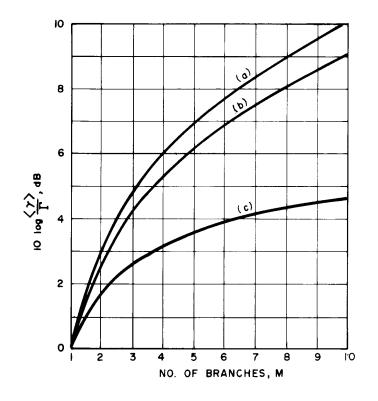
- ▼ Difference in signal level
 - Assuming equal noise in the branches, the higher the difference in signal levels is, the higher is the loss of S/N ratio of the better signal branch after summation
- Difference in signal levels should be low

Maximum Ratio Combining (1)

Principle

- weight signals proportionally to their S/N ratios
- cophase signal branches
- sum up the weighted signals
- Coherent addition of signals and incoherent addition of noises
- Improved S/N

Maximum Ratio Combining (2)


- Correlation of signal levels
 - a lower correlation between signal levels of different branches improves the total S/N ratio
- Correlation of signal levels should be low

- ▼ Difference in signal level
 - Assuming equal noise in the branches, the higher the difference in signal levels is, the higher is the loss of S/N ratio of the better signal branch after summation
 - comparing to equal ratio combining, this combining reduces influence of worse signal branches
- Difference in signal levels should be low

Comparison of combining methods

- Improvement of average SNR from a diversity combiner compared to one branch
 - (a) Maximum Ratio Combining
 - (b) Equal Gain Combining
 - (c) Selection Diversity
- The maximum ratio combining, which is used in the ALCATEL BTS, gives the best statistical reduction of any known linear diversity combiner.

Enhanced Diversity Combining (1)

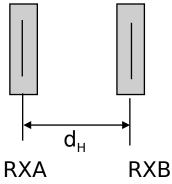
VPrinciple:

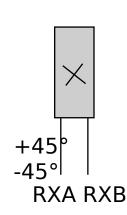
- 2 algorithms
 - Beam forming algorithm (available also for MRC)
 - Interference reduction algorithm (new)
- best efficiency when the useful signal and the interfering signals come from different directions.
- Requirements to benefit from this feature:
 - Hardware: G4 TRE (Edge capable TRX) installed in Evolium Evolution BTS step1 resp. step 2 (internal name: G3 resp. G4)
 - Software release: from B6.2 onwards
 - For a maximum gain: antenna engineering rules respected

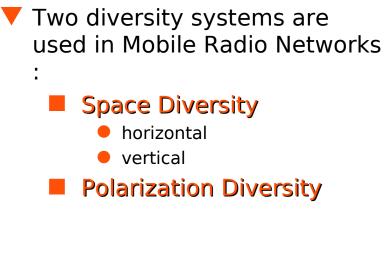
Correct antenna choice for the considered environment

Correct antenna spacings and orientations (in case of space diversity)

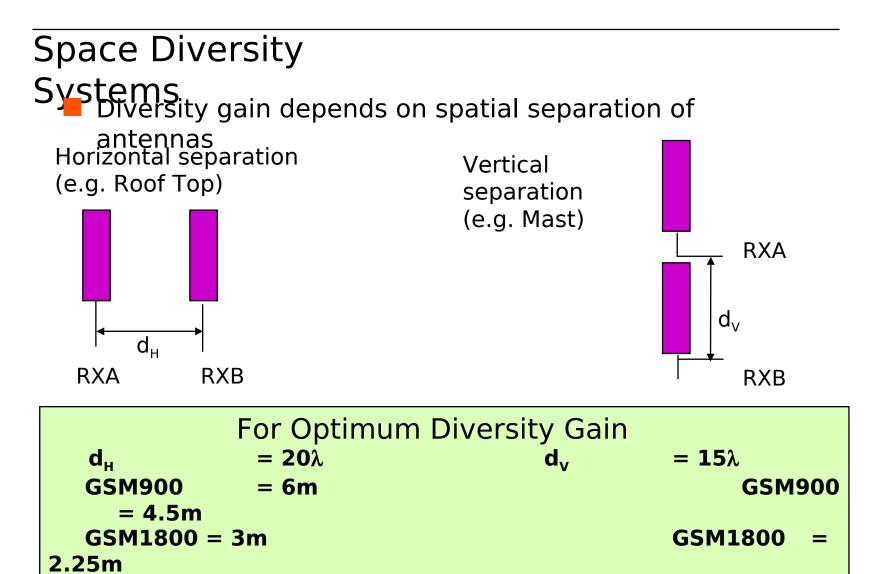
Enhanced Diversity Combining (2)


Antenna diversity gain recommendation for link budget			
Environment	Evolution	Evolution	
	step 1,	step2	
	Evolution	since	
	step 2 up	B6.2	
	to B5		
Urban, dense urban	5 dB	6 dB	
Residential, suburban	3.5 dB	5 dB	
Rural (horizontal space diversity)	3 dB	3.5 dB	

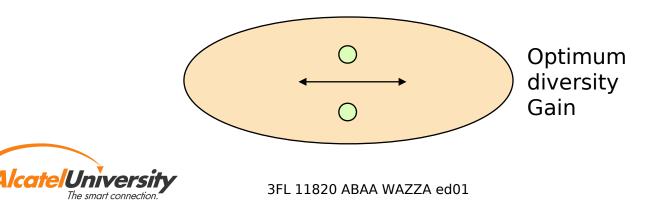

The values in the right column are due to the feature Enhanced Diversity Combining, Selective Beam-forming Combining



Diversity systems in Mobile Radio Networks



The smart connection



3FL 11820 ABAA WAZZA ed01

Space Diversity - General Rules

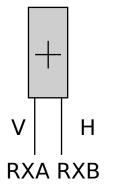
- \checkmark The larger the separation the higher the diversity $\sigma_{\rm p}$ in
- Prefer horizontal separation (more effective)
- The higher the antenna the higher the required separation, rule: d > h/10
- Highest diversity gain from the "broadside"
- Select orientation of diversity setup according to orientation of cell / traffic

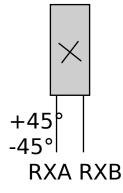
h

Achievable Diversity Gain

Depends on fading conditions

- Varies in between 2.5 6dB
- Higher diversity gain in areas with multipath propagation (urban and suburban areas)
- General rule: consider diversity gain with 3dB in the link budget

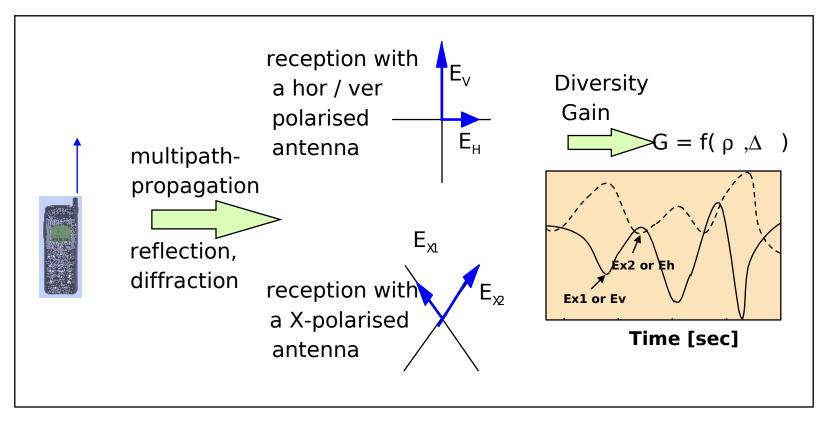




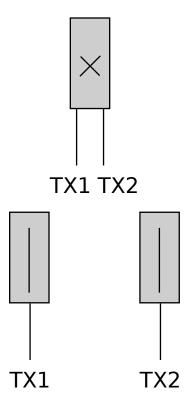
Polarization Diversity

Diversity gain in using orthogonal orientated antennas

Horizontal / vertical polarization: Hor/Ver Antenna Polarization of +/- 45°: cross polarized antenna or Slant antenna



Big Advantage: Only one panel antenna is required to profit from diversity gain using this configuration


Principle of Polarization Diversity

Air Combining

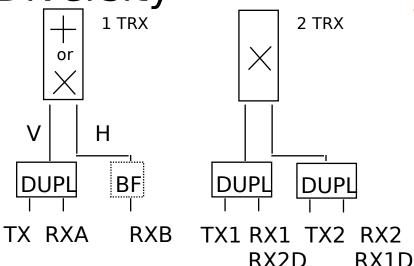
Features

- only one TX per antenna
- combining signals "on air" and not in a combiner
- 3dB combiner loss can be saved to increase coverage

Can be realized with

- two vertical polarized antennas
- one cross polarized panel antenna

cross polarized antennas

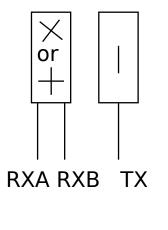

urban/suburban area (less

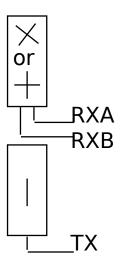
recommended for

One antenna system

space req.)

Air Combining with Polarization Diversity




No Air combining Bandfilter if Decoupling too low Air combining Recommended for Evolium BTS

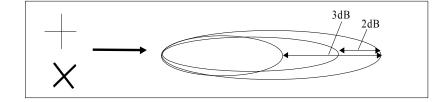
Air Combining with Space Diversity

- Two antenna system
 - Vertical or horizontal spacing (recommended for rural area)

Decoupling of Signal Branches

- One antenna system: TX / RX decoupling cannot be achieved by spatial separation
- Decoupling between both polarization branches needs to be sufficiently high to avoid
 - blocking problems
 - intermodulation problems
- Required decoupling values
 - G2 BTS: 30 dB
 - Evolium A9100 BTS: 25dB (Integrated duplexer Anx)

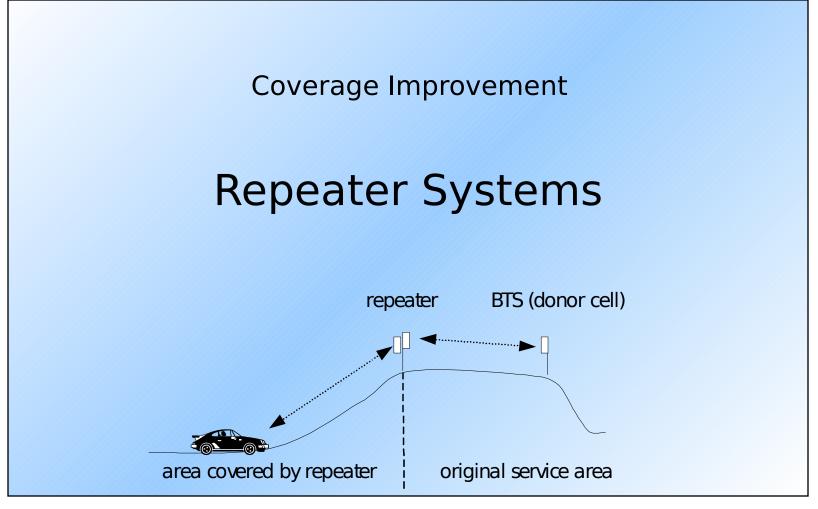
Cross Polarized or Hor/Ver Antenna? (1)


Receiving Application

- same diversity gain for cross polarized and hor/ver antennas
- in urban and suburban area polarization diversity gain equal to space diversity gain (2.5 - 6dB)
- negligible polarization diversity gain in rural areas (not recommended)
- accordingly consider polarization diversity gain with 3dB in the link budget

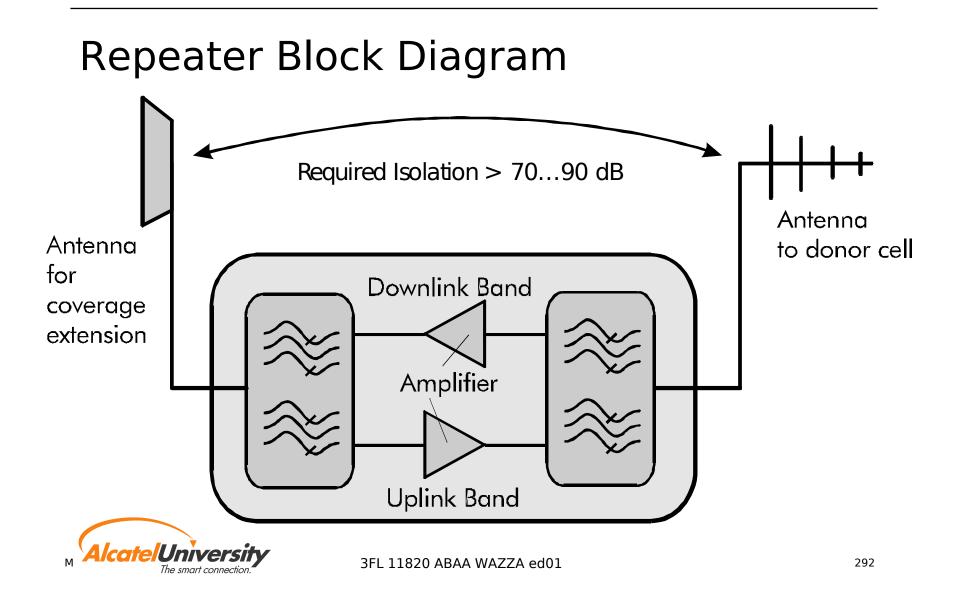
Cross Polarized or Hor/Ver Antenna? (2)

- Transmission Application: Air combining
 - 3dB loss when transmitting horizontal/vertical polarized (use of combiner)
 - 1-2dB losses when transmitting at 45° (optimum antenna is straighten vertically)
 - Air combining only recommended with cross polarized antenna

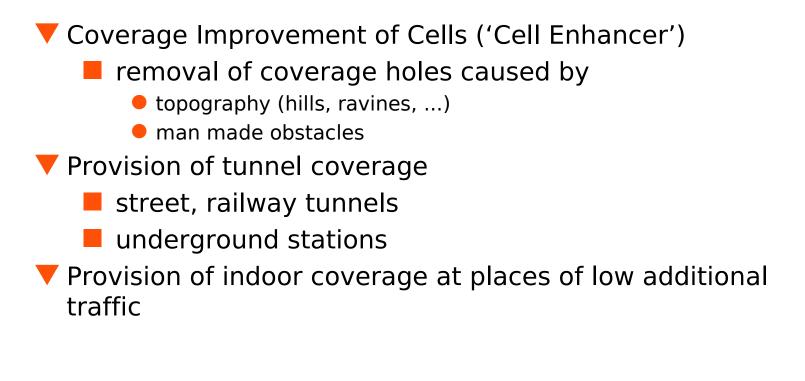

Conclusion on Antenna Diversity

🔻 Rural Areas

- installation space not limited
- apply Space Diversity (higher gain)
- Urban and Suburban Area
 - apply space or polarization diversity
 - use cross polarized antennas for air combining
- Diversity Gain
 - consider diversity gain in link budget with 3dB

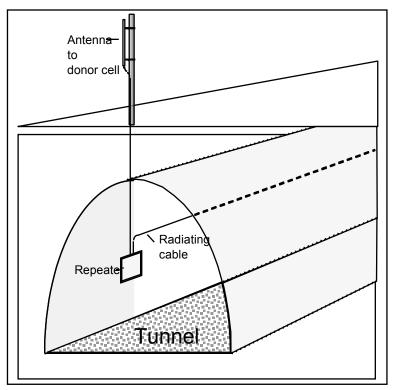


Repeater Application BTS (donor cell) repeater area covered by repeater original service area



Repeater Applications

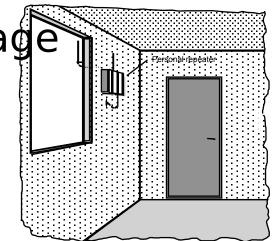
Repeater Types

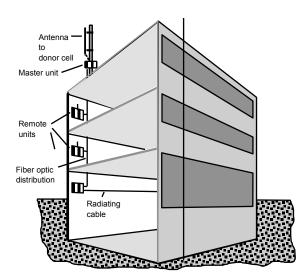

- Channel selective repeaters
 - high selectivity of certain channels
 - high traffic areas, small cell sizes
- Band selective repeaters
 - adjustment to operator's frequency band
 - no (accidental) usage by competitors

- Broad band repeaters
 - Iow cost solution for low traffic areas (rural environment)
 - medium to high repeater gain
- Personal repeaters
 - Iow gain
 - broad band
 - indoor coverage improvement for certain rooms

Repeater for Tunnel Coverage

- Choice of repeater type due to
 - tunnel dimensions
 - wall materials
- feeding by
 - directional antennas
 - leaky feeder cables
- Iong tunnels
 - chains of several repeaters
 - fiber optic backbone for repeater feeding





Repeater for Indoor coverage

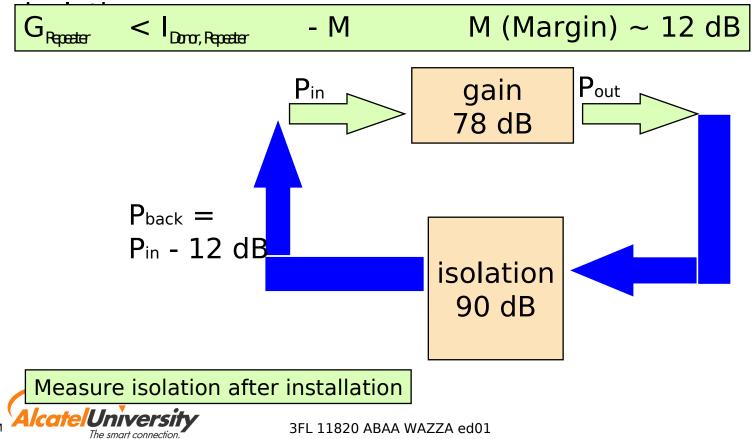
For smaller buildings

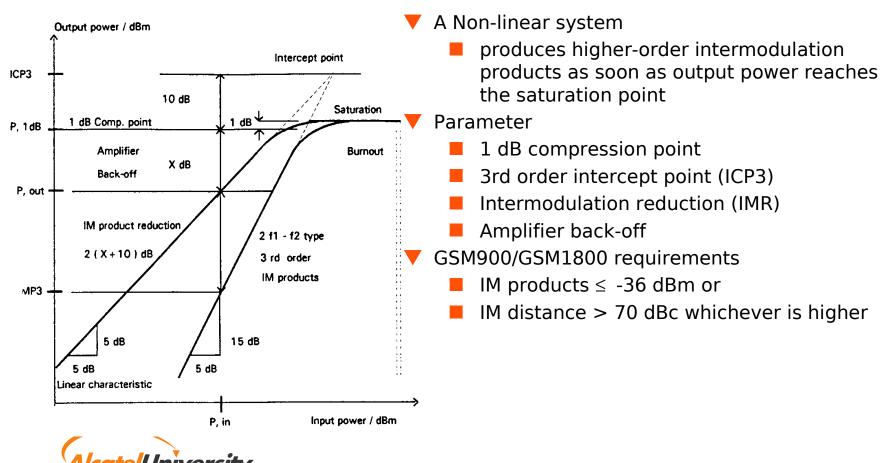
- Compensation for wall losses, window losses (heat insulated windows)
- Low cost personal repeaters installed in certain rooms
- For larger buildings (shopping malls, convention centers, sport centers)
 - multispot transmission using
 - co-axial distribution network
 - fiber-optic distribution network

Planning Aspects

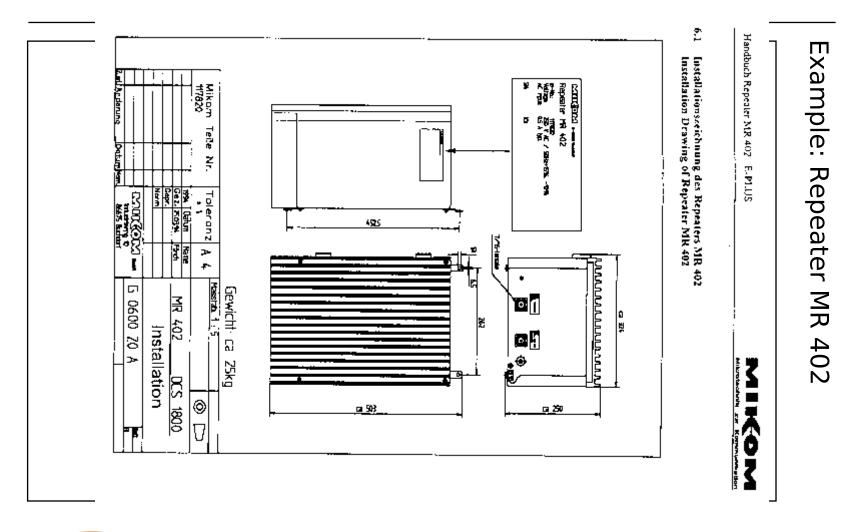
- Repeater does not provide additional traffic capacity
 - risk of blocking if additional coverage area catches more traffic
 - possible carrier upgrading required
- Repeater causes additional signal delay
 - delay: 4..8µ s → max. cell range of 35 km reduced by 1 to 2km
 - special care needed for total delay of repeater chain!
 - delayed signal and original signal could cause outage in urban environment if total delay exceeds 16 ... 22µ s

Repeater Gain Limitation (1)


- Intermodulation products should be low
 - when amplifier reaches saturation point, intermodulation products go up
- Signal to noise ratio should be high
 - when amplifier reaches saturation point, signal to noise ratio is getting worse
- Antenna isolation between transmission and receiving antenna should be high
 - if signal feedback from transmission antenna to receiving antenna is too high, amplifier goes into saturation


Repeater Gain Limitation (2)

Intermodulation Products


Repeater Link Budget

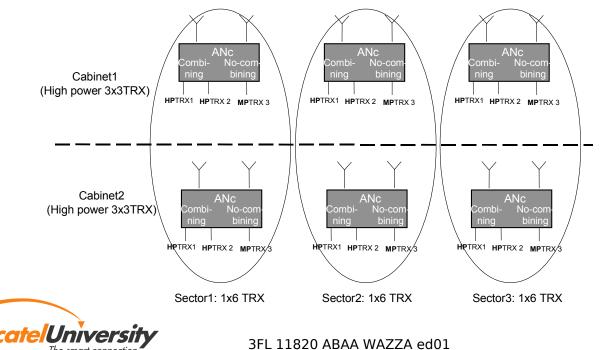
 ∇ plink Loss = Downlink Loss \Rightarrow Uplink Gain = Downlink Gain

Downlink Path	Unit	Value
Received power at repeater	dBm	-65
Link antenna gain	dBi	+19
Cable loss	dB	-2
Repeater input power	dBm	-48
Repeater gain	dB	+78
Repeater output power	dBm	30
Cable loss	dB	-2
Repeater antenna gain	dBi	+18
EIRP	dBm	46

 Different gains may be needed in Up- and Downlink if the sensitivity of the repeater is worse than the sensitivity of the BTS
 Alcate/University The smart connection.

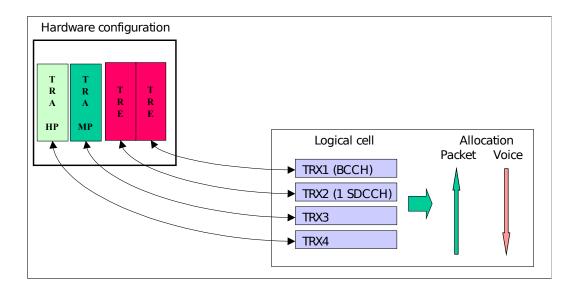
High Power TRXs

- High Power TRXs: solution for coverage improvement
- HP must be used together with TMA: due to unbalanced Link Budget
- A9100 BTS supports
 - High Power TRX
 - Medium Power
 - TRX type is chosen by:
 - environment conditions
 - required data throughput (GPRS/EDGE)


TX power of EVOLIUM™ Evolution step 2 TRX :								
Frequency band	TX output power, GMSK	TX output power, 8-PSK (EDGE)						
GSM 900 HP	60 W = 47.8 dBm	25 W = 44.0 dBm						
GSM 1800 HP	60 W = 47.8 dBm	25 W = 44.0 dBm						

3x6 TRXs High Power Configuration

- ▼ Configuration made with EVOLIUM[™] A9100 Base Station
 ▼ Obs:
 - All TRX are HP
 - The configuration is using cell split feature



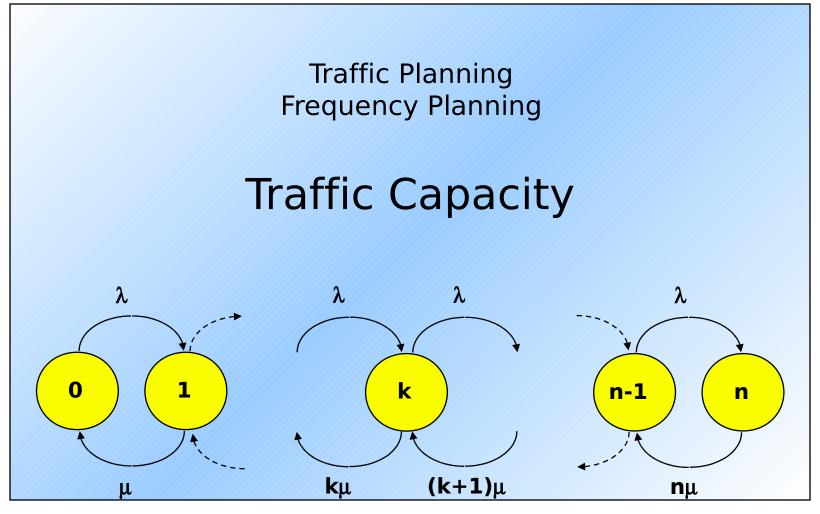
Mixed TRX Configuration

▼ BTS EVOLIUM[™] supports a mix of:

- EVOLIUM[™] TRX (TRE) supports GSM/GPRS and EDGE
- EVOLIUM[™] Evolution step 2 TRX (TRA) with Medium Power
- EVOLIUM[™] Evolution step 2 TRX (TRA) with High Power

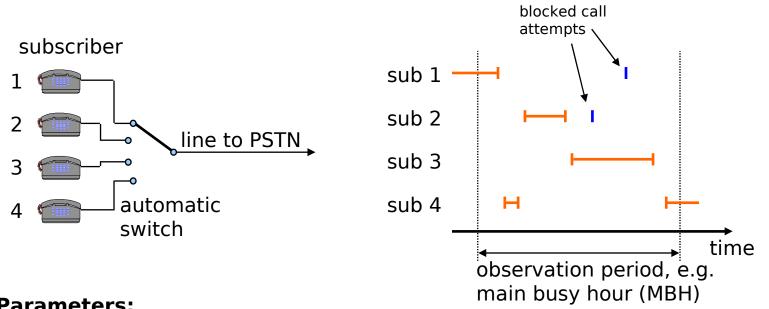
GSM Radio Network Engineering Fundamentals

Traffic Planning & Frequency Planning


Contents

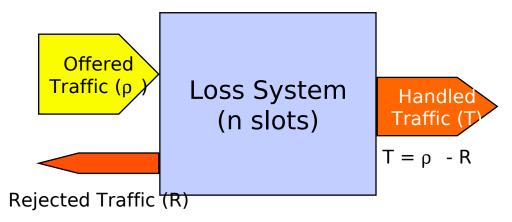
Traffic Capacity

- Network evolution
- Cell structures
- Frequency Reuse
- Cell Planning Frequency Planning
- Interference Probability
- Carrier types
- Multiple Reuse Pattern MRP
- Intermodulation
- Manual Frequency Planning
- **V** BSIC Planning
- Capacity Enhancement Techniques



Telephone System

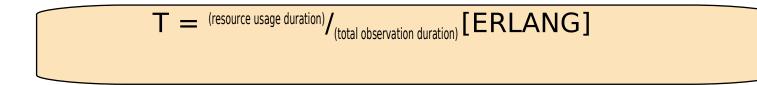
Parameters:


λ:

μ:

- arrival rate [1/h] "offered" traffic = # of calls arriving in MBH \times release rate [1/h] mean holding time $\rho = \lambda \times \mathbf{1}/\mu$ [Erlang]
- mean holding time [sec] $1/\mu$:

Offered Traffic and Traffic Capacity


- Handled Traffic, Traffic Capacity: T
- **V** Blocking Probability, Grade of Service (GoS): $\mathbf{p}_{block} = R / \rho$
- **V** System load: $\tau = T / n$, i.e. T < n

Definition of Erlang

TERLANG : Unit used to quantify traffic

Call Mix and Erlang Calculation

CALL MIX EXAMPLE

- 350 call/hour
- 3 LU/call
- TCH duration : 85 sec
- SDCCH duration : 4,5 sec

ERLANG COMPUTATION

- TCH = (350 * 85)/3600 = 8,26 ERLANG
- SDCCH = [(350 + 350*3) * 4,5] / 3600 = 1.75 ERLANG

Definition of Erlang B

FERLANG B LAW

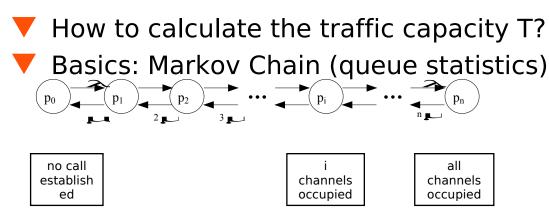
Relationship between

- Offered traffic
- Number of resources
- Blocking rate

call request arrival rate (and leaving) is not stable

number of resources = average number of requests mean duration

is <u>sometime</u> not sufficent => probability of <u>blocking</u>


- ▼ => Erlang B law
 - Pblock : blocking probability
 - N : number of resources
 - E : <u>offered</u> traffic [Erlang]

Calculated with Excel - Makro or Table

Erlang's Formula

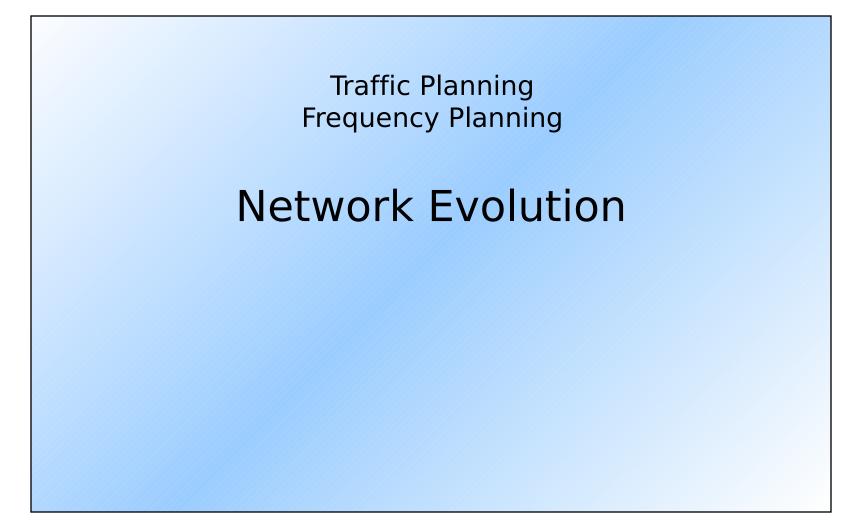
Calculation of the blocking probability using Erlang's formula (Erlang B statistics):

$$p_{block} = \frac{\mathbf{\rho}^n}{n!} / \sum_{i=0}^n \frac{\mathbf{\rho}^i}{i!}$$

Varation of ρ until p_{block} reached: $\rho \rightarrow T$ AlcotelUniversity The smart connection. 3FL 11820 ABAA WAZZA ed01

Blocking Probability (Erlang B)

Nr. of	Blocking Probability Erlang B											
channels	0.1%	0.2%	0.5%	1%	2%	3%	4%	5%	10%	15%	20%	50%
1	0.001	0.002	0.005	0.010	0.020	0.031	0.042	0.053	0.111	0.176	0.250	1.000
2	0.046	0.065	0.105	0.153	0.223	0.282	0.333	0.381	0.595	0.796	1.000	2.732
3	0.194	0.249	0.349	0.455	0.602	0.715	0.812	0.899	1.271	1.602	1.930	4.591
4	0.439	0.535	0.701	0.869	1.092	1.259	1.399	1.525	2.045	2.501	2.945	6.501
5	0.762	0.900	1.132	1.361	1.657	1.875	2.057	2.218	2.881	3.454	4.010	8.437
6	1.146	1.325	1.622	1.909	2.276	2.543	2.765	2.960	3.758	4.445	5.109	10.389
7	1.579	1.798	2.157	2.501	2.935	3.250	3.509	3.738	4.666	5.461	6.230	12.351
8	2.051	2.311	2.730	3.128	3.627	3.987	4.283	4.543	5.597	6.498	7.369	14.320
9	2.557	2.855	3.333	3.783	4.345	4.748	5.080	5.370	6.546	7.551	8.522	16.294
10	3.092	3.427	3.961	4.461	5.084	5.529	5.895	6.216	7.511	8.616	9.685	18.273
11	3.651	4.022	4.610	5.160	5.842	6.328	6.727	7.076	8.487	9.691	10.857	20.254
12	4.231	4.637	5.279	5.876	6.615	7.141	7.573	7.950	9.474	10.776	12.036	22.238
13	4.831	5.270	5.964	6.607	7.402	7.967	8.430	8.835	10.470	11.867	13.222	24.224
14	5.446	5.919	6.663	7.352	8.200	8.803	9.298	9.730	11.473	12.965	14.413	26.212
15	6.077	6.582	7.376	8.108	9.010	9.650	10.174	10.633	12.484	14.068	15.608	28.201
16	6.721	7.258	8.099	8.875	9.828	10.505	11.059	11.544	13.500	15.176	16.807	30.191
17	7.378	7.946	8.834	9.652	10.656	11.368	11.952	12.461	14.522	16.289	18.010	32.182
18	8.046	8.644	9.578	10.437	11.491	12.238	12.850	13.385	15.548	17.405	19.216	34.173
19	8.724	9.351	10.331	11.230	12.333	13.115	13.755	14.315	16.579	18.525	20.424	36.166
20	9.411	10.068	11.092	12.031	13.182	13.997	14.665	15.249	17.613	19.647	21.635	38.159
21	10.108	10.793	11.860	12.838	14.036	14.885	15.581	16.189	18.651	20.773	22.848	40.153
22	10.812	11.525	12.635	13.651	14.896	15.778	16.500	17.132	19.692	21.901	24.064	42.147
23	11.524	12.265	13.416	14.470	15.761	16.675	17.425	18.080	20.737	23.031	25.281	44.142
24	12.243	13.011	14.204	15.295	16.631	17.577	18.353	19.031	21.784	24.164	26.499	46.137
25	12.969	13.763	14.997	16.125	17.505	18.483	19.284	19.985	22.833	25.298	27.720	48.132
30	16.684	17.606	19.034	20.337	21.932	23.062	23.990	24.802	28.113	30.995	33.840	58.113
35	20.517	21.559	23.169	24.638	26.435	27.711	28.758	29.677	33.434	36.723	39.985	68.099
40	24.444	25.599	27.382	29.007	30.997	32.412	33.575	34.596	38.787	42.475	46.147	78.088
45	28.447	29.708	31.656	33.432	35.607	37.155	38.430	39.550	44.165	48.245	52.322	88.079
50	32.512	33.876	35.982	37.901	40.255	41.933	43.316	44.533	49.562	54.029	58.508	98.072



BTS Traffic Capacity (Full Rate)

Number of				Speech Tra	affic (Erlang	B)	Signalling Traffic (Erlang B)			
TRX	(SDCCH	ТСН	1%	2%	5%	0.1%	0.2%	0.5%	
1		4	7	2.501	2.935	3.738	0.439	0.535	0.701	
2		8	14	7.352	8.2	9.73	2.051	2.311	2.73	
3		8	22	13.651	14.896	17.132	2.051	2.311	2.73	
4		16	29	19.487	21.039	23.833	6.721	7.258	8.099	
5		16	37	26.379	28.254	31.64	6.721	7.258	8.099	
6		24	44	32.543	34.682	38.557	12.243	13.011	14.204	
7		24	52	39.7	42.124	46.533	12.243	13.011	14.204	
8		32	59	46.039	48.7	53.559	18.205	19.176	20.678	

Network Evolution - Coverage Approach

- The roll out of a network is dedicated to provide coverage
- Network design changes rapidly
- Planning method must be flexible and fast (group method)
- Manual frequency planning possible

Network Evolution - Capacity Approach (1) With the growing amount of subscribers, the need for more installed capacity is rising

V Possible Solutions:

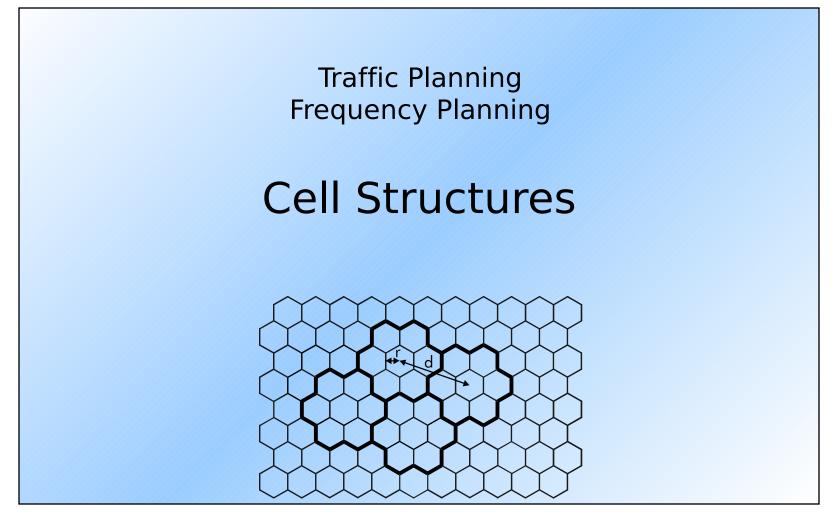
Installing more TRXs on the existing BTS

Implementing additional sites

Viscussion!

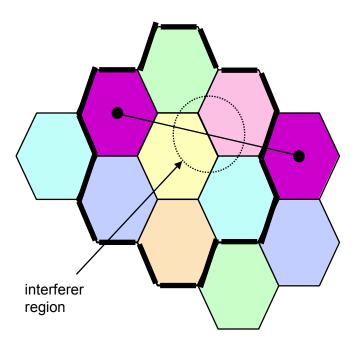
Network Evolution - Capacity Approach (2)

- Installing more TRXs Advantages
 - No site search/acquisition process
 - No additional sites to rent (saves cost)
 - Trunking efficiency
 Higher capacity per cell
- Installing more TRXs Disadvantages
 - More antennas on roof top (Air combining)
 - Additional losses if WBC has to be used
 - Less (indoor) coverage
 - More frequencies per site needed
 - Tighter reuse necessary ⇒ decreasing quality

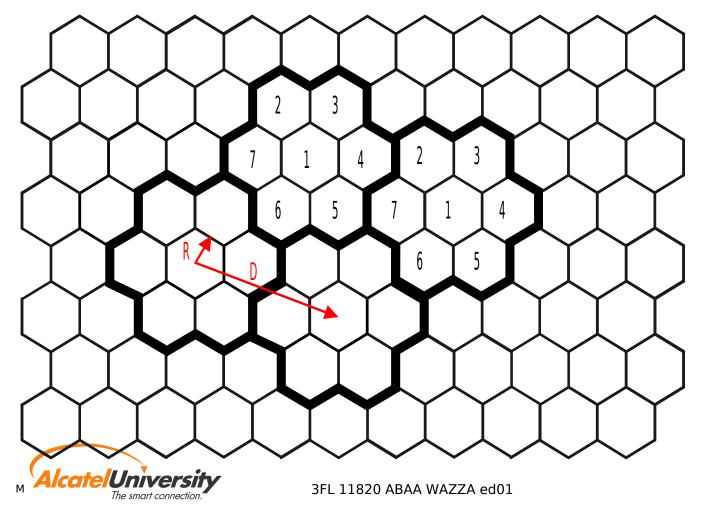

Network Evolution - Capacity Approach (3)

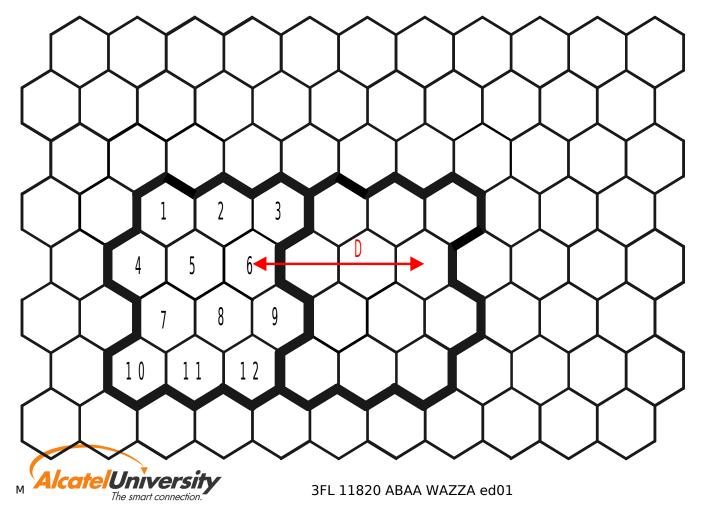
V Implementing additional sites - Advantages

- Reuse can remain the same (smaller cell sizes)
- Needs less frequency spectrum
 - higher spectrum efficiency
- Implementing additional sites Disadvantages
 - Additional site cost (rent)
 - Re-design of old cells necessary (often not done)

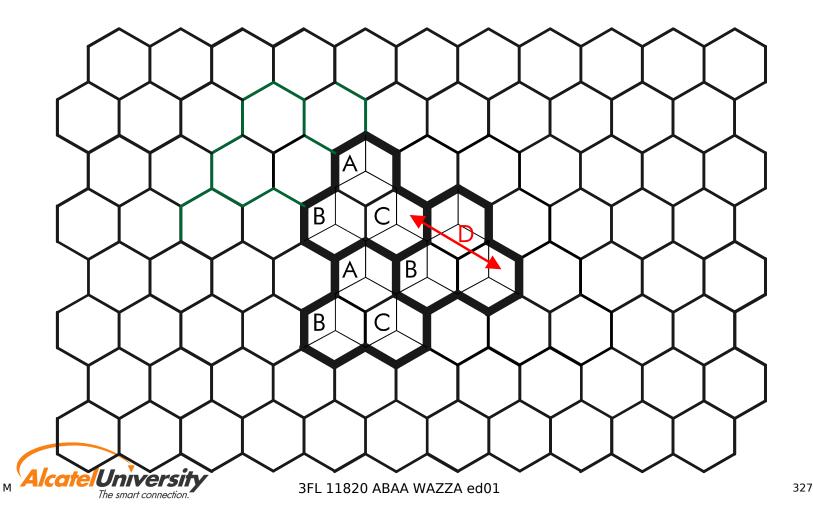


Cell Structures and Quality

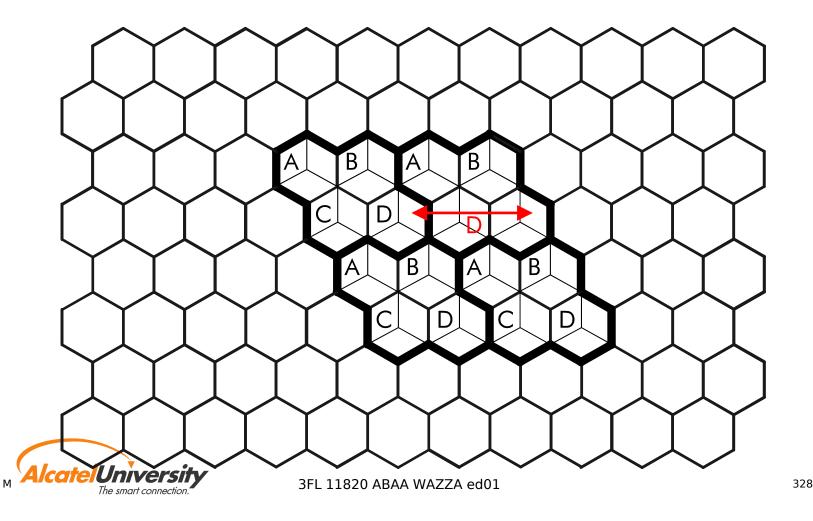

- Frequency re-use in cellular radio networks
 - allow efficient usage of the frequency spectrum
 - but causes interference
- Interdependence of
 - Cell size
 - Cluster size
 - Re-use distance
 - Interference level
 - Network Quality



7 Cell Re-use Cluster (Omni Sites)

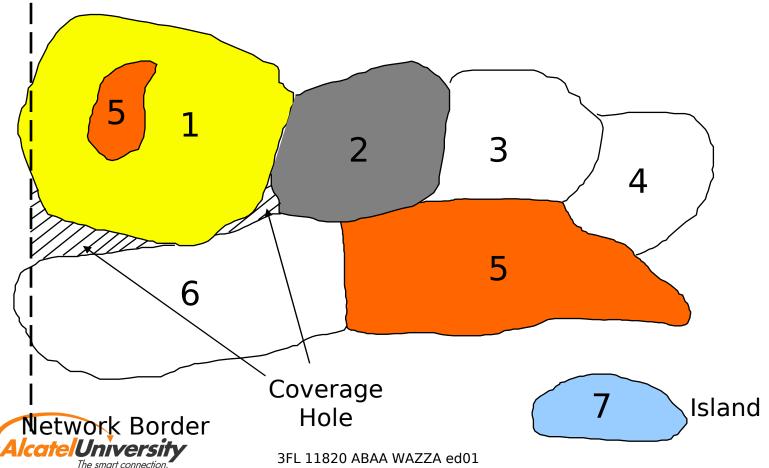


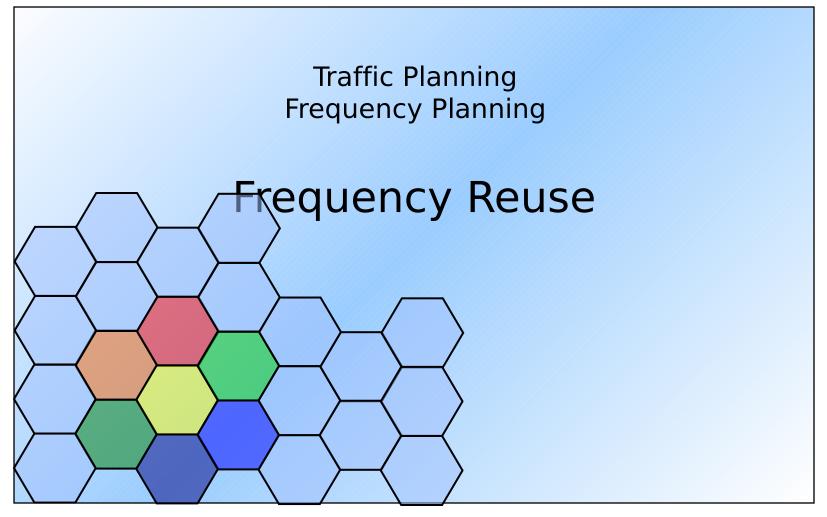
12 Cell Re-use Cluster (Omni Sites)



3x3 Cell Re-use Cluster (Sector Site)

4x3 Cell Re-use Cluster (Sector Site)




м

GSM RNE Fundamentals

Irregular (Real) Cell Shapes

GSM Frequency Spectrum

- **GSM 900**
 - DL: 935-960 MHz UL: 890-915 MHz
 - 200 kHz channel spacing \$\$\$ 124 channels
 - ARFCN 1 124
- E-GSM
 - DL: 925-935 MHz UL: 880-890 MHz
 - 200 kHz channel spacing > Additional 50 channels
 - ARFCN 0, 975 1023
- V GSM 850
 - DL: 869-894 MHz UL: 824-849 MHz
 - 200 kHz channel spacing \$\$\$ 124 channels
 - ARFCN: 128 251
- **GSM 1800**
 - DL: 1805-1880 MHz UL: 1710-1785 MHz
 - 200 kHz channel spacing \$\$ 374 channels
 - ARFCN 512 885

3FL 11820 ABAA WAZZA ed01

Impact of limited Frequency Spectrum

- Bandwidth is an expensive resource
- Best usage necessary
- Efficient planning necessary to contain good QoS when the traffic in the network is increasing
 - smaller reuse
 - MRP usage
 - implementation of concentric cells / microcells/dual band
 - implementation of Frequency Hopping
 - Baseband
 - Synthezised

What is frequency reuse?

- As the GSM spectrum is limited, frequencies have to be reused to provide enough capacity
- The more often a frequency is reused within a certain amount of cells, the smaller the frequency reuse
- Aim:
 - Minimizing the frequency reuse for providing more capacity

REUSE CLUSTER:

Area including cells which do not reuse the same frequency (or frequency group)

RCS and ARCS (1)

Reuse Cluster Size - RCS

If all cells within the reuse cluster have the same amount of TRXs, the reuse per TRX layer can be calculated:

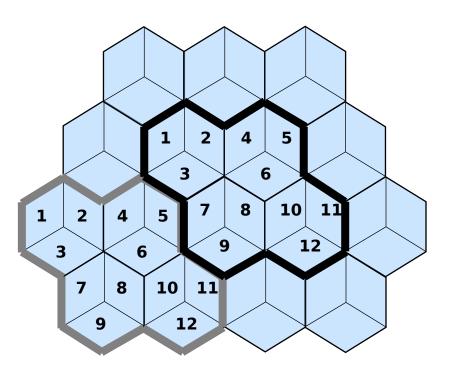
$$RCS = \frac{B}{\#TRX / cell}$$

- Average Reuse Cluster Size ARCS
 - If the cells are different equiped, the average number of TRXs has to be used for calculating the average reuse cluster size:

$$ARCS = \frac{B}{\overline{\#TRX} / cell}$$

RCS and ARCS (2)

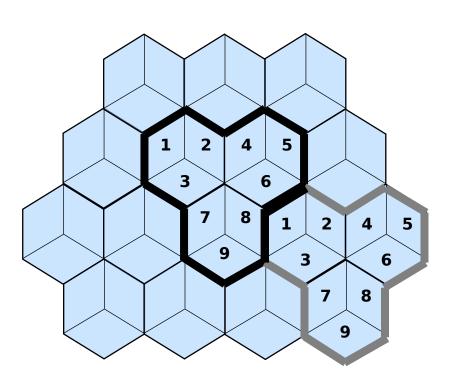
- The ARCS is giving the average reuse of the network when using the whole bandwidth and all TRXs per cell
- E.g: if we want to have the reuse of all non hopping TCH TRXs, we have to use the dedicated bandwidth and the average number of non hopping TCH TRXs per cell to get the ARCS of this layer type.
- Each cell has only one BCCH. Therefore the BCCH reuse is an RCS and not an ARCS!



Reuse Cluster Size (1)

Sectorized sites
4 sites per reuse cluster
3 cells per site

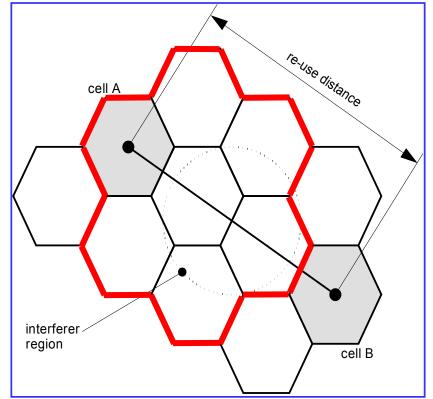
REUSE Cluster Size: 4X3 = 12



Reuse Cluster Size (2)

Sectorized sites
3 sites per reuse cluster
3 cells per site

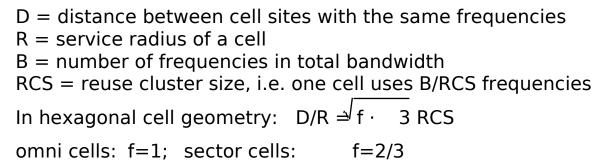
REUSE Cluster Size 3X3 = 9

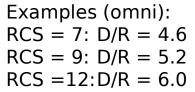


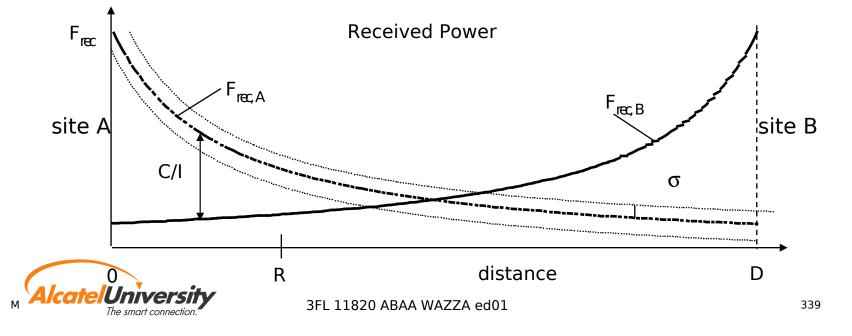
Reuse Distance

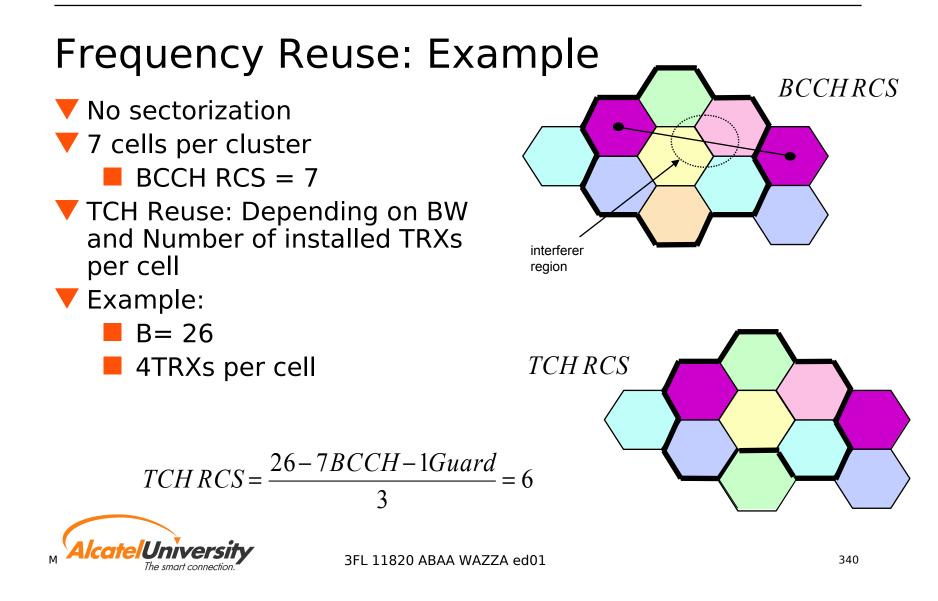
$$D = f \cdot R \cdot \sqrt{3 \cdot RCS}$$

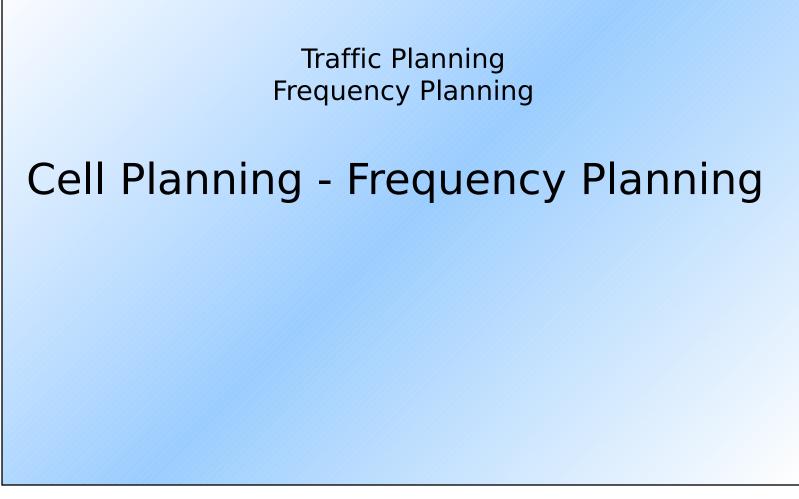
$$f = \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{cases}$$


omnidirectional cells three-sectorized cells






Frequency Reuse Distance



Cell Planning - Frequency Planning (1)

Can frequency planning be seen independently from cell planning?

Discussion

Cell Planning - Frequency Planning (2)

Bad cell planning

Island coverage

- Big overlap areas
- disturbing the reuse pattern
 bigger reuse necessary

Good cell planning

Sharp cell borders frequency ⇒ good containment of

Small overlap areas stighter reuse possible

Influencing Factors on Frequency Reuse Distance Topography

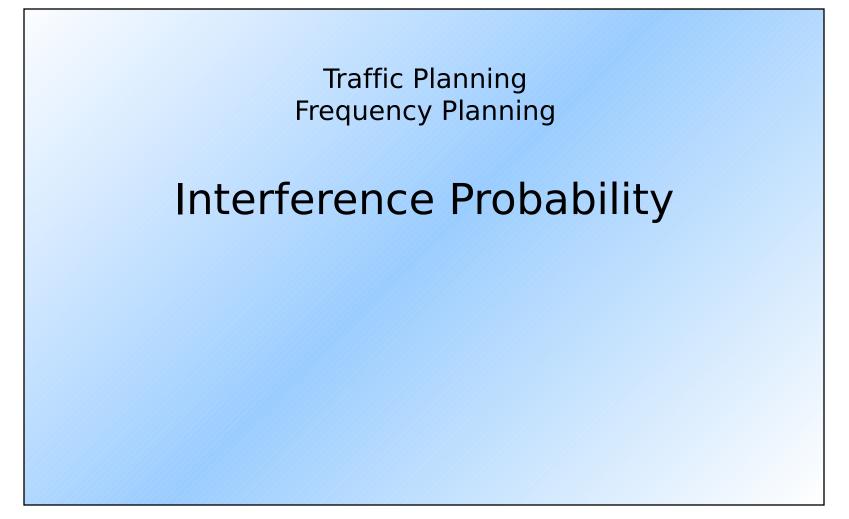
- Hilly terrain > Usage of natural obstacles to define sharp cell borders > tighter frequency reuse possible
- Flat terrain
 Achieveable reuse much more dependent on the accurate cell design
- Morphology
 - Water ⇒ low attenuation ⇒ high reuse distance
 - City ⇒ high attenuation distance

⇒ low reuse

Conclusion

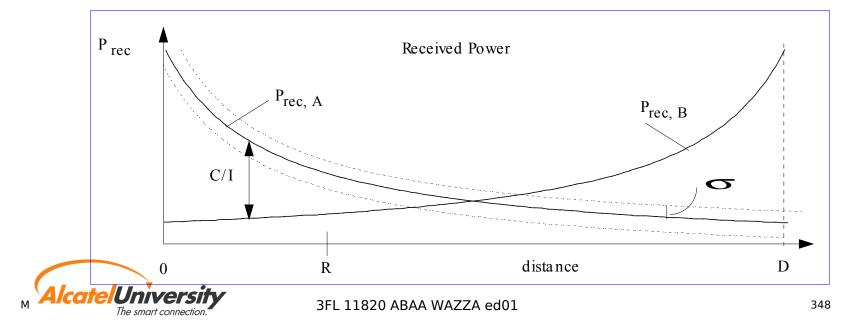
- In cellular mobile networks, the frequency reuse pattern has a direct influence on the interference and hence the network quality
- Regular hexagonal patterns allow the deduction of engineering formulas
- In real networks, cell sizes and shapes are irregular due to
 - Variation in traffic density
 - Topography
 - Land usage
- Engineering formulas allow the assessment of the network quality and worst-case considerations, but the real situation must be proved!

Examples for different frequency


reuses

Big city in the south of Africa:

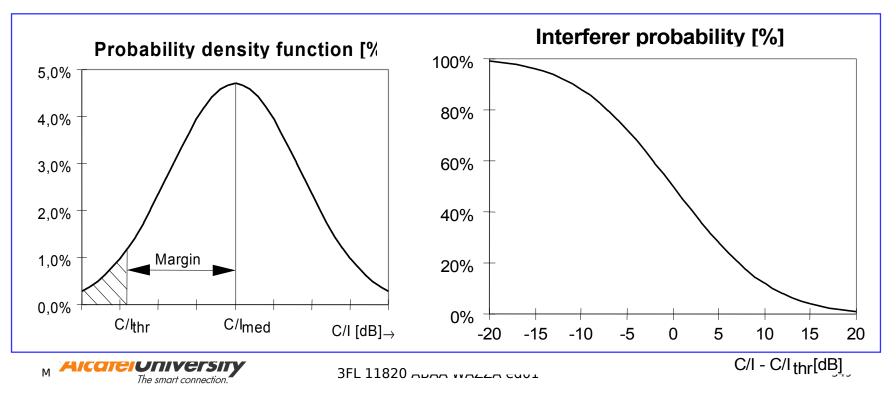
- BCCH reuse 26
 - Irregular cell design
 - Mixed morphology
 - Lots of water
 - Flat terrain plus some high sites
- **V** Big city in eastern Europe
 - BCCH reuse 12
 - Regular cell design
 - Flat area
 - Only urban environment



Interference Theory (1)

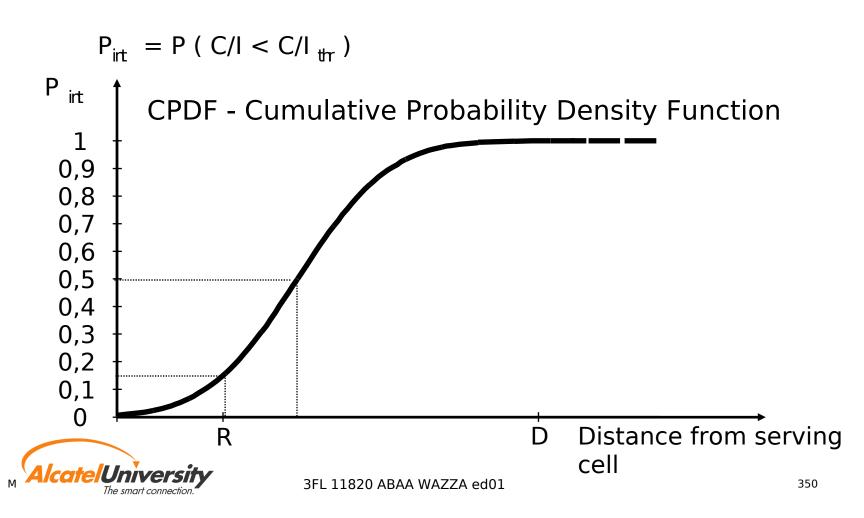
VC/I restrictions

- 9dB for co-channel interference
- -9 dB for adjacent channel interference

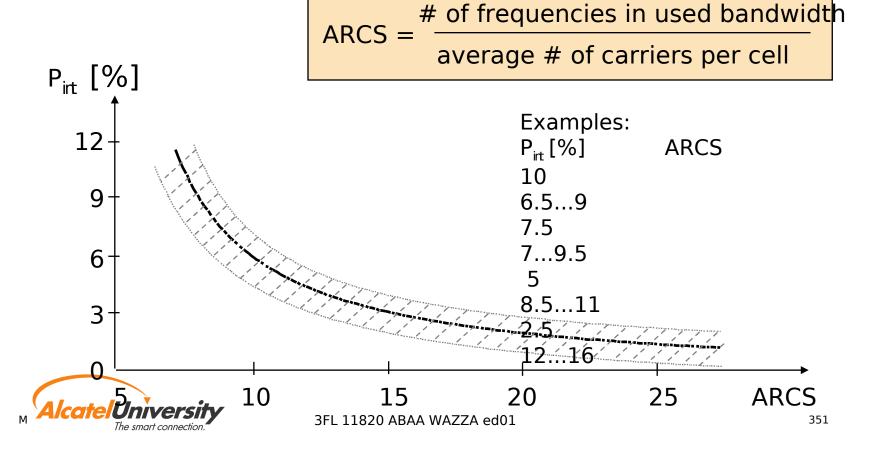


Interference Theory (2)

- Interference probability
 - C/I_{med} is the calculated carrier to


ARCS	Pint[%]	
6.59.0	10	
7.09.5	7.5	
8.511.0	5	.0
12.016.0	2.5	

interference ratio at a certain location (pixel)



Interference Probability

Interference Probability dependent on Average Reuse Cluster Size (ARCS)

Traffic Planning Frequency Planning

Carrier Types Multiple Reuse Pattern Intermodulation

Carrier Types - BCCH carrier

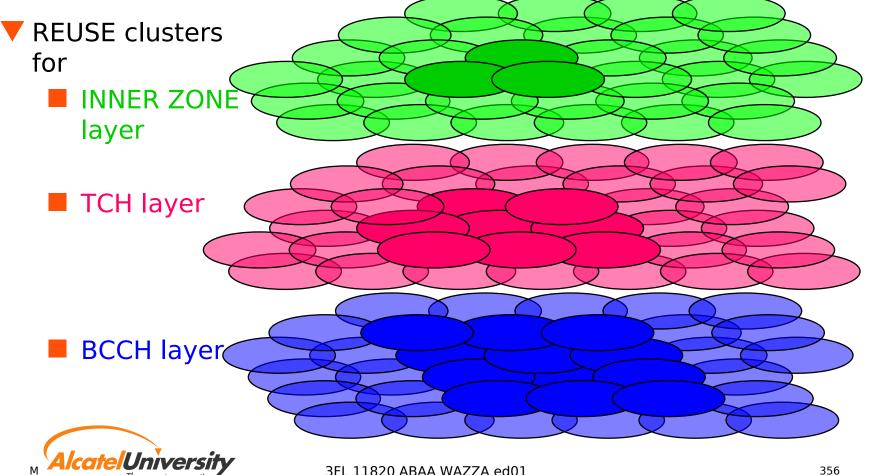
T BCCH frequency is on air all the time

- If there is no traffic/signaling on TS 1 to 7
 If there is no traffic/signaling on TS 1 to 7
- PC (Power Control) and DTX (Discontinuous Transmission) are not allowed
- Important for measurements of the mobile

Carrier Types - TCH carrier

- PC allowed and recommended for UL and DL
 - Bathurdign of transmit power according to the actual
 - Careful parameter tuning for DL necessary
- TX allowed and recommended for UL and DL
 - Discontinuous Transmission
 - If there is no speech, nothing is transmitted
 - Generation of comfort noise at receiving mobile
- ▼ TCH not in use ⇒ no signal is transmitted
- Special case: Concentric cells

Different re-uses for inner and outer zone are possible


Multiple reuse pattern (1)

- For different types of carriers, different interference potential is expected
- As the BCCH carrier has the highest interferer potential because of being on air all the time and the BCCH channel itself is accepting only low interference, the REUSE on the BCCH layer is higher then on other layers
- **TCH** layers can be planned with a smaller REUSE
- Inner zones of concentric cells are able to deal with the smallest reuse in non hopping networks

Multiple reuse pattern (2)

GSM restrictions

- ▼ Intra site minimum channel spacing ⇒ 2
- Intra cell minimum channel spacing
 2 (ETSI recommends 3, but with Alcatel EVOLIUM capabilities this value can be set to 2)
 - constrains:

FO 101

- Uplink power control enabled
- Intra cell interference handover enabled

Frequencies fAx,fBx,fCx,... must have at least 2 channels spacing

Frequencies fx1,fx2,fx3,... must have at least 3 channels spacing

Intermodulation problems (1)

IM Products GSM900

In a GSM 900 system intermodulation products of 3rd and 5th order can cause interference

• 2 *
$$f_{1,t} - f_{2,t} = f_{2,r} / 2 * f_{2,t} - f_{1,t} = f_{1,r}$$

•
$$3 * f_{1,t} - 2 * f_{2,t} = f_{2,r} / 3 * f_{2,t} - 2 * f_{1,t} = f_{1,r}$$

Frequency planning must avoid fulfilling these equations

- Both frequencies must be on the same duplexer
- To avoid intra band IM inside GSM900 the following frequency separations shall be avoided:

• 75/112/113 channels

Intermodulation problems (2)

IM Products GSM1800

In a GSM 1800 system, only intermodulation products of 3rd order can cause measurable interference

2 *
$$f_{1,t} - f_{2,t} = f_{2,r} / 2 * f_{2,t} - f_{1,t} = f_{1,r}$$

Frequency separations to be avoided

237/238 channels

IM Products Dual Band (GSM900/GSM1800)

$$\mathbf{f}_{1800,t} - \mathbf{f}_{900,t} = \mathbf{f}_{900,r}$$

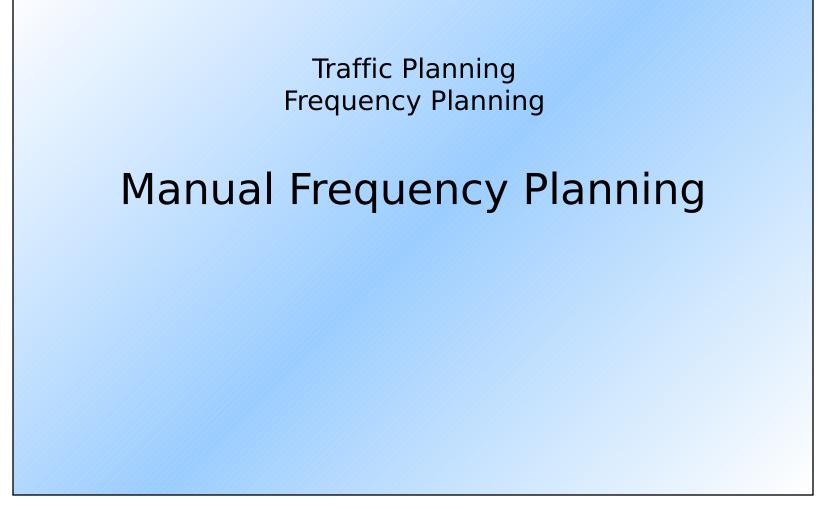
Decoupling between the GSM 1800 TX path and the GSM 900 RX path is less than 30 dB (e.g. same antenna used!)

Intermodulation problems (3) -Summary

INSIDE Problem:	Problem of	can be solve	d by hoppin	g over more	e than 10 freque		
	carrier/antenna	restriction					
3 900	1	no					
3 900	2 ore more	112/113 (IM3) and 75 (IM5)					
G3 1800	1	no					
G3 1800	2 or more	237/238 (IM3) no IM5 quality degradation measurable					
	carrier/antenna						
G2 900 w/o dupl	1	no					
	2 or more	no					
G2 900 with dupl	1	no					
	2 or more	112/113	112/113 (IM3) and 75 (IM5)				
G2 1800 w/o dupl	1	no					
	2 or more	no					
G2 1800 with dupl	1	no					
	2	dud2(high Power) -> no					
	2	dupd -> 237/238					
OUTSIDE Problem: Dual Band		Problem only for non hopping and BCCH carriers					
Coloca	ted BTSs						
G3 900	G2/G3 1800	f(1800,t)	f(1800,t) - f(900,t) = f(900,r)				
G2 900 w/o dupl	G2/G3 1800	no					
2 900 with dupl	G2/G3 1800	f(1800,t)	- f(900,t) =	f(900,r)			

Treating "neighbor" cells

- Cells, which are not declared as neighbor cells but are located in the neighborhood may use adjacent frequencies if it is not avoidable, but no co channel frequencies
- Cells which are declared as neighbors, thus have HO relationships, must not use co or adjacent frequencies
 - If an adjacent frequency is used, the HO will be risky and at least audible by the user

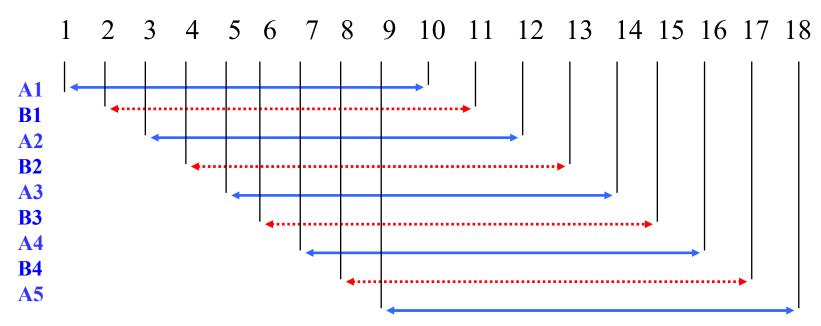


Where can I find neighbor cells?

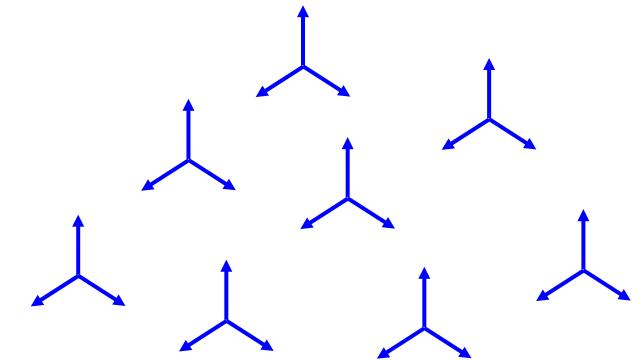
- At the OMC-R for each cell a list of neighbor cells is defined
- Maximum number of neighbors: 32
- The list of neighbors and their frequencies is transmitted to the mobile to be able to perform measurements on these frequencies
- In case of a HO cause, the HO will be performed towards the best neighbor

3FL 11820 ABAA WAZZA ed01

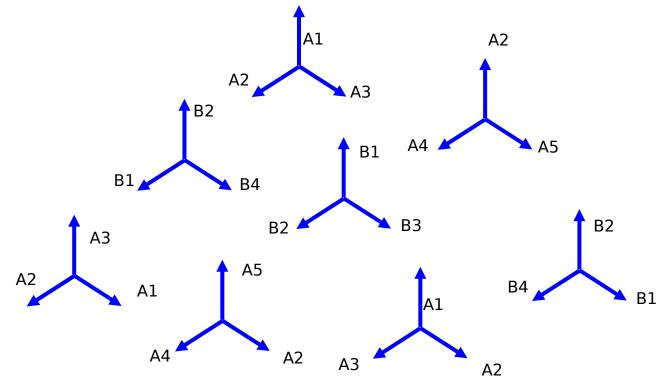
Manual frequency planning (1)


No fixed method

- Free frequency assignment possible, but very time consuming for larger networks
- **T** For easy and fast frequency planning: use group assignment
- ▼ Example: 18 channels, 2TRX per cell ⇒ ARCS 9


Manual frequency planning (2)

GSM restrictions are automatically fulfilled, if on one site only groups A* or only B* are used


Exercise: Manual frequency planning (3)

Exercise: Manual frequency planning (4)

3FL 11820 ABAA WAZZA ed01

Discussion: Subdivide Frequency Band?

- Any subdivision of the frequency band is reducing the spectrum efficiency!
- Separations should be avoided if possible!
- As the BCCH has to be very clean, it is nevertheless recommended to use a separated band and select a bigger reuse

Hint for creating a future proofed frequency

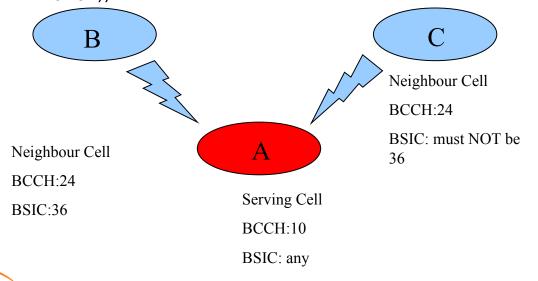
- If a frequency plan is implemented, using all available frequencies in the most efficient way, it is very difficult to implement new sites in the future!
- New sites would make a complete re-planning of the surrounding area or the whole frequency plan necessary
- To avoid replanning every time when introducing new sites, it is recommended to keep some Joker frequencies free
- These Joker frequencies can be used for new sites (especially BCCH TRXs) unless it is impossible to implement new sites without changing a big part of the frequency plan
- New frequency plan necessary!

Implementing a frequency plan

- If only a few frequencies have to be changed, the changes can be done at the OMC-R
 - Disadvantage: Every cell has to be modified separately
 - Downtime of the cell approx. 5 minutes
- If lots of changes have to be done, it is of advantage to use external tools
 - Since B6.2 the complete frequency plan can be uploaded from the OMC
 - the uploaded file can be modified by the tool (A9155 PRC Generator)
 - the the new plan is downloaded into the network and activated at once

3FL 11820 ABAA WAZZA ed01

BSIC allocation

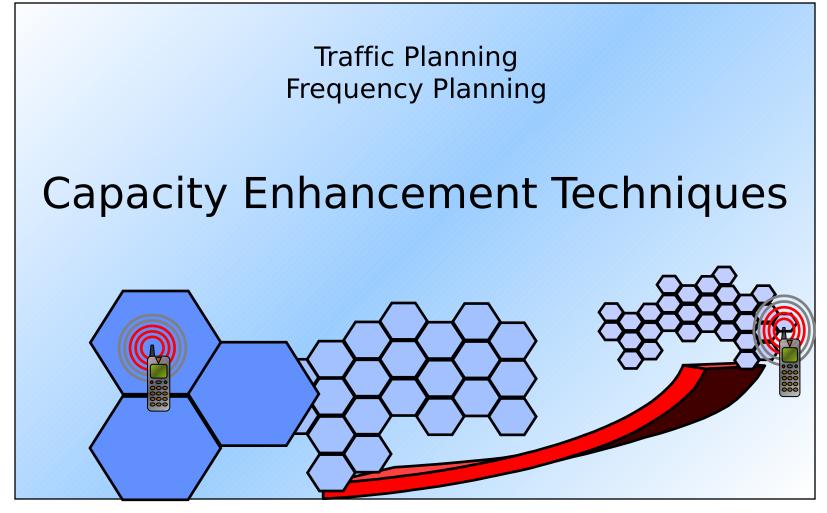

- Together with the frequencies the <u>B</u>ase Transceiver <u>S</u>tation <u>I</u>dentity <u>C</u>ode (BSIC) has to be planned
- The BSIC is to distinguish between cells using the same BCCH frequency
- **\mathbf{\nabla}** BSIC = NCC (3bits) + BCC (3bits)
- NCC Network (PLMN) Colour Code
 BCC Base Transceiver Station (BTS) Colour Code
- BSIC planning is supported by the A9155 (Alcatel Radio Network Planning Tool)

BSIC Planning Rules

- The same combination BCCH/BSIC must not be used on cell influencing on each other (having a mutual interference <>0)
- BSIC allocation rules:
 - Avoid using same BCCH/BSIC combination of:
 - neighbours cells
 - second order neighbour cells (the neighbours of neighbour cell (OMC limitation))

Spurious RACH

- Bad BSIC planning can cause SDCCH congestion cause by the spurious RACH problem, also known as "Ghost RACH"
- This problem occurs, when a mobile sends an HO access burst to a TRX of cell A using the same frequency as a nearby cell B uses on the BCCH
- Both cells using the same BSIC and Training Sequence Code TSQC, the HO access burst is understood by the cell B as a RACH for call setup
- Therefore on cell B SDCCHs are allocated everytime a HO access burst is sent from the mobile to the cell A



Summary

- For optimal usage of your frequency spectrum a good cell design is essential
- Use larger reuse for BCCH frequencies
- Use spectrum splitting only when necessary

3FL 11820 ABAA WAZZA ed01

Capacity enhancement by planning

Interference reduction of cells

- Check of antenna type, direction and down tilt
 - This is a check of cell size, border and orientation
- Check of proper cabling
 - Is TX and RX path on the same sector antenna?
- Check of the frequency plan
 - Introduction of a better frequency plan

Capacity enhancement by adding feature

Frequency hopping

- Base band hopping
- Synthesized frequency hopping
- Concentric cells

🔻 Half rate

Capacity enhancement by adding TRX

- Adding TRX to existing cells
- Multi band cells
- Concentric cells

Capacity enhancement by adding cells

- Adding of cells at existing site locations
- Adding new cell = adding new BCCH
- 🔻 Dual band
 - Adding cells using another frequency band
- Cell splitting
 - Reduction of cell size
 - Change of one omni cell into several cells/sector cells

Capacity enhancement by adding sites

Dual band/multi band network

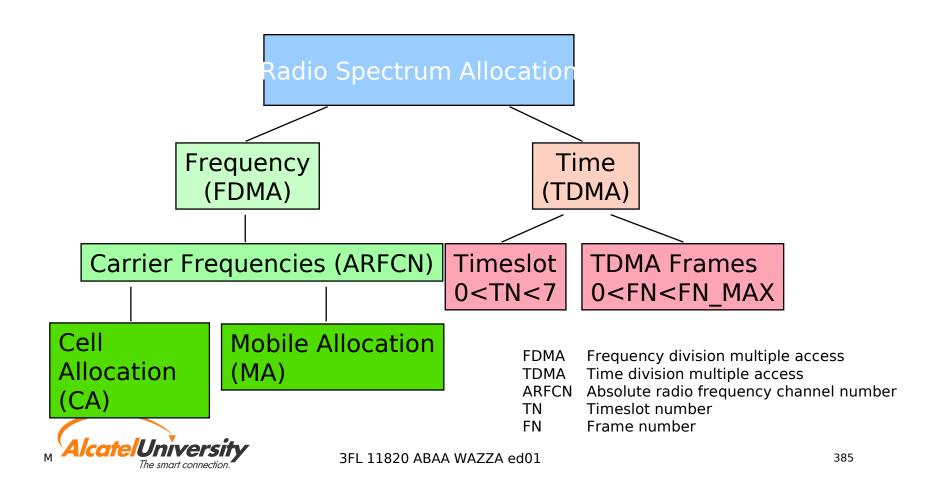
Adding of new sites in new frequency band

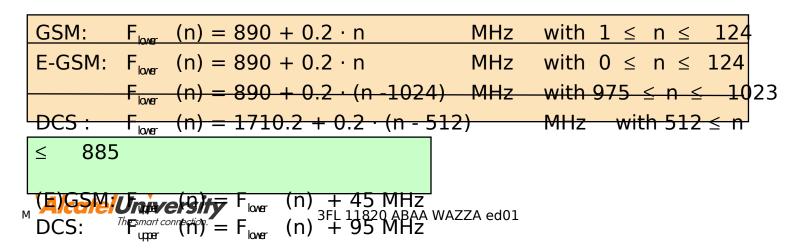
- Multi layer network
 - Adding of new sites in another layer
 - E.g. adding micro cells for outdoor coverage
- Indoor coverage
 - Adding micro cells indoor coverage
 - Adding macro cells indoor coverage

GSM Radio Network Engineering Fundamentals Radio Interface

Contents

GSM Air Interface
 Channel Coding
 Performance Figures




Radio Resources

GSM Transmission Principles (1)

- FDMA and TDMA with 8 time slots per carrier
- **F** RF frequency band
 - (E)GSM: (880) 890 ... 915 MHz Uplink (MS \rightarrow BS) (925) 935 ... 960 MHz Downlink (BS \rightarrow MS)
 - GSM1800: 1710 ... 1785 MHz Uplink 1805 ... 1880 MHz Downlink
- ▼ 200 kHz bandwidth
- Vumber of carriers: 124 (GSM); 374 (DCS); 49 (E-GSM)

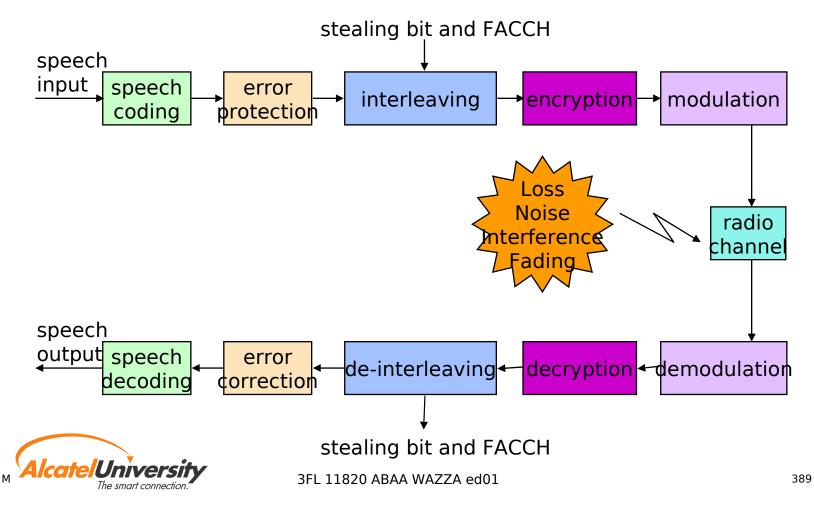
GSM Transmission Principles (2)

Channel types

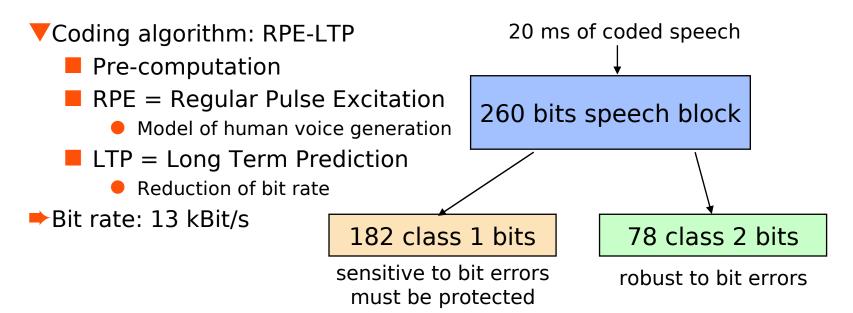
- Traffic Channels (TCH)
 - Full rate
 - Half rate
- Control Channels (CCH)
 - Broadcast Control Channel (BCCH)
 - Common Control Channel (CCCH)
 - Dedicated Control Channel (DCCH)


TDMA frame cycles

- 26 cycle for traffic channels
- 51 cycle for control channels

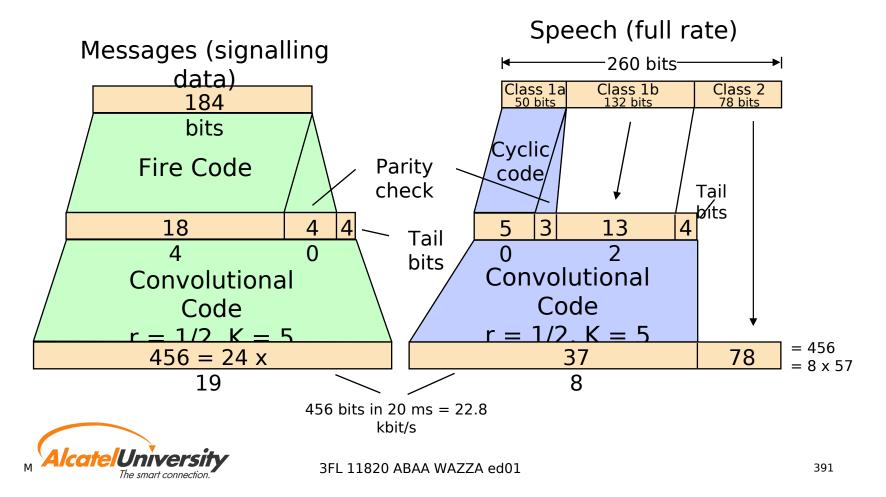


Advantages of Signal Processing

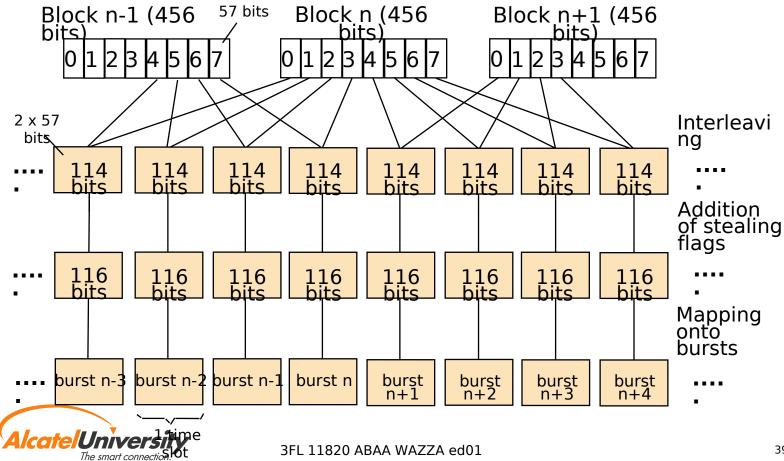


Signal Processing Chain

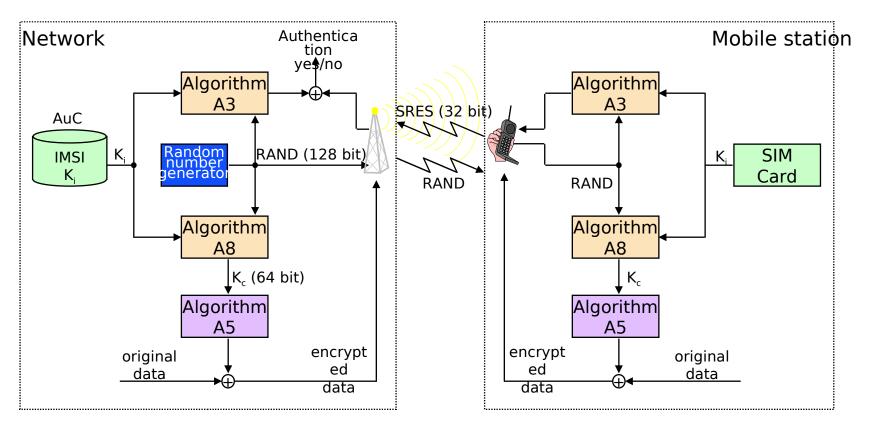
Speech Coding


Coding at fixed network: PCM A-law

Bit rate: 64 kBit/s


Error Protection

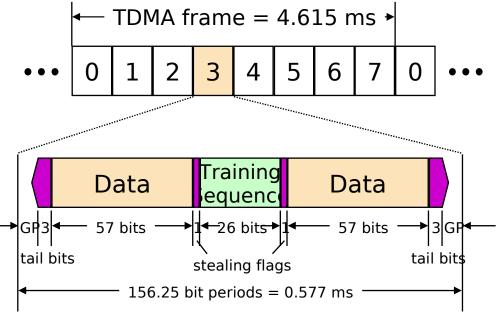
м


Interleaving and TDMA Frame Mapping

392

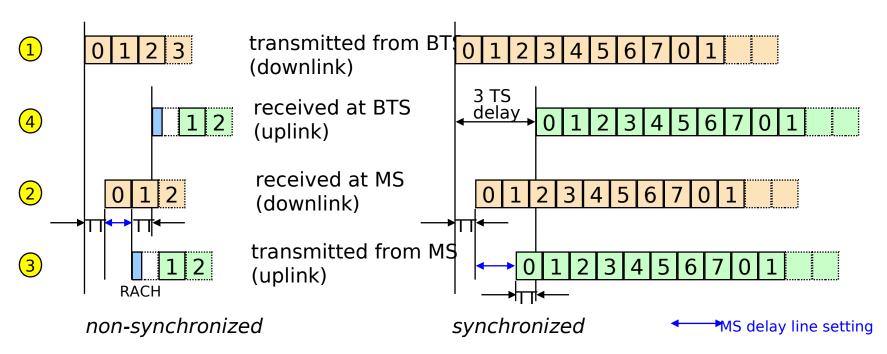
Encryption

3FL 11820 ABAA WAZZA ed01

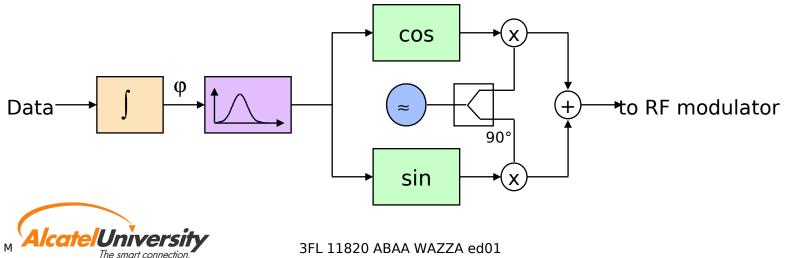


Burst Structure

- A burst contains one data "portion" of one timeslot
- TDMA frame: time between two bursts with same timeslot number
- The burst also consists of:
 - Guard period (GP): allows for transition and settling times
 Tail bits: allow for small
 - I all bits: allow for smal shifts in time delay (synchronisation)
 - Stealing flags: to indicate FACCH (control channel) data
 - Training sequence: for equalization purposes



Synchronisation


Transmitted bursts need a travelling time (TT) to the receiver

For network access, the MS sends a (non-synchronized) shortened RACH burst The BSS measures the TT and generates a timing advance value TA which is transmitted to the MS

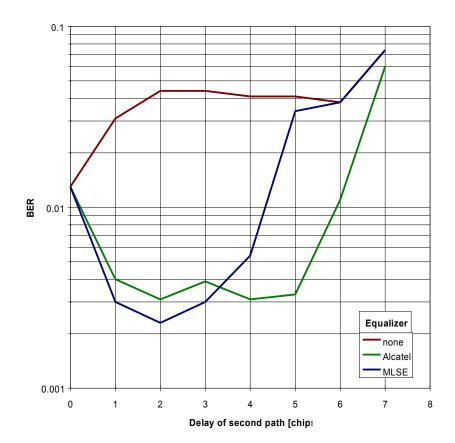
Modulation

- Gaussian minimum shift keying
 - Based on phase shift keying
 - Reduction of required bandwidth
 - Maximum phase change during one bit duration
 - Baseband filtering to achieve continuous phase changes

Propagation Environment

- Radio propagation is characterised by dispersive multipath caused by reflection and scattering
- Moving MS causes Doppler spectrum

 Definition of propagation models in the time
 domain to allow channel simulations
 - TUxx (Typical Urban)
 - RAxx (Rural Area)
 - HTxx (Hilly Terrain)
 - xx = speed in km/h



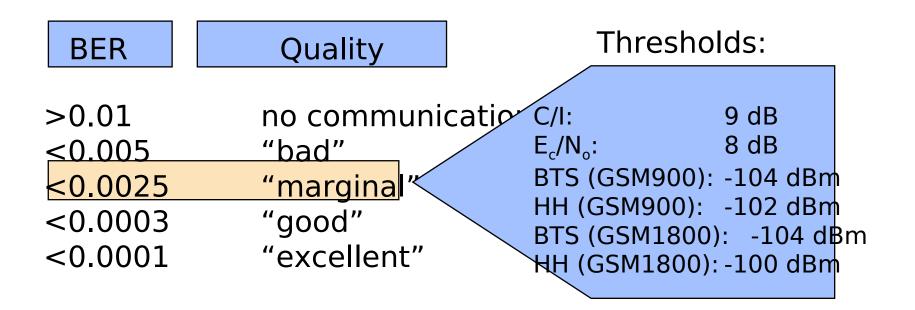
see also GSM 05.05, 11.20, 11.21 397

Equalizing

- Purpose: equalize distortions in transmission spectrum
- Adaptive filtering required
 - Filter parameters determined out of the training sequence
 - Filter parameters change from burst to burst
- Equalizer takes advantage from multipath propagation (path diversity)

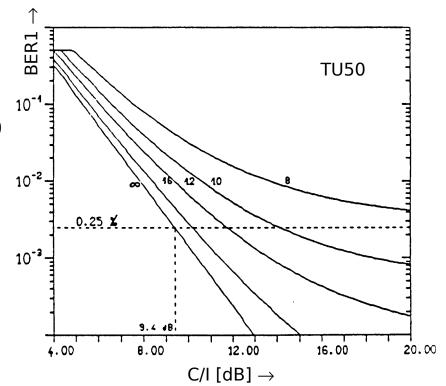
Definition of Bit Error Rates

FER = Frame Erasure Rate


- Ratio of corrupted frames, indicated by a wrong CRC (cyclic redundancy checksum) and BFI (bad frame indicator)
- RBER = Residual Bit Error Rate
 - considering corrupted frames not recognized as bad frames
- BER = total bit error rate
- **V** Consideration of class 1 or 2 bits \rightarrow e.g. RBER1b, RBER2

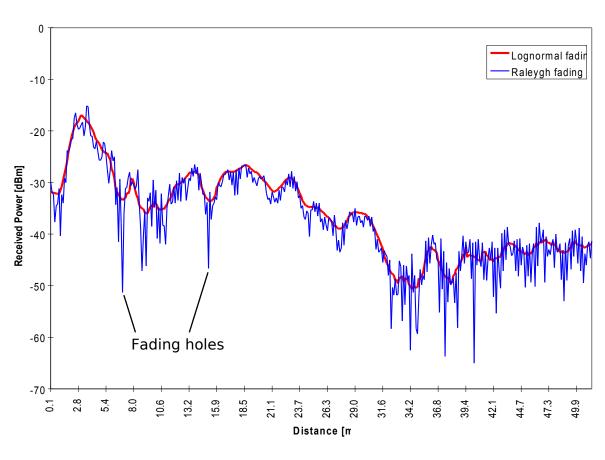
see also GSM 05.05, 11.20, 11.21 399

Speech Quality



Dependence of BER on Noise and Interference (1)

- Variation of BER1 over C/I
- **V** Parameter: E_c/N_0
- How to find a quality figure?
 - BER1 for marginal speech quality: 0.25%
 - required C/I ≈ 9 dB for TU50 environment
 - but: signal must not be close to noise floor!

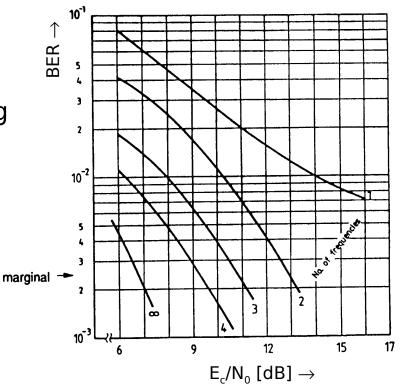

Frequency Hopping (1)

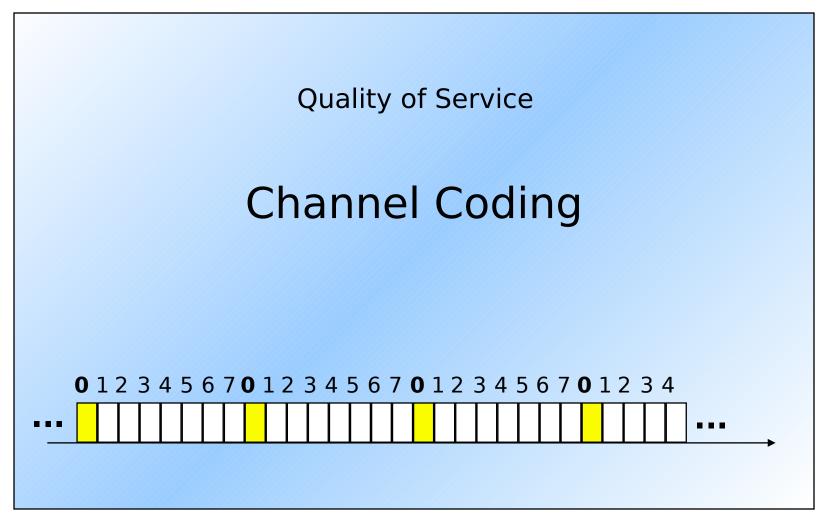
- Problem: specific fading pattern for each used frequency
- Fast MS cope with the situation (due to signal processing)
- Slow MS suffer from fading holes
- Solution: change the fading pattern by frequency hopping

catelU

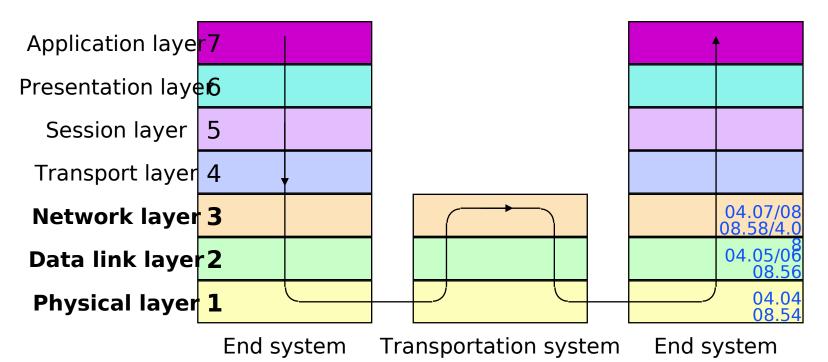
The smart connection

м




Frequency Hopping (2)

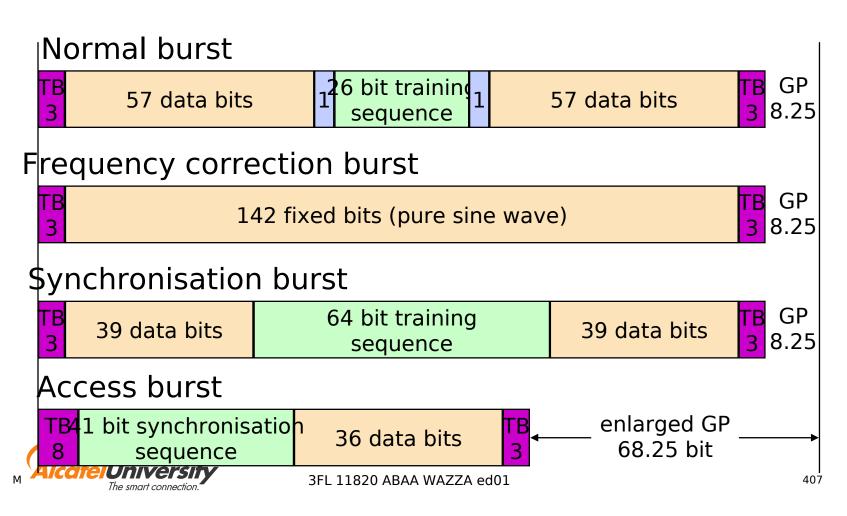
- \checkmark Variation of BER1 over E_c/N₀
- TU environment, flat fading, v = 0 km/h (worst case)
- Parameter: number of hopping frequencies
- Compensation with 4 hopping frequencies possible



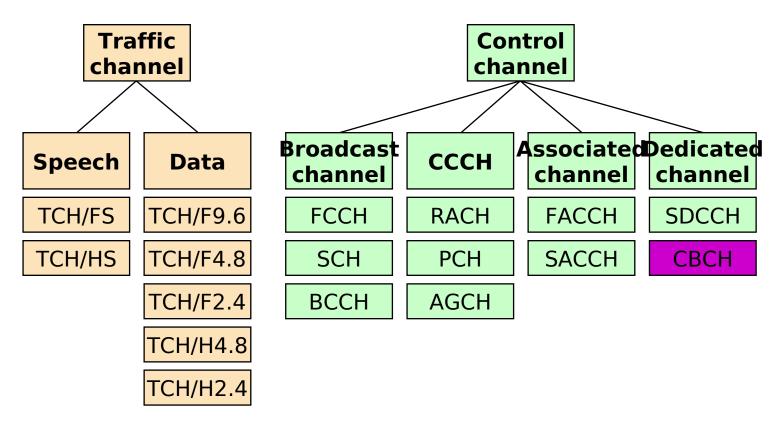
The OSI Reference Model

Definition in GSM recommendations: layers 1 to 3
 Notion of "Physical" channels and "Logical" channels
 AlcotelUniversity
 3FL 11820 ABAA WAZZA ed01

GSM Burst Types (1)

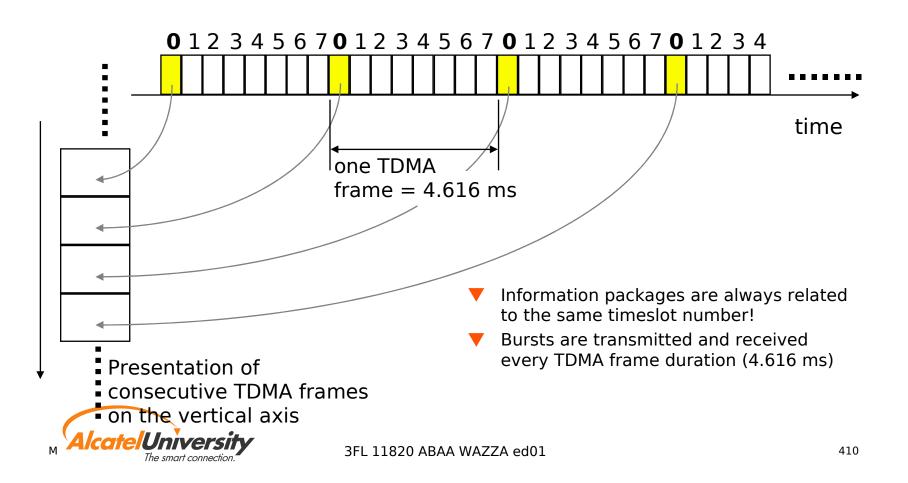

Normal Burst

- For regular transmission
- Frequency Correction Burst
 - Contains 142 zeros (0) \rightarrow pure sine wave
 - Allows synchronisation of the mobile's local oscillator
- Synchronisation Burst
 - Consists of an enlarged unique training sequence code (TSC)
 - Contains the actual FN \rightarrow time synchronisation
- Access Burst
 - Shortened burst (unique TSC and enlarged guard period)
 - Timeslot overlapping avoided at BTS when MS accesses network
- 🔻 Dummy Burst
 - Filler" for unused BCCH timeslots \rightarrow BCCH permanently on air
 - Similar to normal burst (defined mixed bits for data, no stealing flag)

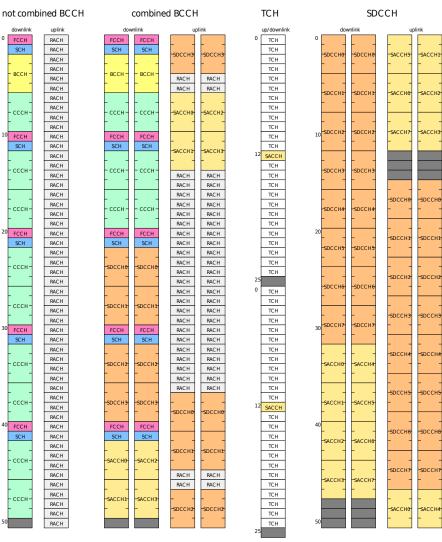


GSM Burst Types (2)

Logical Channels

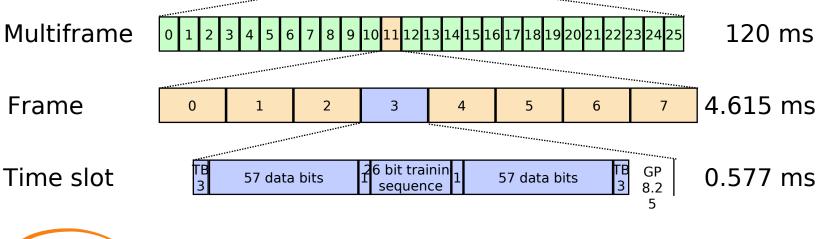

Possible Channel Combinations

- 1 TCH/F+FACCH/F+SACCH/TF
- 2 TCH/H(0.1)+FACCH/H(0.1)+SACCH/TH(0.1)
- **3** TCH/H(0.0)+FACCH/H(0.1)+SACCH/TH(0.1)+TCH/H(1.1)
- 4 FCCH+SCH+BCCH+CCCH
- 5 FCH+SCH+BCCH+CCCH+SDCCH/4(0..3)+SACCH/C4(0..3)
- 6 BCCH+CCCH
- 7 \$DCCH/8(0..7)+SACCH/C8(0..7)
- \checkmark CCCH = PCH+RACH+AGCH
- Combination 4 and 5 is only possible on TS0 of the first (BCCH) carrier
- Combination 6 is possible on TS2, TS4, or TS6 of the BCCH carrier


Channel Mapping (1)

Channel Mapping (2)

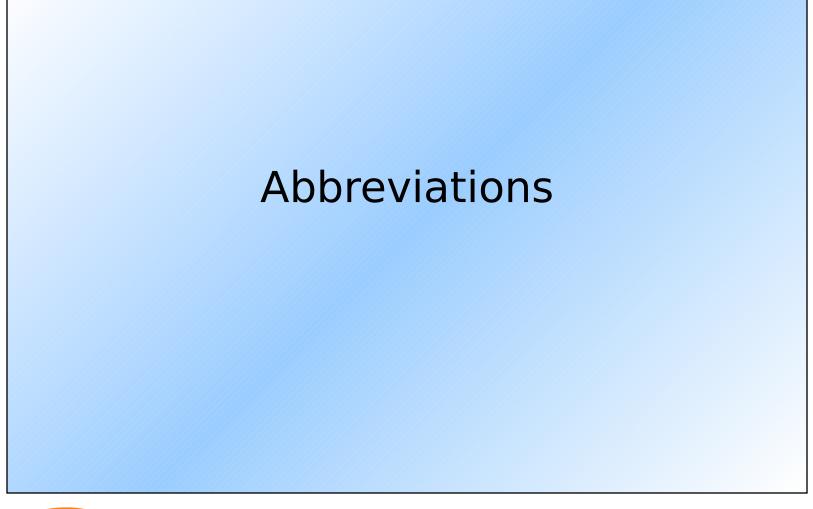
- Control channels
 - Follows a 51-cycle
 - Duration: 235.4 msec
 - Consists mostly of four consecutive blocks
 - Synchronisation with FCCH and SCH
- Traffic channels
 - Follows a 26-cycle
 - Duration: 120 msec



TDMA Frame Structure for TCHs


Hyperframe 2048 superframes of 6.12 s duration 3 h 28 m 53 s

Superframe 51 multiframes of 120 ms duration 6.12 s



Performance Figures (1)

- ▼ Interference Probability P_{int}
 - measure for co/adjacent channel interference
- ▼ Coverage Probability P_{cov}
 - measure for sufficient received power
- Call Success Rate (CSR)
 - CSR = "Coverage" AND (NOT "Interference")
 - $\square CSR = P_{cov} \cdot (1 P_{int})$
- ▼ Outage Probability P_{out}
 - complementary to CSR
 - $\blacksquare P_{out} = 1 CSR$

AMR	Advanced Multi Rate (TC)	BIE	Base Station Interface Equipment
AMSS	Aeronautical Mobile Satellite Services	BIEC	Base Station Interface Equipment (BSC)
AN	Antenna Network (BTS)	BIUA	Base Station Interface Unit A
ARCS	Average Reuse Cluster Size	BPA	Back Panel Assembly
ARFCN	Absolute Radio Frequency Channel	BSC	Base Station Controller
AS	Access Switch (BSC)	BSIC	Base Transceiver Station Identity Code
AS	Alarm Surveillance (O&M)	BSS	Base Station (sub)System
ASMA	A-ter Submultiplexer A	BSSGP	Base Station System GPRS Protocol
ASMB	A-ter Submultiplexer B		(GPRS)
AuC	Authentication Center	BTS	Base Transceiver Station
BC	Broadcast	CAE	Customer Application Engineering
BCU	Broadcast Unit	CAL	Current Alarm List (O&M)
BCLA	BSC Clock A	CBC	Cell Broadcast Center
BCR	Broadcast Register	CBCH	Cell Broadcast Channel (GSM TS)
BCU	Broadcast Unit	CBE	Cell Broadcast Entity
BCCH	Broadcast Common Control Channel	CCCH	Common Control Channel (GSM TS)
	(GSM TS)	CCU	Channel Coding Unit

BCF Base station Control Function (BTS)

BG

MA	Code Division Multiple Access	DLS	Data Load Segment
	Control Element (BSC)	DMA	Direct Memory Access
<	Control Element Kernel	DRFU	Dual Rate Frame Unit
	Carrier to Interferer ratio	DRX	Discontinuous Reception (GSM TS)
<	Clock	DSE	Digital Switching Element
51	Custom Large Scale Integrated circuit	DSN	Digital Switching Network
A	Configuration Management Application (C	XTMCB (Discontinuous Transmission (GSM TS)
DA	Common Memory Disk A	DTC	Digital Trunk Controller
FA	Common Memory Flash A		(Type: DTCA, DTCC)
२	Common Processor (Type: CPRA, CPRC)	DTE	Data Terminal Equipment
С	Cyclic Redundancy Check	EDGE	Enhanced Data rates for GSM Evolution
	Circuit Switching (Telecom)	EI	Extension interface
	Coding Scheme (GPRS):	EML	Element Management Level
	CS-1, CS-2, CS-3, CS-4	EPROM	Erasable Programmable Read Only
	Carrier Unit (BTS)		Memory
E	Data Circuit Terminating Equipment	ETSI	European Telecom Standard Institute
N	Data Communication Network	FPE	Functional and Protective Earth
	DownLink	FR	Full Rate (GSM TS)

R	Frame Relay (Telecom)		HLR	Home Location Register	
RDN	Frame Relay Data Network (Tele	ecom)	HMI	Human Machine Interface	
U	Frame Unit (BTS)		НО	HandOver	
W	Firmware		HR	Half Rate	
CR	Group Call Register		HW	Hardware	
GSN	Gateway GPRS Support Node (G	PRS)	IDR	Internal Directed Retry	
MLC	Gateway Mobile Location Center	-	ILCS	ISDN Link Controller	
MM	GPRS Mobility Management (GPR	RS)	IMT	Installation and Maintenance Te	rminal
MSC	Gateway Mobile Switching Cente	er		(MFS)	
PRS	General Packet Radio Service		IND	Indoor (BTS)	
PU	GPRS Packet Unit		IP	Internet Protocol	
S-1	Group Switch of stage 1 (BSC)		ISDN	Integrated Services Data Netwo	rk
S-2	Group Switch of stage 2 (BSC)		IT	Intelligent Terminal	
SL	GPRS Signalling Link		LA	Location Area (GSM TS)	
SM	Global System for Mobile Comm	unication	ЪЧС	Location Area Code (GSM TS)	
	GSM Technical Specification			Local Area Network	
	Historical Alarm List (O&M)		LED	Light Emitting Diode	
	High rate Digital Subscriber Line	!	LEO	Low Earth Orbit (Satellite)	
	High Level Datalink Control		LCS	Location Services	
		3FL 11820 A	BAA WAZZA ed	01	418

GSM RNE Fundamentals

LLC	Logical Link Control (GPRS)	OBC	On Board Controller
	Location measurement unit	OBCI	On Board Controller Interface
MA	Mobile Allocation (GSM TS)	OC	Originating Call
MAC	Medium Access Control (GPRS)	ODMC	On Demand Measurement Campaign
MAN	Metropolitan Area Network		(O&M)
MAN	MicroBTS Antenna Network (BTS)	O&M	Operation and Maintenance
MCB	Multiplex Channel Block	OMC	Operation and Maintenance Center
MFS	Multi-BSS Fast Packet Server (GPR	5) OMC-R	Operation and Maintenance Center -
MLU	Massive Logical Update		Radio
MMI	Man Machine Interface	OML	Operation and Maintenance Link
МО	Managed Object (O&M)	OMU	Operation and Maintenance Unit (BTS)
MRP	Multiple Reuse Pattern	OS	Operating System
MS	Mobile Station	OUT	Outdoor (BTS)
MSC	Mobile Switching Center	PBA	Printed Board Assembly
MSUM	MicroBTS Station Unit Module (BTS) PBCCH	Packet Broadcast Common Control
NMI	Non Maskable Interrupt	,	CHannel (GPRS)
NPA	Network Performance Analyser	PC	Personal Computer
		PCCCH	Packet Common Control Channel
NSS	Network SubSystem		(GPRS)
NTL M	Network Termination Line	20 ABAA WAZZA	ed01 419
NW [™]	Network he smart connection. 3FL 118	ZU ADAA WAZZA	CUU1 419

РСН	Paging CHannel (GSM TS)	PSTN	Public Switching Telephone Network
РСМ	Pulse Coded Modulation		(Telecom)
PCU	Packet Control Unit (GPRS)	PTP-CNLS	Point To Point CoNnectionLeSs data
PDCH	Packet Data CHannel		transfer (GPRS)
PDN	Packet Data Network (Telecom)	QoS	Quality of Service
PDU	Protocol Data Unit (generic terminology)	RA	Radio Access
PLL	Phase Locked Loop	RACH	Random Access CHannel (GSM TS)
PLMN	Public Land Mobile Network	RAM	Random Access Memory
PMA	Prompt Maintenance Alarm (O&M)	RCP	Radio Control Point
РМС	Permanent Measurement Campaign	RLC	Radio Link Control (GPRS)
	(O&M)	RLP	Radio Link Protocol (GSM TS)
РРСН	Packet Paging CHannel (GPRS)	RML	Radio Management Level
		RNO	Radio Network Optimisation
Prec	Received Power	RNP	Radio Network Planning
PRC	Provisioning Radio Configuration (O&M)	RSL	Radio Signalling Link
PSDN	Packet Switching Data Network		

The smart connectior

(Telecom)

SM Submultiplexer RTS Radio Time Slot SMLC Serving Mobile Location Center **Received Level** RxLev Service Management Point SMP **RxQual Received Quality** SMS Short Message Service SACCH Slow Associated Control Channel (GSM TS) Short Message Service - Cell Broadcast SMS-CB SAU Subrack assembly unit (BSC) SM-GMSC Short Message Gateway Mobile Switching Center SC Supervised Configuration (O&M) SRAM Static RAM Serial Communication Controller SCC SRS SubRate Switch SCP Service Control Point SS7 Signalling System ITU-T N°7 (ex CCITT) SCCP Signalling Connection Control Part Solid State Disk SSD SCSI Small Computer Systems Interface SSP Service Switching Point SDCCH Standalone Dedicated Control Channel (GSM TS) SW Software SDU Service Data Unit (generic terminology) SWFI Switch Flement Serving GPRS Support Node (GPRS) SGSN TBF Temporary Block Flow (GPRS) SCSI Interface Extension A SIEA TAF **Terminal Adaptor Function**

ТС	Transcoder	TRX	Transceiver
ТС	Terminating Call	TS	Time Slot
тсс	Trunk Controller Chip	TS	Technical Specification (GSM TS)
ТСН	Traffic CHannel (GSM TS)	TSS	Time Space Switch
TCIL	TransCoder Internal Link	TSCA	Transmission Sub-System Controller A
TCSM	TransCoder / SubMultiplexer equipn	nent	(BSC)
TCU	TRX Control Unit (Type: TCUA, TCUC	C)TSU	Terminal Sub Unit (BSC)
TDMA	Time Division Multiple Access	TU	Terminal Unit (BSC)
TFO	Tandem Free Operation (TC)	UL	UpLink
TFTS	Terrestrial Flight Telecom Systems	UMTS	Universal Mobile Transmission System
TLD	Top Level Design	USSD	Unstructured Supplementary Services Data
TMN	Telecommunication Management	VBS	Voice Broadcast Service
	Network	VGCS	Voice Group Code Service
TRAC	Trunk Access Circuit	VLR	Visitor Location Register
TRAU	Transcoder and Rate Adapter Unit	VPLMN	Visited PLMN
TRCU	Transcoder Unit	VSWR	Voltage Standing Wave Ratio (BTS)
TRE	Transceiver Equipment	WAN	Wide Area Network
TRS	Technical Requirement Specification	ר WAP	Wireless Application Protocol
TRU	Top Rack Unit	WBC	Wide Band Combiner
	M AICCITEIUNIVERSITY The smart connection. 3FL 11	820 ABAA WAZZ	A ed01 422