


## OptiX RTN 980 Radio Transmission System V100R007C10

## **Product Description**

lssue 02 Date 2015-04-30



HUAWEI TECHNOLOGIES CO., LTD.

#### Copyright © Huawei Technologies Co., Ltd. 2015. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd.

#### **Trademarks and Permissions**

All other trademarks and trade names mentioned in this document are the property of their respective holders.

#### Notice

The purchased products, services and features are stipulated by the contract made between Huawei and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

## Huawei Technologies Co., Ltd.

| Address: | Huawei Industrial Base<br>Bantian, Longgang<br>Shenzhen 518129<br>People's Republic of China |  |
|----------|----------------------------------------------------------------------------------------------|--|
| Website: | http://www.huawei.com                                                                        |  |
| Email:   | support@huawei.com                                                                           |  |

## **About This Document**

## **Related Versions**

The following table lists the product versions related to this document.

| Product Name   | Version     |
|----------------|-------------|
| OptiX RTN 980  | V100R007C10 |
| iManager U2000 | V200R014C60 |

## **Intended Audience**

This document is intended for network planning engineers.

Familiarity with the basic knowledge related to digital microwave communication technology will help you apply the information in this document.

## **Symbol Conventions**

The symbols that may be found in this document are defined as follows.

| Symbol | Description                                                                                                       |
|--------|-------------------------------------------------------------------------------------------------------------------|
|        | Indicates an imminently hazardous situation<br>which, if not avoided, will result in death or<br>serious injury.  |
|        | Indicates a potentially hazardous situation<br>which, if not avoided, could result in death or<br>serious injury. |
|        | Indicates a potentially hazardous situation<br>which, if not avoided, may result in minor or<br>moderate injury.  |

| Symbol | Description                                                                                                                                                                                                                                             |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Indicates a potentially hazardous situation<br>which, if not avoided, could result in<br>equipment damage, data loss, performance<br>deterioration, or unanticipated results.<br>NOTICE is used to address practices not<br>related to personal injury. |
|        | Calls attention to important information, best<br>practices and tips.<br>NOTE is used to address information not<br>related to personal injury, equipment damage,<br>and environment deterioration.                                                     |

## **General Conventions**

The general conventions that may be found in this document are defined as follows.

| Convention      | Description                                                                                                        |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------|--|
| Times New Roman | Normal paragraphs are in Times New Roman.                                                                          |  |
| Boldface        | Names of files, directories, folders, and users are in <b>boldface</b> . For example, log in as user <b>root</b> . |  |
| Italic          | Book titles are in <i>italics</i> .                                                                                |  |
| Courier New     | Examples of information displayed on the screen are in Courier New.                                                |  |

## **Update History**

Updates between document issues are cumulative. Therefore, the latest document issue contains all updates made in previous issues.

#### Updates in Issue 02 (2015-04-30) Based on Product Version V100R007C10

This document is the second release for the V100R007C10 product version.

| Update                                    | Description                          |
|-------------------------------------------|--------------------------------------|
| 1.2 Components                            | Added descriptions about XMC-3 ODUs. |
| 6.1.1.6 Microwave Work Modes (ISV3 board) |                                      |

| Update                                       | Description                                               |
|----------------------------------------------|-----------------------------------------------------------|
| 6.1.3.6 Receiver Sensitivity (ISV3 board)    |                                                           |
| 6.1.2 Frequency Band                         |                                                           |
| 6.1.5 Transceiver Performance                |                                                           |
| 6.1.1.7 Microwave Work Modes (ISM6<br>board) | Added descriptions about XMC-3 ODUs and IS6 running mode. |
| 6.1.3.7 Receiver Sensitivity (ISM6 board)    |                                                           |
| 6.1.1.8 Throughput of an EPLA Group          | Added descriptions about IS6 running mode.                |

## Updates in Issue 01 (2014-12-30) Based on Product Version V100R007C10

This document is the first release for the V100R007C10 product version.

## Contents

| About This Document                              | ii |
|--------------------------------------------------|----|
| 1 Introduction                                   | 1  |
| 1.1 Network Application                          | 2  |
| 1.2 Components                                   |    |
| 2 Functions and Features                         | 9  |
| 2.1 Microwave Types                              |    |
| 2.1.1 SDH/PDH Microwave                          | 11 |
| 2.1.2 Hybrid/Packet Integrated IP Microwave.     |    |
| 2.2 Modulation Strategy                          | 14 |
| 2.2.1 Fixed Modulation.                          |    |
| 2.2.2 Adaptive Modulation.                       |    |
| 2.3 RF Configuration Modes.                      |    |
| 2.4 Cross-Polarization Interference Cancellation |    |
| 2.5 Automatic Transmit Power Control.            |    |
| 2.6 Capacity                                     |    |
| 2.6.1 Air Interface Capacity                     |    |
| 2.6.2 Cross-Connect Capacity                     |    |
| 2.6.3 Switching Capacity                         | 19 |
| 2.7 Interfaces                                   |    |
| 2.7.1 Service Interfaces                         |    |
| 2.7.2 Management and Auxiliary Ports.            |    |
| 2.8 MPLS/PWE3 Functions                          |    |
| 2.9 Ethernet Service Processing Capability       |    |
| 2.10 QoS                                         |    |
| 2.11 Clock Features                              |    |
| 2.12 Protection Capability                       |    |
| 2.13 Network Management                          |    |
| 2.14 Easy Installation                           |    |
| 2.15 Easy Maintenance                            |    |
| 2.15.1 Equipment-level OAM                       |    |
| 2.15.2 Packet Services OAM (TP-Assist)           |    |
| 2.16 Security Management.                        |    |

| 2.17 Energy Saving                                              |    |
|-----------------------------------------------------------------|----|
| 2.18 Environmental Protection.                                  |    |
| 3 Product Structure                                             | 41 |
| 3.1 System Architecture                                         |    |
| 3.2 Hardware Structure                                          | 43 |
| 3.2.1 IDU                                                       | 44 |
| 3.2.2 ODU                                                       |    |
| 3.3 Software Structure                                          | 53 |
| 3.4 Service Signal Processing Flow                              | 54 |
| 3.4.1 SDH/PDH Microwave                                         | 54 |
| 3.4.2 Hybrid Microwave.                                         |    |
| 3.4.3 Packet Microwave                                          |    |
| 4 Networking and Applications                                   | 62 |
| 4.1 Typical Network Topologies                                  |    |
| 4.1.1 Multi-directional Nodal Convergence.                      | 63 |
| 4.1.2 Large-Capacity Microwave Convergence Ring                 | 64 |
| 4.1.3 Upstream Networking                                       |    |
| 4.2 Networking with the OptiX RTN 310/380                       | 67 |
| 4.3 Feature Application (MPLS Packet Service)                   | 67 |
| 4.3.1 CES Services                                              | 67 |
| 4.3.2 ATM/IMA Services                                          | 71 |
| 4.3.3 Ethernet Services                                         | 72 |
| 4.4 Feature Application (Traversing the Original Network)       | 74 |
| 4.4.1 Traversing a TDM Network by Using the EoPDH/EoSDH Feature | 74 |
| 4.4.2 Using ML-PPP to Transmit Services Through a TDM Network   |    |
| 4.4.3 Traversing a Layer 2 Network by Using VLAN Sub-interfaces |    |
| 5 Network Management System                                     |    |
| 5.1 Network Management Solution                                 | 79 |
| 5.2 Web LCT                                                     | 79 |
| 5.3 U2000                                                       |    |
| 6 Technical Specifications                                      | 84 |
| 6.1 RF Performance                                              |    |
| 6.1.1 Microwave Work Modes                                      |    |
| 6.1.1.1 Microwave Work Modes (IF1 board)                        |    |
| 6.1.1.2 Microwave Work Modes (IFU2 board)                       |    |
| 6.1.1.3 Microwave Work Modes (IFX2 board)                       |    |
| 6.1.1.4 Microwave Work Modes (ISU2 board)                       |    |
| 6.1.1.5 Microwave Work Modes (ISX2 board)                       |    |
| 6.1.1.6 Microwave Work Modes (ISV3 board)                       | 97 |
| 6.1.1.7 Microwave Work Modes (ISM6 board)                       |    |

| 6.1.1.8 Throughput of an EPLA Group                       |  |
|-----------------------------------------------------------|--|
| 6.1.2 Frequency Band                                      |  |
| 6.1.3 Receiver Sensitivity                                |  |
| 6.1.3.1 Receiver Sensitivity (IF1 Board).                 |  |
| 6.1.3.2 Receiver Sensitivity (IFU2 board).                |  |
| 6.1.3.3 Receiver Sensitivity (IFX2 board)                 |  |
| 6.1.3.4 Receiver Sensitivity (ISU2 board).                |  |
| 6.1.3.5 Receiver Sensitivity (ISX2 board).                |  |
| 6.1.3.6 Receiver Sensitivity (ISV3 board).                |  |
| 6.1.3.7 Receiver Sensitivity (ISM6 board)                 |  |
| 6.1.4 Distortion Sensitivity                              |  |
| 6.1.5 Transceiver Performance.                            |  |
| 6.1.6 IF Performance                                      |  |
| 6.1.7 Baseband Signal Processing Performance of the Modem |  |
| 6.2 Predicted Equipment Reliability                       |  |
| 6.2.1 Predicted Component Reliability                     |  |
| 6.2.2 Predicted Link Reliability                          |  |
| 6.3 Interface Performance                                 |  |
| 6.3.1 SDH Interface Performance                           |  |
| 6.3.2 E1 Interface Performance                            |  |
| 6.3.3 Ethernet Interface Performance                      |  |
| 6.3.4 Auxiliary Interface Performance                     |  |
| 6.4 Clock Timing and Synchronization Performance          |  |
| 6.5 Integrated System Performance.                        |  |
| A Typical Configuration                                   |  |
| A.1 Typical RF Configuration Modes                        |  |
| B Compliance Standards                                    |  |
| B.1 ITU-R Standards                                       |  |
| B.2 ETSI Standards                                        |  |
| B.3 IEC Standards                                         |  |
| B.4 ITU-T Standards                                       |  |
| B.5 IETF Standards                                        |  |
| B.6 IEEE Standards                                        |  |
| B.7 MEF Standards                                         |  |
| B.8 AF Standards                                          |  |
| B.9 Environmental Standards                               |  |
| C Glossary                                                |  |

# **1** Introduction

## **About This Chapter**

The OptiX RTN 980 is a product in the OptiX RTN 900 radio transmission system series.

#### 1.1 Network Application

The OptiX RTN 900 is a new generation TDM/Hybrid/Packet integrated microwave transmission system developed by Huawei. It provides a seamless microwave transmission solution for mobile communication network or private networks.

#### 1.2 Components

The OptiX RTN 980 adopts a split structure. The system consists of the IDU 980 and the ODU. Each ODU is connected to the IDU 980 through an IF cable.

## **1.1 Network Application**

The OptiX RTN 900 is a new generation TDM/Hybrid/Packet integrated microwave transmission system developed by Huawei. It provides a seamless microwave transmission solution for mobile communication network or private networks.

#### **OptiX RTN 900 Product Family**

The OptiX RTN 900 series provide a variety of service interfaces and can be installed easily and configured flexibly. The OptiX RTN 900 series provide a solution that can integrate TDM microwave, Hybrid microwave, and Packet microwave technologies according to the networking scheme for the sites, achieving smooth upgrade from TDM microwave to Hybrid microwave, and from Hybrid microwave to Packet microwave. This solution meets the transmission requirements of 2G, 3G, and LTE services while also allowing for future network evolution and convergence.

There are five types of OptiX RTN 900 Packet microwave products: OptiX RTN 905, OptiX RTN 910, OptiX RTN 950, OptiX RTN 950A, and OptiX RTN 980. Users can choose the product best suited for their site.

#### 

The OptiX RTN 910 does not provides V100R006C10 or late version.

Table 1-1 OptiX RTN 900 product family

| Product Name  | IDU Appearance | Characteristic                                                                                                                                                                 |
|---------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OptiX RTN 905 |                | <ul> <li>1 U high IDU.</li> <li>Five types of integrated chassis (1A/2A/1C/1E/2E).</li> <li>One or two microwave links.</li> </ul>                                             |
| OptiX RTN 910 |                | <ul> <li>1 U high IDU.</li> <li>Boards pluggable.</li> <li>Integrated service ports on system control, switching, and timing boards.</li> <li>One or two IF boards.</li> </ul> |
| OptiX RTN 950 |                | <ul> <li>2 U high IDU.</li> <li>Boards pluggable.</li> <li>1+1 protection for system control, switching, and timing boards.</li> <li>A maximum of six IF boards.</li> </ul>    |

| Product Name   | IDU Appearance | Characteristic                                                                                                                                                                                                                                                      |
|----------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OptiX RTN 950A |                | <ul> <li>2 U high IDU.</li> <li>Boards pluggable.</li> <li>Integrated service ports on system control, switching, and timing boards.</li> </ul>                                                                                                                     |
|                |                | <ul> <li>A maximum of six IF boards.</li> </ul>                                                                                                                                                                                                                     |
| OptiX RTN 980  |                | <ul> <li>5 U high IDU.</li> <li>Boards pluggable.</li> <li>1+1 protection for system control, switching, and timing boards.</li> <li>Integrated service ports on system control, switching, and timing boards.</li> <li>A maximum of fourteen IF boards.</li> </ul> |

#### OptiX RTN 980

The OptiX RTN 980 is large-capacity nodal microwave equipment deployed at the convergence layer. It supports the convergence of up to 20 radio links, and supports multiple protection schemes. **Figure 1-1** shows the microwave transmission solution provided by the OptiX RTN 980.

#### 

The OptiX RTN 980 supports a wide range of interfaces and service bearer technologies, and is therefore compatible with varied backhaul networks. Specifically, packet services can be backhauled through TDM networks, and TDM services can be backhauled through packet networks.

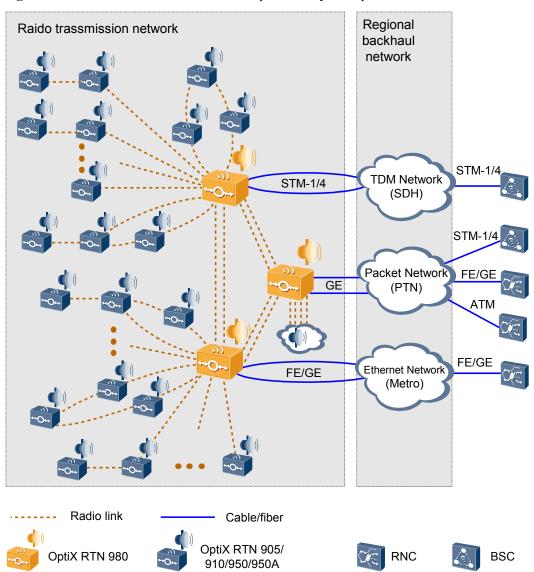



Figure 1-1 Microwave transmission solution provided by the OptiX RTN 980

## **1.2 Components**

The OptiX RTN 980 adopts a split structure. The system consists of the IDU 980 and the ODU. Each ODU is connected to the IDU 980 through an IF cable.

#### IDU 980

The IDU 980 is the indoor unit for an OptiX RTN 980 system. It receives and multiplexes services, performs service processing and IF processing, and provides the system control and communications function.

 Table 1-2 lists the basic features of the IDU 980.

| Item                       | Description                                                                                                                                                                                                                     |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chassis height             | 5U                                                                                                                                                                                                                              |
| Pluggable                  | Supported                                                                                                                                                                                                                       |
| Number of radio directions | 1 to 20                                                                                                                                                                                                                         |
| RF configuration mode      | <ul> <li>N+0 non-protection configuration</li> <li>Nx(1+0) non-protection configuration</li> <li>1+1 protection configuration</li> <li>N+1 protection configuration</li> <li>XPIC configuration</li> </ul>                      |
| Service interface type     | <ul> <li>E1 interface</li> <li>STM-1 optical/electrical interface</li> <li>STM-4 optical interface</li> <li>FE optical/electrical interface</li> <li>GE optical/electrical interface</li> <li>10GE optical interface</li> </ul> |

**Table 1-2** Features of the IDU 980

#### Figure 1-2 Appearance of the IDU 980



#### ODU

The ODU is the outdoor unit for the OptiX RTN 900. It converts frequencies and amplifies signals.

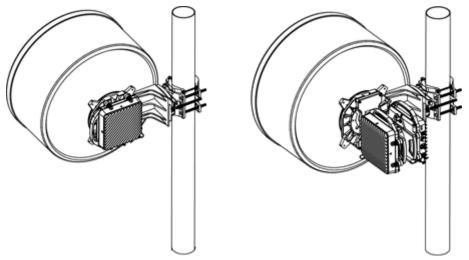
The OptiX RTN 900 product series can use the RTN 600 ODU and RTN XMC ODU, covering the entire frequency band from 6 GHz to 42 GHz.

| Item                        | Description                                                                                                                 |                          |                                                                                                                                                |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | High-Power ODU                                                                                                              | _                        |                                                                                                                                                |
| ODU type                    | XMC-2                                                                                                                       | ХМС-2Н                   | XMC-3                                                                                                                                          |
| Frequency band              | 6/7/8/10/10.5/11/13/15/18/23/26/2<br>8/32/38/42 GHz                                                                         | 6/7/8/11 GHz             | 13/15/18/23/26/<br>28/32/38 GHz                                                                                                                |
| Highest-order<br>Modulation | 2048QAM (13/15/18/23/38 GHz,<br>7/8 GHz XMC-2E)<br>1024QAM<br>(6/10/10.5/11/26/28/32/42 GHz)<br>256QAM (7/8 GHz Normal)     | 2048QAM                  | 4096QAM<br>(13/15/18/23/26<br>GHz)<br>2048QAM<br>(28/32/38 GHz)                                                                                |
| Channel<br>spacing          | 3.5/7/14/28/40/50/56 MHz<br><b>NOTE</b><br>The 10.5 GHz frequency band does not<br>support 40/50/56 MHz channel<br>spacing. | 7/14/28/40/50/5<br>6 MHz | 3.5/7/14/28/40/<br>50/56 MHz<br>(13/15/18/23/38<br>GHz)<br>7/14/28/40/50/5<br>6 MHz (26/28<br>GHz)<br>7/14/28/40/50/5<br>6/112 MHz (32<br>GHz) |

Table 1-3 RTN XMC ODUs that the OptiX RTN 980 supports

| Table 1-4 RTN 600 ODUs that | the OptiX RTN 980 | supports |
|-----------------------------|-------------------|----------|
|-----------------------------|-------------------|----------|

| Item           | Description                                                   |                                              |                           |
|----------------|---------------------------------------------------------------|----------------------------------------------|---------------------------|
|                | High-Power ODU                                                | Standard Power<br>ODU                        | Low Capacity<br>ODU       |
| ODU type       | НР, НРА                                                       | SP, SPA                                      | LP                        |
| Frequency band | 6/7/8/10/10.5/11/13/<br>15/18/23/26/28/32/3<br>8 GHz (HP ODU) | 7/8/11/13/15/18/23/<br>26/38 GHz (SP<br>ODU) | 7/8/11/13/15/18/23<br>GHz |
|                | 6/7/8/11/13/15/18/2<br>3 GHz (HPA ODU)                        | 6/7/8/11/13/15/18/2<br>3 GHz (SPA ODU)       |                           |


| Item                        | Description                                                                                        |                       |                     |
|-----------------------------|----------------------------------------------------------------------------------------------------|-----------------------|---------------------|
|                             | High-Power ODU                                                                                     | Standard Power<br>ODU | Low Capacity<br>ODU |
| Highest-order<br>Modulation | 256QAM                                                                                             | 256QAM                | 16QAM               |
| Channel spacing             | 7/14/28/40/56 MHz<br>(6/7/8/10/11/13/15/1<br>8/23/26/28/32/38<br>GHz)<br>7/14/28 MHz (10.5<br>GHz) | 3.5/7/14/28 MHz       | 3.5/7/14/28 MHz     |

There are two methods for mounting the ODU and the antenna: direct mounting and separate mounting.

• The direct mounting method is generally adopted when a small- or medium-diameter and single-polarized antenna is used. In this situation, if one ODU is configured for one antenna, the ODU is directly mounted at the back of the antenna. If two ODUs are configured for one antenna, an RF signal combiner/splitter (hence referred to as a hybrid coupler) must be mounted to connect the ODUs to the antenna. Figure 1-3 illustrates the direct mounting method.

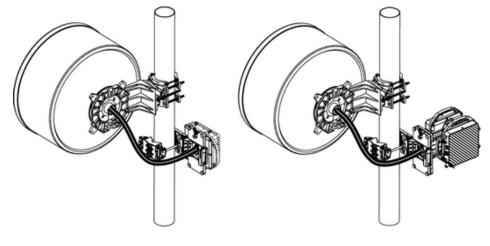

The direct mounting method can also be adopted when a small- or medium-diameter and dual-polarized antenna is used. Two ODUs are mounted onto an antenna using an orthomode transducer (OMT). The method for installing an OMT is similar to that for installing a hybrid coupler.

Figure 1-3 Direct mounting



• The separate mounting method is adopted when a large- or medium-diameter and singleor dual-polarized antenna is used. **Figure 1-4** shows the separate mounting method. In this situation, a hybrid coupler can be mounted (two ODUs share one feed boom).

#### Figure 1-4 Separate mounting



#### 

The OptiX RTN 980 provides an antenna solution that covers the entire frequency band, and supports single-polarized antennas and dual-polarized antennas with diameters of 0.3 m to 3.7 m along with the corresponding feeder system.

# **2** Functions and Features

## **About This Chapter**

The OptiX RTN 980 provides a wide assortment of functions and features to ensure the quality and efficiency of service transmission.

#### 2.1 Microwave Types

The microwave type is determined by the IF board and the configured working mode.

#### 2.2 Modulation Strategy

OptiX RTN 980 supports fixed modulation and adaptive modulation.

#### 2.3 RF Configuration Modes

The OptiX RTN 980 supports 1+0 non-protection configuration, N+0 non-protection configuration, 1+1 protection configuration, N+1 protection configuration, and XPIC configuration.

#### 2.4 Cross-Polarization Interference Cancellation

Cross-polarization interference cancellation (XPIC) technology is used together with co-channel dual-polarization (CCDP). The application of the two technologies doubles the wireless link capacity over the same channel.

#### 2.5 Automatic Transmit Power Control

Automatic transmit power control (ATPC) enables the output power of the transmitter to automatically trace the level fluctuation at the receive end within the ATPC control range. This feature reduces the interference with neighboring systems and residual BER.

2.6 Capacity

The OptiX RTN 980 is a high-capacity device.

2.7 Interfaces

The OptiX RTN 980 provides a variety of interfaces.

#### 2.8 MPLS/PWE3 Functions

The OptiX RTN 980 uses an MPLS that is optimized for the telecom bearer network as the packet forwarding mechanism for packet transmission of carrier-class services. The OptiX RTN 980 uses PWE3 technology as the service bearer technology to implement MPLS network access for various types of services.

#### 2.9 Ethernet Service Processing Capability

The OptiX RTN 980 has powerful Ethernet service processing capability.

#### 2.10 QoS

The OptiX RTN 980 provides improved quality of service (QoS) and supports the following eight types of per-hop behaviors (PHBs): BE, AF1, AF2, AF3, AF4, EF, CS6, and CS7. Therefore, network carriers can offer various QoS levels of service guarantees and build networks that carry data, voice, and video services.

#### 2.11 Clock Features

The OptiX RTN 980 supports clock synchronization and IEEE 1588v2 time synchronization, meeting the clock and time synchronization requirements of mobile networks. In addition, the OptiX RTN 980 provides an advanced clock protection mechanism.

#### 2.12 Protection Capability

The OptiX RTN 980 provides a variety of protection schemes.

#### 2.13 Network Management

The OptiX RTN 980 supports multiple network management (NM) modes and provides comprehensive NM information exchange schemes.

#### 2.14 Easy Installation

The OptiX RTN 980 supports several installation modes. That is, the installation is flexible and convenient.

#### 2.15 Easy Maintenance

The OptiX RTN 980 provides plentiful maintenance features that effectively reduce the costs associated with maintaining the equipment.

#### 2.16 Security Management

The OptiX RTN 980 can prevent unauthorized logins and operations, ensuring equipment management security.

#### 2.17 Energy Saving

The OptiX RTN 980 uses various types of technologies to reduce the amount of energy that the device consumes. The device:

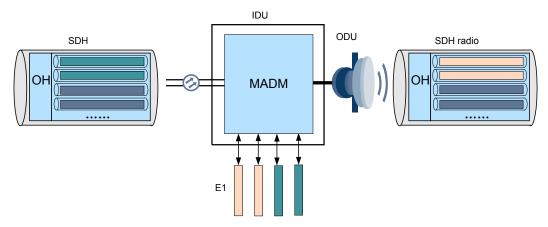
#### 2.18 Environmental Protection

The OptiX RTN 980 is designed to meet or exceed environmental protection requirements. The product complies with the RoHS directive and WEEE directive.

## 2.1 Microwave Types

The microwave type is determined by the IF board and the configured working mode.

## 2.1.1 SDH/PDH Microwave

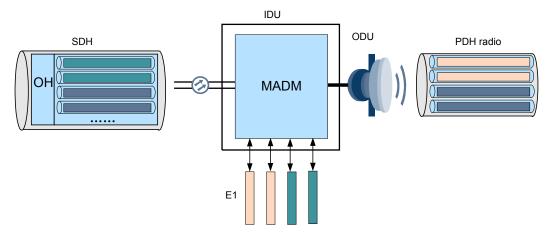

The SDH microwave refers to the microwave that transmits SDH services. The PDH microwave refers to the microwave that transmits only PDH services (mainly, the E1 services).

#### ΠΝΟΤΕ

The IF1 board can work in TU-12-based PDH microwave mode or STM-1-based SDH microwave mode. The ISU2/ISX2/ISV3/ISM6 board can work in SDH mode to support transmission of one STM-1 or two STM-1s.

#### **SDH Microwave**

Unlike conventional SDH microwave equipment, the OptiX RTN 980 has a built-in MADM. The MADM grooms services to the microwave port through cross-connections, maps the services into the STM-1-based or 2xSTM-1-based microwave frames, and then transmits the frames. With this capability, services are flexibly groomed and the optical network and the microwave network are seamlessly converged.






#### **PDH Microwave**

Unlike conventional PDH microwave equipment, the OptiX RTN 980 has a built-in MADM. The MADM grooms E1 services to the microwave port for further transmission. With this capability, services are flexibly groomed and the optical network and the microwave network are seamlessly converged.

#### Figure 2-2 PDH microwave



## 2.1.2 Hybrid/Packet Integrated IP Microwave

The Hybrid/Packet integrated IP microwave (Integrated IP radio for short) can transmit one type among or a combination of Native TDM services, Native Ethernet services, and PWE3 packet services according to software settings. Therefore, the Integrated IP radio achieves a smooth upgrade from Hybrid microwave to Packet microwave.

#### **IP Microwave Classification**

IP microwave can transmit packet services and support the AM function. The packet services transmitted can be Native Ethernet services or packet services encapsulated in PWE3. Conventional IP microwave is divided into two different types: Hybrid microwave and Packet microwave.

- Hybrid microwave: Native TDM services and Native Ethernet services can be transmitted through the air interface.
- Packet microwave: TDM services, ATM/IMA services, and Ethernet services after PWE3 encapsulation are transmitted through the air interface.

As IP microwave evolves, the OptiX RTN 980 supports Integrated IP radio. As a result, the equipment can support Hybrid microwave and Packet microwave at the same time, and can simultaneously transmit multiple types of services at air interfaces.

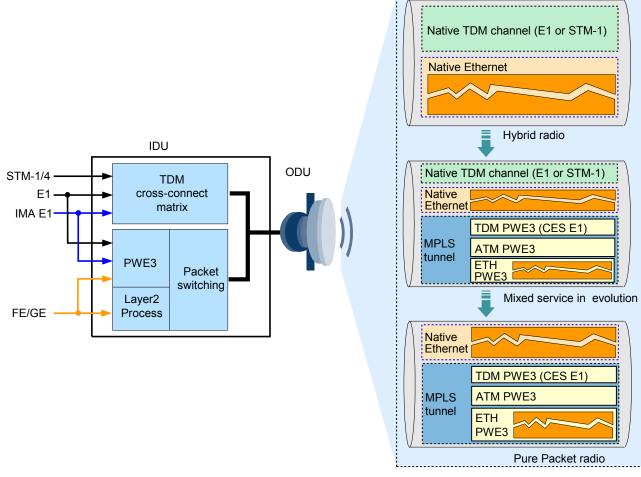
#### 

The IFU2/IFX2/ISU2/ISX2/ISV3/ISM6 board supports Integrated IP radio.

#### **Integrated IP radio**

To achieve flexible grooming of TDM services and packet services on the Integrated IP radio, the OptiX RTN 980 is embedded with dual service planes: TDM service processing plane and packet service processing plane. TDM services and packet services can be flexibly transmitted over the Integrated IP radio, as shown in Figure 2-3.

• TDM service processing plane


Performs cross-connections on the incoming TDM services (E1 services or STM-1 services), and transmits the services to the microwave ports.

• Packet service processing plane

Performs PWE3 emulation on the incoming services (E1 services, ATM/IMA services, and Ethernet services), encapsulates them into the MPLS packets, and transmits the Ethernet frames that bear the MPLS packets to the microwave ports. However, Ethernet services can be directly transmitted to the microwave ports in Native mode after Layer 2 switching.

Native TDM services, MPLS packets, or Native Ethernet services need to be groomed to the microwave port, encapsulated into microwave frames, and then transmitted on microwave links. The Integrated IP radio serves as Hybrid microwave when TDM services are scheduled to the microwave port over the TDM service processing plane and Ethernet services are scheduled to the microwave port over the packet service processing plane; the Integrated IP radio serves as Packet microwave when TDM services are encapsulated into MPLS/PWE3 packets on the packet service processing plane and then scheduled to the microwave port.

Figure 2-3 Hybrid/Packet integrated IP microwave



The Integrated IP radio supports smooth upgrade

The Hybrid/Packet integrated IP microwave has the following features:

- Transmits one, or several of the TDM services, MPLS/PWE3 services, and Native Ethernet services.
- Supports the AM function. E1 services and packet services can be configured with priority. When AM is switched to the reference mode, the services with higher priority are transmitted with preference.

#### 

The OptiX RTN 980 supports VLAN sub-interfaces, therefore transmitting MPLS/PWE3 Ethernet services and Native Ethernet services over one port.

## 2.2 Modulation Strategy

OptiX RTN 980 supports fixed modulation and adaptive modulation.

### 2.2.1 Fixed Modulation

Fixed modulation refers to a modulation policy in which a modulation scheme is adopted invariably to provide constant air interface bandwidth for a running radio link.

When the OptiX RTN 980 uses fixed modulation, the modulation scheme and the channel spacing can be set by using software.

- The SDH/PDH radio link uses fixed modulation.
- The Integrated IP radio link supports fixed modulation. Various combinations of modulation schemes and channel spacings can be set.

#### 2.2.2 Adaptive Modulation

The adaptive modulation (AM) technology adjusts the modulation scheme automatically based on channel quality.

#### Modulation Scheme and Air-interface Capacity

When the AM technology is adopted, in the case of the same channel spacing, the microwave service bandwidth varies according to the modulation scheme; the higher the modulation efficiency, the higher the bandwidth of the transmitted services.

- When the channel quality is good (such as on days when weather conditions are favorable), the equipment adopts a high-efficiency modulation scheme to transmit more user services. This improves transmission efficiency and spectrum utilization of the system.
- When the channel quality deteriorates (such as on days with adverse weather), the equipment adopts a low-efficiency modulation scheme to transmit only higher-priority services within the available bandwidth while discarding lower-priority services. This method improves anti-interference capabilities of the radio link, which helps ensure the link availability for higher-priority services.

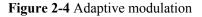
#### **Modulation Scheme Shift and Service Priorities**

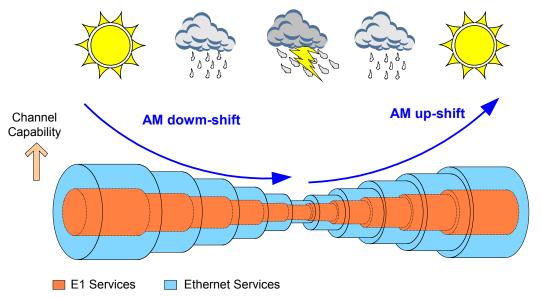
In Integrated IP radio mode, the equipment supports the AM technology. With configurable priorities for E1 services and packet services, the transmission is controlled based on the service bandwidth and QoS policies corresponding to the current modulation scheme. The highest-priority services are transmitted with precedence.

#### ΠΝΟΤΕ

In Integrated IP radio mode, when the equipment transmits STM-1 services and packet services at the same time, STM-1 services have highest priority and their transmission is ensured.

• Priorities of E1 services


The priorities of E1 services are assigned based on the number of E1 services that each modulation scheme can transmit. When modulation scheme switching occurs, only the E1 services whose number is specified in the new modulation scheme can be transmitted and the excess E1 services are discarded.


• Priorities of packet services

With the QoS technology, packet services are scheduled to queues with different priorities. The services in different queues are transmitted to the microwave port after running the queue scheduling algorithm. When modulation scheme switching occurs, certain queues may be congested due to insufficient capacity at the air interface. As a result, certain services or all the services in these queues are discarded.

#### Adaptive Modulation

**Figure 2-4** shows the service changes caused by shifts among six modulation schemes as an example. The orange part indicates E1 services. The blue part indicates packet services. The closer the service is to the outside of the cylinder in the figure, the lower the service priority. Under all channel conditions, the service capacity varies according to the modulation scheme. When the channel conditions are unfavorable (during adverse weather conditions), lower-priority services are discarded.





#### Characteristics

The AM technology used by the OptiX RTN 980 has the following characteristics:

• The lowest-efficiency modulation scheme (also called reference scheme or modulation scheme of guaranteed capacity) and the highest-efficiency modulation scheme (also called nominal scheme or modulation scheme of full capacity) used by the AM can be configured.

For modulation schemes that Integrated IP radio IF boards support, see **6.1.1 Microwave Work Modes**.

- In AM, when modulation schemes are switched, the transmit frequency, receive frequency, and channel spacing remain unchanged.
- In AM, modulation schemes are switched step-by-step.
- In AM, modulation scheme switching is hitless. When the modulation scheme is downshifted, high-priority services will not be affected when low-priority services are discarded. The switching is successful even when 100 dB/s channel fast fading occurs.

## 2.3 RF Configuration Modes

The OptiX RTN 980 supports 1+0 non-protection configuration, N+0 non-protection configuration, 1+1 protection configuration, N+1 protection configuration, and XPIC configuration.

**Table 2-1** shows the RF configuration modes supported by the OptiX RTN 980. For detail, refer to **Typical RF Configuration Modes**.

| Configuration Mode                               | Maximum Number of Groups |
|--------------------------------------------------|--------------------------|
| 1+0 non-protection configuration                 | 20                       |
| 1+1 protection configuration (1+1 HSB/FD/<br>SD) | 10                       |
| N+0 non-protection configuration                 | 10 (N = 2)               |
| N+1 protection configuration                     | 10 (N = 1)               |
| XPIC configuration                               | 10                       |

#### **Table 2-1** RF configuration modes

#### NOTE

- The maximum number of groups listed in the table can be supported only when ISM6 boards and XMC ODUs work together.
- The OptiX RTN 980 supports coexistence of multiple 1+0, 1+1, N+0, or N+1 groups as long as the number of microwave links is within the allowed range.
- 1+0 configuration in N directions is also called Nx(1+0) configuration.
- When two microwave links in 1+0 non-protection configuration form a microwave ring network, the specific RF configuration (namely, east and west configuration) is formed. On a Hybrid microwave ring network, SNCP can be configured for SDH/PDH services and ERPS can be configured for Ethernet services. On a packet microwave ring network, MPLS APS or PW APS can be configured for packet services.
- PDH microwave does not support N+1 protection or XPIC configuration.
- XPIC groups can coexist with N+0 or N+1 groups. Two XPIC groups can form a 1+1 protection group.

## 2.4 Cross-Polarization Interference Cancellation

Cross-polarization interference cancellation (XPIC) technology is used together with co-channel dual-polarization (CCDP). The application of the two technologies doubles the wireless link capacity over the same channel.

CCDP transmission adopts a horizontally polarized wave and a vertically polarized wave on one channel to transmit two channels of signals. Ideally, for CCDP transmissions, there will not be any interference between the two orthogonal signals although they are on the same frequency. In actual practice, despite the orthogonality of the two signals, interference between the signals inevitably occurs due to cross-polarization discrimination (XPD) of the antenna and channel degradation. To cancel the interference, XPIC technology is used to receive signals horizontally and vertically. The signals in the two directions are then processed and the original signals are recovered from interfered signals.

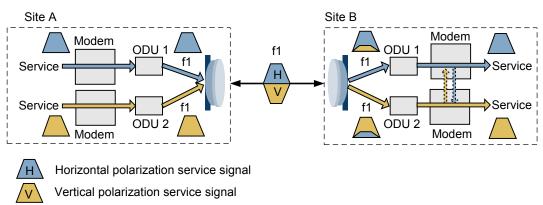
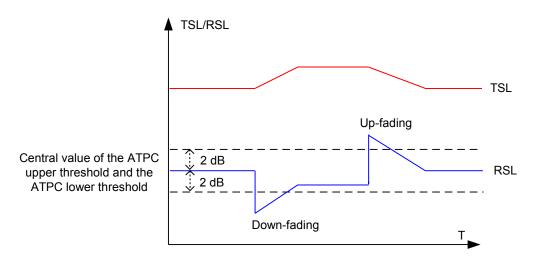




Figure 2-5 CCDP channel configuration and XPIC technology

## 2.5 Automatic Transmit Power Control

Automatic transmit power control (ATPC) enables the output power of the transmitter to automatically trace the level fluctuation at the receive end within the ATPC control range. This feature reduces the interference with neighboring systems and residual BER.

Figure 2-6 Relationship between the RSL and TSL



## 2.6 Capacity

The OptiX RTN 980 is a high-capacity device.

## 2.6.1 Air Interface Capacity

Air interface capacity refers to the service capacity of a microwave link.

The air interface capacity depends on the IF board, ODU type, and microwave work mode. Air interface capacities described in this section are the maximum capacities over a single microwave link. With the help of N+1, LAG, and PLA functions, larger air-interface capacities are supported between microwave sites.

 Table 2-2 Air interface capacities

| IF Board Microwave |                        | Maximum Air Interface Capacity |                                                                    |                                       |
|--------------------|------------------------|--------------------------------|--------------------------------------------------------------------|---------------------------------------|
|                    | Link                   | TDM Services                   | Ethernet Throughput<br>at Air Interfaces (Mbit/<br>s) <sup>a</sup> | XPIC<br>Configuration<br><sup>b</sup> |
| IF1                | PDH radio              | 53xE1                          | N/A                                                                | Not supported                         |
|                    | SDH radio              | 1xSTM-1                        | N/A                                                                |                                       |
| IFU2               | Integrated IP<br>radio | 75xE1                          | 360 to 420                                                         | Not supported                         |
| IFX2               | Integrated IP<br>radio | 75xE1                          | 360 to 410                                                         | Supported                             |
| ISU2               | SDH radio              | 2xSTM-1                        | N/A                                                                | Not supported                         |

| IF Board | Microwave              | Maximum Air Interface Capacity |                                                                       |                       |
|----------|------------------------|--------------------------------|-----------------------------------------------------------------------|-----------------------|
| Link     |                        | TDM Services                   | Ethernet Throughput<br>at Air Interfaces (Mbit/<br>s) <sup>a</sup>    | XPIC<br>Configuration |
|          | Integrated IP<br>radio | 75xE1 or 1xSTM-1               | 360 to 456                                                            |                       |
| ISX2     | SDH radio              | 2xSTM-1                        | N/A                                                                   | Supported             |
|          | Integrated IP<br>radio | 75xE1 or 1xSTM-1               | 360 to 456                                                            |                       |
| ISV3     | SDH radio              | 2xSTM-1                        | N/A                                                                   | Supported             |
|          | Integrated IP<br>radio | 75xE1 or 1xSTM-1               | 504 to 636 (none-XPIC)<br>450 to 575 (XPIC)                           |                       |
| ISM6     | SDH radio              | 2xSTM-1                        | N/A                                                                   | Supported             |
|          | Integrated IP<br>radio | 75xE1 or 1xSTM-1               | 504 to 636 (none-XPIC,<br>IS3 mode)<br>450 to 575 (XPIC, IS3<br>mode) |                       |

NOTE

• a: ISU2, ISX2, ISV3, and ISM6 boards support frame header compression at air interfaces, which significantly improves the equivalent throughout of Ethernet services at air interfaces in specific scenarios. For details, see Microwave Work Modes.

• b: The XPIC function doubles the service capacity of the microwave channel at the same frequency bandwidth. When running in the IS2 mode, the ISV3 board can work with the ISX2 board to implement the XPIC function. ISM6 boards support only intra-board XPIC.

## 2.6.2 Cross-Connect Capacity

The OptiX RTN 980 has a built-in MADM and provides 128x128 VC-4 higher order cross-connections and VC-12/VC-3 lower order cross-connections equivalent to 32x32 VC-4s.

## 2.6.3 Switching Capacity

The OptiX RTN 980 has a built-in packet switching platform with the switching capacity of 22 Gbit/s (with CSHN) or 43 Gbit/s (with CSHNA) .

## 2.7 Interfaces

The OptiX RTN 980 provides a variety of interfaces.

## 2.7.1 Service Interfaces

The OptiX RTN 980 provides the interfaces that converge SDH services and Ethernet services on the system control, switching, and timing board, and it is able to provide a wide-assortment of service interfaces by configuring appropriate service interface boards.

**Table 2-3** lists the types and number of service interfaces that the system control, switching, and timing board supports for the OptiX RTN 980.

**Table 2-3** Types and number of service interfaces that the system control, switching, and timing board supports

| System Control,<br>Switching, and<br>Timing Board                                                                                                                                                              | Service Interface                                                                                                                                                                                                                                        | Quantity |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| CSHN                                                                                                                                                                                                           | GE electrical interface (RJ45):<br>10/100/1000BASE-T(X), or<br>GE optical interface (SFP): 1000BASE-SX,                                                                                                                                                  | 2        |
|                                                                                                                                                                                                                | 1000BASE-LXSTM-4 optical interface (SFP), orSTM-1 optical/electrical interface (SFP)                                                                                                                                                                     | 2        |
| CSHNA                                                                                                                                                                                                          | <ul> <li>GE electrical interface (RJ45) or GE/FE optical interface (SFP):</li> <li>GE electrical interface: 10/100/1000BASE-T(X)</li> <li>GE optical interface: 1000BASE-SX/LX/VX/ZX/BX</li> <li>FE optical interface: 100BASE-FX/LX/VX/ZX/BX</li> </ul> | 2        |
|                                                                                                                                                                                                                | GE electrical interface (RJ45):<br>10/100/1000BASE-T(X)                                                                                                                                                                                                  | 2        |
|                                                                                                                                                                                                                | STM-4 optical interface (SFP), or<br>STM-1 optical/electrical interface (SFP)                                                                                                                                                                            | 2        |
| <b>NOTE</b><br>The CSHNA board provides four GE interfaces, of which two can be GE electrical interfaces (RJ45) or GE optical interfaces (SFP), and the other two can be only GE electrical (RJ45) interfaces. |                                                                                                                                                                                                                                                          |          |

 Table 2-4 lists the types and number of service interfaces that each service interface board supports for the OptiX RTN 980.

| Service Interface<br>Board | Service Interface                                                      | Quantity |
|----------------------------|------------------------------------------------------------------------|----------|
| EM6T/EM6TA                 | FE electrical interface (RJ45): 10/100BASE-<br>T(X)                    | 4        |
|                            | GE electrical interface (RJ45):<br>10/100/1000BASE-T(X)                | 2        |
| EM6F/EM6FA                 | FE electrical interface (RJ45): 10/100BASE-<br>T(X)                    | 4        |
|                            | GE electrical interface (SFP) or GE/FE optical interface (SFP):        | 2        |
|                            | • GE electrical interface:<br>10/100/1000BASE-T(X)                     |          |
|                            | • GE optical interface: 1000BASE-SX/LX/<br>VX/ZX/BX                    |          |
|                            | • FE optical interface: 100BASE-FX/LX/<br>VX/ZX/BX                     |          |
| EG4                        | GE electrical interface (RJ45) or GE/FE optical interface (SFP):       | 2        |
|                            | • GE electrical interface:<br>10/100/1000BASE-T(X)                     |          |
|                            | • GE optical interface: 1000BASE-SX/LX/<br>VX/ZX/BX                    |          |
|                            | • FE optical interface: 100BASE-FX/LX/<br>VX/ZX/BX                     |          |
|                            | GE electrical interface (RJ45):<br>10/100/1000BASE-T(X)                | 2        |
| EG4P                       | GE electrical interface (RJ45) or GE/FE optical interface (SFP):       | 2        |
|                            | • GE electrical interface:<br>10/100/1000BASE-T(X)                     |          |
|                            | • GE optical interface: 1000BASE-SX/LX/<br>VX/ZX/BX                    |          |
|                            | • FE optical interface: 100BASE-FX/LX/<br>VX/ZX/BX                     |          |
|                            | GE electrical interface with power supply (RJ45): 10/100/1000BASE-T(X) | 2        |

**Table 2-4** Types and number of service interfaces that each service interface board supports

| Service Interface<br>Board | Service Interface                                                                                     | Quantity |
|----------------------------|-------------------------------------------------------------------------------------------------------|----------|
| EX1                        | 10GE optical interface (SFP):                                                                         | 1        |
|                            | • WAN mode: 10GBASE-SW/10GBASE-<br>LW/10GBASE-EW/10GBASE-ZW                                           |          |
|                            | • LAN mode: 10GBASE-SR/10GBASE-<br>LR/10GBASE-ER/10GBASE-ZR                                           |          |
| EFP8                       | FE electrical interface (RJ45): 10/100BASE-<br>T(X)                                                   | 8        |
| EMS6                       | FE electrical interface (RJ45): 10/100BASE-<br>T(X)                                                   | 4        |
|                            | GE electrical interface (SFP) or GE optical interface (SFP):                                          | 2        |
|                            | • GE electrical interface:<br>10/100/1000BASE-T(X)                                                    |          |
|                            | • GE optical interface: 1000BASE-SX/LX/<br>VX/ZX                                                      |          |
| SP3S                       | 75-ohm or 120-ohm E1 interface                                                                        | 16       |
| SP3D                       | 75-ohm or 120-ohm E1 interface                                                                        | 32       |
| CQ1                        | Channelized STM-1 electrical interface (SFP) or                                                       | 4        |
|                            | Channelized STM-1 optical interface (SFP):<br>Ie-1, S-1.1, L-1.1, L-1.2, S-1.1-BX, L-1.1-<br>BX       |          |
| SL1D/SL1DA                 | STM-1 electrical interface (SFP) or                                                                   | 2        |
|                            | STM-1 optical interface (SFP): Ie-1, S-1.1,<br>L-1.1, L-1.2                                           |          |
| ML1                        | 75-ohm or 120-ohm Smart E1 interface:<br>supports CES E1, ATM/IMA E1, ML-PPP<br>E1, and Fractional E1 | 16       |
| MD1                        | 75-ohm or 120-ohm Smart E1 interface:<br>supports CES E1, ATM/IMA E1, ML-PPP<br>E1, and Fractional E1 | 32       |

#### ΠΝΟΤΕ

- Smart E1 interfaces support multiple protocols through software configuration. Smart E1 interfaces on the OptiX RTN 980 support CES E1, ATM/IMA E1, ML-PPP and Fractional E1.
- Fractional E1 interfaces can make use of specific 64 kbit/s timeslots in framed E1 services. If the E1 interface is applied to Fractional CES, certain timeslots in E1 services are emulated. If the E1 interface is applied to Fractional IMA, certain timeslots in E1 services serve as the member links of IMA groups.
- Channelized STM-1 interfaces (c-STM-1) support the channelization of STM-1 into 63 E1 channels. The E1 channels support CES and ML-PPP.

## 2.7.2 Management and Auxiliary Ports

The OptiX RTN 980 provides the management and auxiliary ports through the system control, switching, and timing board and the auxiliary board.

#### **Management and Auxiliary Ports**

| Port                                            | Description                                                                                                                               | Quantity (board)     |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| External clock port <sup>a</sup>                | 2,048 kbit/s or 2,048 kHz clock input<br>and output port                                                                                  | 1 (CSHN/CSHNA)       |
| External time port <sup>a</sup> , b             | External time input or output port<br>(RS-422 level, 1PPS+TOD or DCLS<br>format)                                                          | 2 (CSHN/CSHNA)       |
| Management port                                 | 10/100BASE-T(X) NM port                                                                                                                   | 1 (CSHN/CSHNA)       |
|                                                 | NM serial port                                                                                                                            | 1 (CSHN/CSHNA)       |
|                                                 | 10/100BASE-T(X) NM cascading port                                                                                                         | 1 (CSHN/CSHNA)       |
| Auxiliary port                                  | Orderwire port                                                                                                                            | 1 (AUX)              |
|                                                 | RS-232 asynchronous data port                                                                                                             | 1 (AUX)              |
|                                                 | 64 kbit/s synchronous data port <sup>c</sup>                                                                                              | 1 (AUX)              |
|                                                 | Wayside E1 port <sup>a</sup>                                                                                                              | 1 (CSHN/CSHNA)       |
| Alarm port                                      | Alarm input port                                                                                                                          | 3 (CSHNA)<br>4 (AUX) |
|                                                 | Alarm output port                                                                                                                         | 1 (CSHNA)<br>2 (AUX) |
| Outdoor cabinet<br>monitoring port <sup>b</sup> | RS-485 outdoor cabinet monitoring port                                                                                                    | 1 (CSHN/CSHNA)       |
| Type-A USB port                                 | USB port for USB flash drive,<br>supporting database backup, database<br>restoration, and NE software upgrades<br>using a USB flash drive | 1 (CSHNA)            |

Table 2-5 Types and number of management and auxiliary ports

| Port          | Description                                                               | Quantity (board) |
|---------------|---------------------------------------------------------------------------|------------------|
| Mini USB port | USB port for NMS, supporting NE management when the Web LCT is connected. | 1 (CSHNA)        |

#### ΠΝΟΤΕ

- a: The external clock port, external time port 1, and wayside E1 port are combined into one physical port. This port can also transparently transmit the DCC bytes, orderwire overhead bytes, and synchronous/ asynchronous data overhead bytes. However, this port can implement only one function at a time.
- b: External time port 2 and the outdoor cabinet monitoring port are combined into one physical port. This port can implement only one function at a time.
- c: The 64 kbit/s synchronous data port can transparently transmit the orderwire byte. However, one port can implement only one of the following two functions: 64 kbit/s synchronous data port and transparent transmission of the orderwire byte.
- The number of external clock ports or the number of management ports listed in the table is the number of ports provided by one Control, switching, and timing board.

#### **Auxiliary Service Channel**

Auxiliary services and NM messages are transmitted by overhead bytes over a radio link. For details, see **Table 2-6**.

| Service/Message Type      | Microwave Frame Overhead |                                                                                       |
|---------------------------|--------------------------|---------------------------------------------------------------------------------------|
|                           | Quantity of Paths        | Path Rate                                                                             |
| Asynchronous data service | 1                        | $\leq$ 19.2 kbit/s                                                                    |
| Synchronous data service  | 1                        | 64 kbit/s                                                                             |
| Orderwire phone service   | 1                        | 64 kbit/s                                                                             |
| Wayside E1 service        | 1                        | 2048 kbit/s (in the SDH radio link)                                                   |
| DCC path                  | 1                        | • 64 kbit/s (in the PDH radio link<br>which the capacity is lower than<br>16xE1)      |
|                           |                          | • 192 kbit/s (in the PDH radio link<br>which the capacity is not lower than<br>16xE1) |
|                           |                          | • 192 kbit/s, 576kbit/s, or 768kbit/s<br>(in the SDH radio link)                      |
|                           |                          | <ul> <li>192 kbit/s (in Integrated IP radio<br/>link)</li> </ul>                      |

| Table 2-6 Auxiliary services channels | provided by each microwave port |
|---------------------------------------|---------------------------------|
|---------------------------------------|---------------------------------|

## 2.8 MPLS/PWE3 Functions

The OptiX RTN 980 uses an MPLS that is optimized for the telecom bearer network as the packet forwarding mechanism for packet transmission of carrier-class services. The OptiX RTN 980 uses PWE3 technology as the service bearer technology to implement MPLS network access for various types of services.

| Function and Feature |             |                                               | Description                                                                                                                                                                                    |
|----------------------|-------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MPLS                 | Setup mode  |                                               | Static LSPs                                                                                                                                                                                    |
| tunnel               | Bearer mode |                                               | <ul> <li>Ethernet port</li> <li>IP microwave port</li> <li>MLPPP link</li> </ul>                                                                                                               |
|                      | Protection  |                                               | 1:1 MPLS tunnel APS                                                                                                                                                                            |
|                      | OAM         |                                               | <ul> <li>MPLS OAM that complies with ITU-T Y.<br/>1710 and ITU-T Y.1711</li> <li>MPLS-TP LSP OAM that complies with<br/>ITU-T Y.1731</li> <li>LSP ping and LSP traceroute functions</li> </ul> |
| PWE3                 | TDM PWE3    | Emulation<br>mode                             | <ul><li>SAToP</li><li>CESoPSN</li></ul>                                                                                                                                                        |
|                      |             | Packet loading time                           | 125 μs to 5000 μs                                                                                                                                                                              |
|                      |             | Jitter<br>compensation<br>buffering time      | 375 μs to 16000 μs                                                                                                                                                                             |
|                      | ATM PWE3    | Mapping mode                                  | <ul> <li>1-to-1 ATM VCC mapping</li> <li>N-to-1 ATM VCC mapping</li> <li>1-to-1 ATM VPC mapping</li> <li>N-to-1 ATM VPC mapping</li> </ul>                                                     |
|                      |             | Maximum<br>number of<br>concatenated<br>cells | 31                                                                                                                                                                                             |
|                      |             | Cell<br>concatenation<br>wait time            | 100 μs to 50000 μs                                                                                                                                                                             |

Table 2-7 MPLS/PWE3 functions

| Function a | unction and Feature                |                                             | Description                                                                                          |
|------------|------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------|
|            |                                    | Transparently<br>transmitted<br>ATM service | Supported                                                                                            |
|            | ETH PWE3                           | Encapsulation mode                          | <ul><li>Raw mode</li><li>Tagged mode</li></ul>                                                       |
|            |                                    | Service type                                | <ul> <li>E-Line</li> <li>E-Aggr</li> <li>E-LAN (VPLS)</li> </ul>                                     |
|            | Setup mode                         |                                             | Static PWs                                                                                           |
|            | Control Word                       |                                             | supported                                                                                            |
|            | Number of PWs           Protection |                                             | Supports a maximum of 1024 PWs.                                                                      |
|            |                                    |                                             | 1:1 PW APS                                                                                           |
|            | OAM                                |                                             | • PW OAM that complies with ITU-T Y.<br>1710 and ITU-T Y.1711                                        |
|            |                                    |                                             | • MPLS-TP PW OAM that complies with ITU-T Y.1731                                                     |
|            |                                    |                                             | • VCCV                                                                                               |
|            |                                    |                                             | • PW ping and PW traceroute functions                                                                |
|            |                                    |                                             | • ITU-T Y.1731-compliant packet loss measurement, delay measurement, and delay variation measurement |
|            |                                    |                                             | • Intelligent service fault diagnosis                                                                |
|            | MS-PW                              |                                             | Supported                                                                                            |
|            | Configurable b                     | oandwidth                                   | Supported                                                                                            |

## 2.9 Ethernet Service Processing Capability

The OptiX RTN 980 has powerful Ethernet service processing capability.

 Table 2-8 Ethernet service processing capability

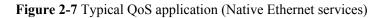
| Item                     | Description                                                                                                                                                                    |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ethernet service<br>type | <ul> <li>Native Ethernet services: E-Line service and E-LAN service</li> <li>PW-carried Ethernet services: E-Line service, E-Aggr service, and E-LAN (VPLS) service</li> </ul> |

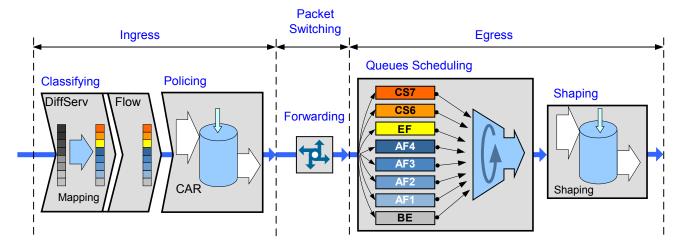
| Item                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Range of<br>maximum frame<br>length | 1518 bytes to 9600 bytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VLAN                                | <ul> <li>Adds, deletes, and switches VLAN tags that comply with IEEE 802.1q/p, and forwards packets based on VLAN tags.</li> <li>Processes packets based on the port tag attribute (Tag/Hybrid/Access).</li> <li>The VLAN ID ranges from 1 to 4094</li> </ul>                                                                                                                                                                                                                                                         |
| MAC address                         | <ul> <li>The VLAN ID ranges from 1 to 4094.</li> <li>The E-LAN service supports the MAC address self learning capability in two learning modes: SVL and IVL.</li> <li>MAC addresses can be filtered; that is, MAC addresses can be blacklisted.</li> <li>Static MAC address entries can be set.</li> <li>The capacity of the MAC address table is 16 k (including static entities and blacklist entities).</li> <li>The MAC address aging time can be configured.</li> </ul>                                          |
| Spanning tree                       | Supports the MSTP protocol, and generates only the Common and<br>Internal Spanning Tree (CIST). The functions of the MSTP protocol are<br>equal to those of the RSTP protocol.                                                                                                                                                                                                                                                                                                                                        |
| IGMP Snooping                       | Supported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Link aggregation<br>(LAG)           | <ul> <li>Applies to the FE/GE port and microwave port.</li> <li>Supports manual aggregation and static aggregation</li> <li>Supports load sharing and non-load sharing.</li> <li>The load sharing hash algorithm is implemented based on MAC addresses, IP addresses, or MPLS labels, and supports the specified mode and automatic mode.</li> </ul>                                                                                                                                                                  |
| Physical link<br>aggregation        | <ul> <li>Supports PLA and EPLA fucntions.</li> <li>PLA and EPLA are Layer 1 link aggregation group (L1 LAG) technology, which shares load based on the bandwidth at the physical layer to achieve link aggregation. Physical link aggregation does not use the Hash algorithm and is independent of service flow compositions and therefore makes full use of link bandwidth.</li> <li>A PLA group supports a maximum of two member links.</li> <li>An EPLA group supports a maximum of four member links.</li> </ul> |
| ERPS                                | Supports ITU-T G.8032v1/v2-compliant single-ring or multi-ring network protection for Ethernet services.                                                                                                                                                                                                                                                                                                                                                                                                              |
| LPT                                 | Disables the remote Ethernet port that is connected to the user equipment<br>when the transmission network or local port fails.                                                                                                                                                                                                                                                                                                                                                                                       |
| QoS                                 | Supports QoS. For details, see 2.10 QoS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Item                                  | Description                                                                                                                                                  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Traffic control function              | Supports the IEEE 802.3x-compliant traffic control function.                                                                                                 |
| ETH-OAM                               | • Supports IEEE 802.1ag- and IEEE 802.3ah-compliant ETH-OAM functions.                                                                                       |
|                                       | • Supports ITU-T Y.1731-compliant ETH-OAM functions, supports packet loss measurement, delay measurement, and delay variation measurement.                   |
| Ethernet<br>performance<br>monitoring | <ul> <li>Supports IETF RFC2819-compliant RMON performance monitoring.</li> </ul>                                                                             |
|                                       | • Measures real-time and historical traffic and bandwidth utilization for ports.                                                                             |
|                                       | <ul> <li>Measures real-time and historical performance events for DS<br/>domains, flows, VLANs, traffics on UNI side, PWs, and egress<br/>queues.</li> </ul> |
|                                       | • Measures packet loss due to congestion for flows.                                                                                                          |
|                                       | • Measures packet loss due to congestion for PWs and egress queues.                                                                                          |
| Synchronous<br>Ethernet               | Supports ITU-T G.8261- and ITU-T G.8262-compliant synchronous Ethernet.                                                                                      |
| EoPDH                                 | Supported. The EFP8 board provides the EoPDH function.                                                                                                       |
| EoSDH                                 | Supported. The EMS6 board provides the EoSDH function.                                                                                                       |

#### 

- The E-Line service is an Ethernet private line service. The OptiX RTN 980 supports a maximum of 1024 E-Line services.
  - For Native Ethernet services, the OptiX RTN 980 supports E-Line services based on the port, port +VLAN, and port+QinQ.
  - For PW-carried Ethernet services, the OptiX RTN 980 supports E-Line services based on the port, and port+VLAN.
- The E-Aggr service is an Ethernet aggregation service. The OptiX RTN 980 supports E-Aggr services from multiple UNIs to one PW and E-Aggr services from multiple PWs to one UNI. The OptiX RTN 980 supports a maximum of 128 E-Aggr services.
- The E-LAN service is an Ethernet local area network (LAN) service.
  - For Native Ethernet services, the OptiX RTN 980 supports the E-LAN service based on the 802.1d bridge, 802.1q bridge, and 802.1ad bridge. The bridge supports a maximum of 1024 logical ports.
  - For PW-carried Ethernet services, the OptiX RTN 980 supports virtual private LAN services (VPLS) based on virtual switch instances (VSI). The OptiX RTN 980 supports a maximum of 128 VSIs and 512 logical ports.


## 2.10 QoS


The OptiX RTN 980 provides improved quality of service (QoS) and supports the following eight types of per-hop behaviors (PHBs): BE, AF1, AF2, AF3, AF4, EF, CS6, and CS7.

Therefore, network carriers can offer various QoS levels of service guarantees and build networks that carry data, voice, and video services.

| Table 2-9 QoS | 5 features |
|---------------|------------|
|---------------|------------|

| Feature                | Performance                                                                                                                                                                        |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| DiffServ               | • For Ethernet services, supports mapping the Ethernet service into different PHB service levels based on the C-VLAN priority, S-VLAN priority, IP DSCP value, and MPLS EXP value. |  |  |
|                        | • For ATM services, supports flexible mapping between the ATM service categories (CBR, UBR, UBR+, rtVBR, and nrtVBR) and PHB service levels.                                       |  |  |
|                        | • For CES services, the PHB service level of each CES service can be set manually (EF by default).                                                                                 |  |  |
| Traffic classification | Supports port traffic classification based on VLAN ID, VLAN priority, MAC address, or DSCP.                                                                                        |  |  |
| Traffic policing       | Supports flow-based traffic policing and the setting of PIR and CIR in steps of 64 kbit/s.                                                                                         |  |  |
| Queue scheduling       | • Each Ethernet port or Integrated IP radio port supports eight levels of priority scheduling.                                                                                     |  |  |
|                        | • Flexibly sets the queue scheduling scheme for each Ethernet port and<br>Integrated IP radio port. The queue scheduling modes include SP, SP<br>+WRR, and WRR.                    |  |  |
| Congestion avoidance   | Drops packets in tail drop mode or weighted random early detection (WRED) mode.                                                                                                    |  |  |
| Traffic shaping        | • Supports the shaping for the specified port, priority queue, or service flow.                                                                                                    |  |  |
|                        | • Supports a step of 64 kbit/s for the PIR and CIR.                                                                                                                                |  |  |





# **2.11 Clock Features**

The OptiX RTN 980 supports clock synchronization and IEEE 1588v2 time synchronization, meeting the clock and time synchronization requirements of mobile networks. In addition, the OptiX RTN 980 provides an advanced clock protection mechanism.

## **Clock synchronization**

| Item                                      | Description                                                                                                                                                                                                                                                                                                                                                  |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Equipment clock                           | Supports the three modes as defined in ITU-T G.813: tracing mode, holdover mode, and free-run mode.                                                                                                                                                                                                                                                          |  |
| Clock synchronization                     | <ul> <li>Supports the following clock sources:</li> <li>SDH line clock</li> <li>E1 tributary clock</li> <li>Radio link clock</li> <li>Synchronous Ethernet clock</li> <li>Channelized STM-1 line clock</li> <li>E1 clock of the E1 channel mapped in Channelized STM-1</li> <li>2048 kbit/s or 2048 kHz external clock</li> <li>IEEE 1588v2 clock</li> </ul> |  |
| SSM protocol/Extended<br>SSM protocol     | <ul> <li>IEEE 1588 ACR clock</li> <li>Supported. SSM information can be transmitted in the following interfaces:</li> <li>SDH line</li> <li>SDH radio link</li> <li>Integrated IP radio link</li> <li>Synchronization Ethernet interface</li> <li>2048 kbit/s external clock interface, supporting the SSM protocol</li> </ul>                               |  |
| Tributary clock                           | <ul> <li>Supports retiming for Native E1 and CES E1 services.</li> <li>Supports the transparent transmission of E1 clocks.</li> <li>Supports CES ACR clocks.</li> </ul>                                                                                                                                                                                      |  |
| Channelized STM-1 line<br>clock re-timing | Supported. CQ1 boards can use the receive clock of STM-1 signals as transmit clock.                                                                                                                                                                                                                                                                          |  |
| Output of the external clock              | Supported (120-ohm interface complying with G.703, 2048 kbit/s or 2048 kHz mode)                                                                                                                                                                                                                                                                             |  |

 Table 2-10 Clock synchronization features

## Time synchronization

| <b>Table 2-11</b> Time synchronization features |
|-------------------------------------------------|
|-------------------------------------------------|

| Item                                       | Description                                                                                                          |  |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|
| Clock Model                                | OC, BC, TC, TC+BC                                                                                                    |  |
| Input of the external time                 | Supported                                                                                                            |  |
| Time source<br>selection and<br>protection | <ul><li>BMC algorithm</li><li>Static selection for time sources</li></ul>                                            |  |
| Time<br>synchronization                    | <ul> <li>Supports the following time sources:</li> <li>IEEE 1588v2 clock</li> <li>External time interface</li> </ul> |  |
| Time transparent transmission              | Transparent transmission of IEEE 1588v2 time signals                                                                 |  |
| Output of the external time                | Supported                                                                                                            |  |

# 2.12 Protection Capability

The OptiX RTN 980 provides a variety of protection schemes.

Table 2-12 Protection schemes

| Item            |                                         | Description                                                           |
|-----------------|-----------------------------------------|-----------------------------------------------------------------------|
| Equipment-level | Power input                             | 1+1 hot backup                                                        |
| protection      | Internal power module                   | 1+1 hot backup                                                        |
|                 | Control, switching,<br>and timing board | 1+1 hot backup                                                        |
| Radio links     |                                         | 1+1 HSB/SD/FD protection                                              |
|                 |                                         | N+1 protection                                                        |
| TDM services    | E1/VC12/VC4                             | SNCP protection                                                       |
|                 | STM-1/STM-4                             | 1+1 or 1:N linear multiplex section protection<br>(STM-1/STM-4)       |
|                 |                                         | Two-fiber bi-directional multiplex section<br>protection ring (STM-4) |

| Item                    |                   | Description                             |
|-------------------------|-------------------|-----------------------------------------|
| Ethernet services       | Ethernet links    | LAG protection                          |
|                         | Radio links       | LAG protection                          |
|                         |                   | PLA protection and EPLA protection      |
| Native Ethernet network |                   | ERPS protection                         |
|                         |                   | MSTP protection                         |
| L2VPN                   | MPLS              | MPLS tunnel 1:1 protection              |
|                         | PW                | PW 1:1 APS/FPS                          |
|                         | ATM over E1       | IMA protection                          |
|                         | Tunnel over E1    | ML-PPP protection                       |
|                         | Channelized STM-1 | 1:1 linear multiplex section protection |

# 2.13 Network Management

The OptiX RTN 980 supports multiple network management (NM) modes and provides comprehensive NM information exchange schemes.

## NM Mode

The OptiX RTN 980 supports the following NM modes:

- Per-NE management (for example, management of a local NE or a remote NE) by the iManager Web LCT
- Central management of OptiX RTN NEs and other OptiX NEs by the iManager U2000
- SNMP agent-based management, which allows operators to query alarms, performance events, NE parameters and service parameters by performing SNMP GET operations, and to configure NE parameters and service parameters by performing SNMP SET operations

## **LLDP Function**

The OptiX RTN 980 and another device (such as a base station) that are both enabled with the Link Layer Discovery Protocol (LLDP) can discover each other. The LLDP function helps to archive:

- Display of the topology of a network that comprises different types of equipment on an NMS.
- Simplified fault diagnosis.

## NM Information Exchange Schemes

The OptiX RTN 980 supports inband DCN and outband DCN.

| Item                   |                         |                                                                                       | Specifications                                                                                                                                  |
|------------------------|-------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| DCN channel            | DCC bytes               | Integrated IP<br>radio                                                                | Three DCC bytes that are defined by Huawei                                                                                                      |
|                        |                         | SDH radio                                                                             | D1-D3, D4-D12, or D1-D12 bytes                                                                                                                  |
|                        |                         | SDH line                                                                              | D1-D3, D4-D12, or D1-D12 bytes                                                                                                                  |
|                        |                         | Channelized<br>STM-1 line                                                             | D1-D3, D4-D12, or D1-D12 bytes                                                                                                                  |
|                        |                         | PDH radio                                                                             | One or three DCC bytes that are defined by Huawei                                                                                               |
|                        |                         | External clock port                                                                   | Supports the transmission of DCC bytes through the external clock port.                                                                         |
|                        | Network management port |                                                                                       | Supports one network management Ethernet port or one network management Ethernet cascade port.                                                  |
| Inband DCN             | Integrated IP<br>radio  | The inband DCN channel is marked with the VLAN tag and its bandwidth is configurable. |                                                                                                                                                 |
|                        |                         | FE/GE port                                                                            | The inband DCN channel is marked with the VLAN tag and its bandwidth is configurable.                                                           |
|                        |                         | Smart E1 port                                                                         | The inband DCN signals are carried by ML-PPP links.<br>The inband DCN channel is marked with the VLAN tag<br>and its bandwidth is configurable. |
|                        |                         | Channelized<br>STM-1 port                                                             | The inband DCN signals are carried by ML-PPP links.<br>The inband DCN channel is marked with the VLAN tag<br>and its bandwidth is configurable. |
| Network                | HWECC protocol          |                                                                                       | Supported                                                                                                                                       |
| management<br>protocol | IP protocols            |                                                                                       | Supported                                                                                                                                       |
|                        | L2 DCN                  |                                                                                       | Supported                                                                                                                                       |

# 2.14 Easy Installation

The OptiX RTN 980 supports several installation modes. That is, the installation is flexible and convenient.

An IDU can be installed on the following types of cabinets and surfaces:

- In a 300 mm or 600 mm ETSI cabinet
- In a 450 mm or 600 mm 19-inch cabinet
- In an open rack
- In an outdoor cabinet

An ODU supports two installation modes: direct mounting and separate mounting.

# 2.15 Easy Maintenance

The OptiX RTN 980 provides plentiful maintenance features that effectively reduce the costs associated with maintaining the equipment.

## 2.15.1 Equipment-level OAM

The hardware and software design of the OptiX RTN980 takes the convenience of fault diagnosis and maintenance into consideration.

Table 2-14 describes the OAM functions supported by the OptiX RTN 980.

Table 2-14 Equipment-level OAM

| Function                  | Description                                                                                                                                                                                          |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Management and monitoring | • The OptiX RTN 980 can be managed together with optical transmission equipment by the U2000.                                                                                                        |  |  |
|                           | • Supports various alarms and performance events.                                                                                                                                                    |  |  |
|                           | • Supports RMON performance statistics on various types of objects.                                                                                                                                  |  |  |
|                           | • Supports the monitoring and graphic display of key radio transmission performance indicators such as microwave transmit power, received power, signal to noise ratio (SNR), and air-interface BER. |  |  |
|                           | • Supports the monitoring and graphic display of Ethernet performance specifications such as port traffic and bandwidth utilization.                                                                 |  |  |
| Hardware                  | • Each IDU board has running and alarm status indicators.                                                                                                                                            |  |  |
| maintenance               | • All the indicators and cable ports are available on the front panel of the IDU.                                                                                                                    |  |  |
|                           | • The system control, switching, and timing board, IF board, service board, and fan board support hot swapping.                                                                                      |  |  |
| Diagnosis and             | • Supports PRBS tests by IF ports.                                                                                                                                                                   |  |  |
| Testing                   | • Supports PRBS tests by Native E1 and CES E1 ports.                                                                                                                                                 |  |  |
|                           | • Simulates Ethernet meters to test packet loss, delay, and throughput.                                                                                                                              |  |  |
|                           | • Supports various loopback types over service ports and IF ports.                                                                                                                                   |  |  |

| Function               | Description                                                                                                                                                                |  |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Packet service OAM     | • Supports IEEE 802.1ag- and IEEE 802.3ah-compliant ETH OAM functions.                                                                                                     |  |  |
|                        | • Supports ITU-T Y.1731-compliant packet loss measurement, delay measurement, and delay variation measurement for Ethernet services.                                       |  |  |
|                        | • Supports the ITUT-T Y.1711-compliant MPLS OAM function and LSP ping/traceroute.                                                                                          |  |  |
|                        | • Supports the ITUT-T Y.1711-compliant PW OAM function and PW ping/traceroute.                                                                                             |  |  |
|                        | • Supports the ITU-T Y.1731-compliant MPLS-TP LSP OAM and PW OAM functions.                                                                                                |  |  |
| Database<br>management | • Remotely backs up and restores the NE database by using the U2000.                                                                                                       |  |  |
|                        | • The CF card that stores the configuration data and software can be replaced online. Therefore, users can load the data or upgrade the software by replacing the CF card. |  |  |
|                        | • Two copies of software and data are stored in the flash memory of the system control, switching, and timing board to meet the smooth upgrade requirements.               |  |  |
| Software<br>management | • Remotely loads NE software and data by using the U2000 and provides a quick NE upgrade solution.                                                                         |  |  |
|                        | • Supports the NSF function. SDH/PDH services and Ethernet E-<br>Line services are not interrupted during warm resets on NE<br>software.                                   |  |  |
|                        | • Supports hot patch loading. Users can upgrade software without interrupting services.                                                                                    |  |  |
|                        | • Supports software version rollback so that original system services are restored despite software upgrade failures.                                                      |  |  |

# 2.15.2 Packet Services OAM (TP-Assist)

The OptiX RTN 980 works with the iManager U2000 to allow hierarchy OAM of packet services. Packet OAM supports end-to-end service configuration, acceptance tests, and fault locating, therefore simplifying operation and maintenance of packet services.

Table 2-15 describes the packet OAM functions supported by the OptiX RTN 980.

| OAM Stage                              | Subitem                                           | Description                                                                                                                                                                   |
|----------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| End-to-end<br>service<br>configuration | End-to-end packet<br>service<br>configuration     | <ul> <li>Supports end-to-end configuration of Native E-<br/>Line/E-LAN services.</li> <li>Supports end-to-end configuration of MPLS<br/>tunnel and ETH PWE3.</li> </ul>       |
|                                        | Automatic<br>deployment of<br>alarm<br>management | <ul> <li>Automatically configures end-to-end ETH<br/>OAM during Native Ethernet service<br/>configuration and supports connectivity tests<br/>and alarm reporting.</li> </ul> |
|                                        |                                                   | • Automatically configures end-to-end MPLS-<br>TP OAM during MPLS tunnel service<br>configuration and supports connectivity tests<br>and alarm reporting.                     |
|                                        |                                                   | • Automatically configures end-to-end ETH-<br>OAM during ETH PWE3 service configuration<br>and supports connectivity tests and alarm<br>reporting.                            |
| Acceptance tests                       | Service<br>connectivity tests                     | • Supports one-click connectivity test of Native E-Line and E-LAN services.                                                                                                   |
|                                        |                                                   | • Supports one-click connectivity test of the E-<br>Line services carried by MPLS tunnels.                                                                                    |
|                                        | Service<br>performance tests                      | • Supports one-click test on packet loss, delay,<br>and delay variation of Native E-Line and E-<br>LAN services.                                                              |
|                                        |                                                   | • Supports one-click test on packet loss, delay, and delay variation of the E-Line services carried by MPLS tunnels.                                                          |
|                                        |                                                   | • Simulates Ethernet meters to test packet loss, delay, and throughput.                                                                                                       |
| Fault locating                         | Port IP ping                                      | <ul><li>Supports local ping at UNI ports.</li><li>Supports remote ping at UNI ports.</li></ul>                                                                                |
|                                        | Port monitoring                                   | <ul> <li>Reports alarms indicating Ethernet signal loss.</li> <li>Reports alarms indicating Ethernet port autonegotiation failures (half-duplex alarm).</li> </ul>            |
|                                        | Service loopback<br>detecting                     | <ul> <li>Detects loopbacks in E-Line services.</li> <li>Automatically disables the service ports involved in a loop.</li> </ul>                                               |
|                                        | Intelligent fault<br>diagnosis                    | <ul> <li>Checks the integrity of hardware, software, and configuration along a service path.</li> </ul>                                                                       |
|                                        |                                                   | • Detects zero traffic and packet loss along a service path.                                                                                                                  |

| OAM Stage | Subitem                   | Description                                                                                                                                             |
|-----------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Performance<br>statistics | • Measures real-time and historical performance<br>events for Ports, DS domains, flows, VLANs,<br>UNI-side services, PWs, tunnel, and egress<br>queues. |
|           |                           | • Measures packet loss due to congestion for flows, PWs bandwidth, and egress queues.                                                                   |
|           | Performance<br>monitoring | • Reports traffic threshold-crossing alarms by DS domain, VLAN, V-UNI, PW, and egress queue.                                                            |
|           |                           | • Reports port bandwidth utilization threshold-<br>crossing alarms.                                                                                     |
|           |                           | • Reports packet loss threshold-crossing alarms for flows, PWs bandwidth, and egress queues.                                                            |
|           |                           | <ul> <li>Reports zero-traffic alarms for Ports, DS<br/>domains, flows, VLANs, UNI-side services,<br/>PWs, and egress queues.</li> </ul>                 |

# 2.16 Security Management

The OptiX RTN 980 can prevent unauthorized logins and operations, ensuring equipment management security.

## Hardware Security

The OptiX RTN 980 adopts high-reliability hardware design to ensure that the system runs properly under security threats.

The following hardware preventive measures are provided:

- Microwave interfaces: The FEC encoding mode is adopted and the adaptive time-domain equalizer for baseband signals is used. This enables the microwave interfaces to tolerate strong interference. Therefore, an interceptor cannot restore the contents in a data frame if coding details and service configurations are not obtained.
- Modular design: Control units are separated from service units and service units are separated from each other. In this manner, a fault on any unit can be properly isolated, minimizing the impact of the fault on other units in the system.
- CPU flow control: Data flow sent to the CPU for processing is classified and controlled to prevent the CPU from being attacked by a large number of packets. This ensures that the CPU operates properly under attacks.

## **Software Security**

The OptiX RTN 980 processes two categories of data: O&M data and service data. The preceding data is transmitted over independent physical paths or logical paths and does not affect each other. Therefore, services on the OptiX RTN 950 are processed on two planes:

### • Management plane

The management plane provides access to the required equipment and management functions, such as managing accounts and passwords, communication protocols, and alarm reporting. The security feature of the management plane enables secure device access, concentrated management, and thorough security audit.

• Data plane

The data plane processes service data that enters the devices and forwards service data packets according to hardware forwarding entries. On one hand, the data plane prevents user service packets from being intercepted, modified, or deleted, which endangers the confidentiality and completeness of user data. On the other hand, the data plane ensures the control of hardware forwarding actions, preventing forwarding entries from being attacked or modified. In this manner, the forwarding plane of the devices can function stably and reliably.

Table 2-16lists the security functions provided by the OptiX RTN 980.

| Plane                | Function                                      | Description                                                                                                                    |
|----------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Managemen<br>t plane | Account and<br>password<br>management         | Manages and saves device maintenance accounts.                                                                                 |
|                      | Local<br>authentication and<br>authorization  | Checks account validity and performs authorization.                                                                            |
|                      | RADIUS<br>authorization and<br>authentication | Checks account validity and remotely performs<br>authorization in the concentrated mode, reducing the<br>maintenance cost.     |
|                      | Security log                                  | Records actions about account management.                                                                                      |
|                      | Operation log                                 | Records non-query operations.                                                                                                  |
|                      | SYSLOG<br>Management                          | Functions as a standard solution for saving logs offline,<br>effectively resolving the deficient saving space<br>problem.      |
|                      | TCP/IP protocol<br>stack attack<br>prevention | Provides basic TCP/IP attack prevention capability,<br>such as attacks from incorrect IP packets, ICMP ping/<br>jolt, and DoS. |
|                      | Access Control List<br>(ACL)                  | Provides ACL based on IP addresses and port numbers.                                                                           |
|                      | SSL/TLS<br>encryption<br>communication        | Supports SSL3.0/TLS1.0 and provides secure encrypted tunnels based on security certifications.                                 |
|                      | SSH security communication                    | Provides the SSHv2 server and SFTP client service.                                                                             |

Table 2-16 Security functions

| Plane      | Function                          | Description                                                                                                                                                                              |  |
|------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|            | OSPF route<br>protocol            | Provides OSPFv2, capable of standard MD5 authentication.                                                                                                                                 |  |
|            | NTP protocol                      | Provides NTPv3, capable of MD5 authentication and authorization control.                                                                                                                 |  |
|            | SNMP management protocol          | Provides SNMPv3, capable of security authentication and data encryption functions.                                                                                                       |  |
| Data plane | Flow control                      | Monitors port traffic. Suppresses multicast packets,<br>discards unknown unicast/multicast packets, and uses<br>QoS to control service traffic.                                          |  |
|            | Discarding of error packets       | Discards invalid error packets. For example, a packet whose size is smaller than 46 bytes.                                                                                               |  |
|            | Loop avoidance                    | Detects loopback at services ports, blocks loopback,<br>and supports service loopback detection of Ethernet<br>ports.                                                                    |  |
|            | Layer 2 service<br>access control | Provides the access control capabilities: filtering of static MAC addresses, blacklist, learning and forbidding of MAC addresses, and filtering based on complex traffic classification. |  |
|            | Service isolation                 | Provides three isolation methods: Layer 2 logical isolation, horizontal isolation, and physical isolation.                                                                               |  |
|            | Strict isolation of user services | Strictly isolates MPLS services within the carrier networks and from client-side services.                                                                                               |  |

# 2.17 Energy Saving

The OptiX RTN 980 uses various types of technologies to reduce the amount of energy that the device consumes. The device:

- Uses a streamlined scheme for board design.
- Replaces ordinary chips with ASIC chips that consume less power.
- Uses high-efficiency power modules.
- Supports intelligent adjustment of the fan speed that dissipates heat in a timely manner, reduces power consumption, and minimizes noise.
- Shuts down idle FE/GE ports and SFP optical modules.

# 2.18 Environmental Protection

The OptiX RTN 980 is designed to meet or exceed environmental protection requirements. The product complies with the RoHS directive and WEEE directive.

- The OptiX RTN 980 undergoes a compulsory packing process that limits the size of the package containing the equipment and accessories to three times that of the equipment dimensions.
- The product is designed for easy unpacking. In addition, all hazardous substances contained in the packaging decompose quickly.
- Every plastic component that weighs over 25 g is labeled according to the standards of ISO 11469 and ISO 1043-1 to ISO 1043-4. All components and packages of the equipment are provided with standard labels for recycling.
- Plugs and connectors are easy to find and the associated operations can be performed using standard tools.
- All the accompanying materials (such as labels) are easy to remove. Certain types of identifying information (such as silkscreens) are printed on the front panel or chassis.

# **3** Product Structure

# **About This Chapter**

This chapter describes the system architecture, hardware architecture, and software architecture of the product, in addition to how the system processes service signals.

#### 3.1 System Architecture

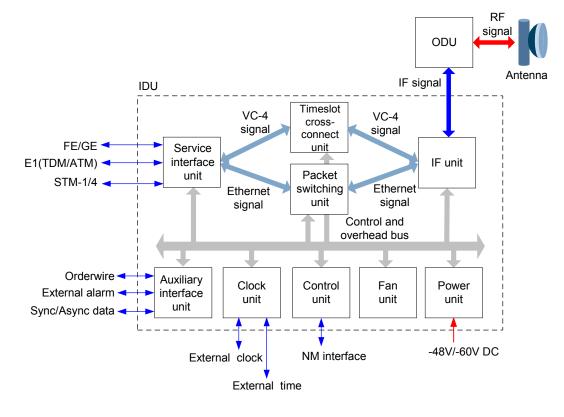
The OptiX RTN 980 consists of a series of functional units, including the service interface unit, timeslot cross-connect unit, packet switching unit, IF unit, control unit, clock unit, auxiliary interface unit, fan unit, power unit, and ODU.

#### 3.2 Hardware Structure

The OptiX RTN 980 adopts a split structure. The system consists of the IDU 980 and the ODU. An ODU is connected to the IDU 980 through an IF cable. The IF cable transmits IF service signals and the O&M signals of the ODU and also supplies -48 V DC power to the ODU.

#### 3.3 Software Structure

The OptiX RTN 980 software consists of the NMS software, IDU software, and ODU software.


#### 3.4 Service Signal Processing Flow

The signal processing flows for the SDH/PDH microwave, Hybrid microwave, and packet microwave are different.

# 3.1 System Architecture

The OptiX RTN 980 consists of a series of functional units, including the service interface unit, timeslot cross-connect unit, packet switching unit, IF unit, control unit, clock unit, auxiliary interface unit, fan unit, power unit, and ODU.

#### Figure 3-1 Block diagram



## 

With the EoPDH function, Ethernet services can be transmitted over SDH/PDH microwave.

Table 3-1 Functional units

| Functional Unit           | Function                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Service interface<br>unit | <ul> <li>Receives/Transmits TDM E1 signals.</li> <li>Receives/Transmits ATM/IMA E1 signals, and demultiplexes<br/>ATM services from ATM/IMA E1 signals.</li> <li>Receives/Transmits STM-1/4 signals.</li> <li>Receives/Transmits FE/GE signals.</li> <li>Uses the EoSDH/EoPDH function to encapsulate Ethernet services<br/>into SDH or E1 signals.</li> <li>Performs E1/ATM/Ethernet service emulation based on PWE3.</li> </ul> |

| Functional Unit                 | Function                                                                                                                                                                                                                                                                                                 |  |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Timeslot cross-<br>connect unit | Provides the cross-connect function and grooms TDM services.                                                                                                                                                                                                                                             |  |  |
| Packet switching<br>unit        | <ul> <li>Processes Ethernet services and forwards packets.</li> <li>Processes MPLS labels and forwards packets.</li> <li>Processes PW labels and forwards packets.</li> </ul>                                                                                                                            |  |  |
| IF unit                         | <ul> <li>Maps service signals to microwave frame signals and demaps microwave frame signals to service signals.</li> <li>Performs conversion between microwave frame signals and IF analog signals.</li> <li>Provides the O&amp;M channel between the IDU and the ODU.</li> <li>Supports FEC.</li> </ul> |  |  |
| Control unit                    | <ul> <li>Provides the system communications and control.</li> <li>Provides the system configuration and management.</li> <li>Collects alarms and monitors performance.</li> <li>Processes overheads.</li> </ul>                                                                                          |  |  |
| Clock unit                      | <ul> <li>Traces the clock source signal and provides various clock signals for the system.</li> <li>Supports input and output of external clock.</li> <li>Supports input or output of external time signal.</li> <li>Provides the time synchronization function.</li> </ul>                              |  |  |
| Auxiliary interface<br>unit     | <ul> <li>Provides the orderwire interface.</li> <li>Provides the synchronous/asynchronous data interface.</li> <li>Provides the external alarm input/output interface.</li> </ul>                                                                                                                        |  |  |
| Power unit                      | <ul> <li>Accesses -48 V/-60 V DC power.</li> <li>Provides DC power for the IDU.</li> <li>Provides -48 V DC power for the ODU.</li> </ul>                                                                                                                                                                 |  |  |
| Fan unit                        | Provides air cooling for the IDU.                                                                                                                                                                                                                                                                        |  |  |
| ODU                             | <ul><li>Converts IF signals into RF signals.</li><li>Amplifies RF signals.</li></ul>                                                                                                                                                                                                                     |  |  |

# 3.2 Hardware Structure

The OptiX RTN 980 adopts a split structure. The system consists of the IDU 980 and the ODU. An ODU is connected to the IDU 980 through an IF cable. The IF cable transmits IF service signals and the O&M signals of the ODU and also supplies -48 V DC power to the ODU.

# 3.2.1 IDU

The IDU 980 is the indoor unit of the OptiX RTN 980.

The IDU 980 uses a card plug-in design. It implements different functions by configuring different types of boards. All extended service boards are hot-swappable.

|                  | Slot 26 (PIU) | Slot 27 (PIU) |  |
|------------------|---------------|---------------|--|
|                  | Slot 13 (EXT) | Slot 14 (EXT) |  |
|                  | Slot 11 (EXT) | Slot 12 (EXT) |  |
|                  | Slot 9 (EXT)  | Slot 10 (EXT) |  |
| Slot 28<br>(FAN) | Slot 20 (CS   | GHN/CSHNA)    |  |
| (FAN)            | Slot 7 (EXT)  | Slot 8 (EXT)  |  |
|                  | Slot 15 (CS   | SHN/CSHNA)    |  |
|                  | Slot 5 (EXT)  | Slot 6 (EXT)  |  |
|                  | Slot 3 (EXT)  | Slot 4 (EXT)  |  |
|                  | Slot 1 (EXT)  | Slot 2 (EXT)  |  |

## 

"EXT" represents an extended slot, which can house any type of IF board or interface board.

## Table 3-2 List of the IDU boards

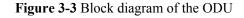
| Board<br>Acronym | Board Name                                                  | Valid Slot | Description                                                                                                                                                                                         |
|------------------|-------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CSHN             | Hybrid system<br>control,<br>switching, and<br>timing board | Slot 15/20 | • Provides full time division cross-connections with<br>higher order cross-connect capacity of 128x128<br>VC-4s and lower order cross-connect capacity of<br>32x32 VC-4s.                           |
|                  |                                                             |            | • Provides packet switching capacity of 22 Gbit/s.                                                                                                                                                  |
|                  |                                                             |            | • Performs system communication and control.                                                                                                                                                        |
|                  |                                                             |            | • Provides the clock processing function, supports one external clock input/output and two external time inputs/outputs. External time interface 1 shares a port with the external clock interface. |
|                  |                                                             |            | • Provides one Ethernet NM interface, one NM serial interface, and one NM cascading interface.                                                                                                      |
|                  |                                                             |            | <ul> <li>Provide two STM-4 optical interfaces or two STM-1<br/>optical/electrical interfaces equipped with SFP<br/>modules.</li> </ul>                                                              |
|                  |                                                             |            | • Provides two GE interfaces. Each GE interface can use the RJ45 electrical module or SFP optical module.                                                                                           |
|                  |                                                             |            | • Provides one Huawei outdoor cabinet monitoring interface. The outdoor cabinet monitoring interface shares a port with external time interface 2.                                                  |

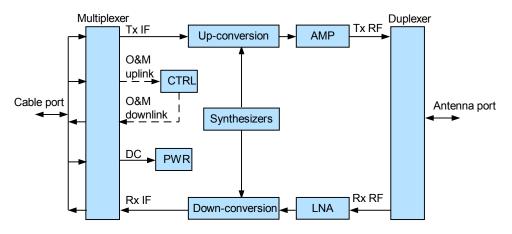
| Board<br>Acronym | Board Name                                                  | Valid Slot        | Description                                                                                                                                                                                         |
|------------------|-------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CSHNA            | Hybrid system<br>control,<br>switching, and<br>timing board | Slot 15/20        | • Provides full time division cross-connections with higher order cross-connect capacity of 128x128 VC-4s and lower order cross-connect capacity of 32x32 VC-4s.                                    |
|                  |                                                             |                   | • Provides packet switching capacity of 43 Gbit/s.                                                                                                                                                  |
|                  |                                                             |                   | • Performs system communication and control.                                                                                                                                                        |
|                  |                                                             |                   | • Provides the clock processing function, supports one external clock input/output and two external time inputs/outputs. External time interface 1 shares a port with the external clock interface. |
|                  |                                                             |                   | • Provides one Ethernet NM interface, one NM serial interface, and one NM cascading interface.                                                                                                      |
|                  |                                                             |                   | • Provide two STM-4 optical interfaces or two STM-1 optical/electrical interfaces equipped with SFP modules.                                                                                        |
|                  |                                                             |                   | • Provides four GE interfaces, of which two can be GE electrical interfaces (RJ45) or GE optical interfaces (SFP), and the other two can be only GE electrical (RJ45) interfaces.                   |
|                  |                                                             |                   | • Provides a Type A USB port that supports software upgrades, data backup, and command script loading using a USB flash drive.                                                                      |
|                  |                                                             |                   | • Provides a Mini USB port to connect to a local maintenance terminal.                                                                                                                              |
|                  |                                                             |                   | • Provides one Huawei outdoor cabinet monitoring interface. The outdoor cabinet monitoring interface shares a port with external time interface 2.                                                  |
|                  |                                                             |                   | • Provides three-input and one-output external alarm interfaces.                                                                                                                                    |
| ISU2             | Universal IF                                                | Slot 1 to slot 14 | • Provides one IF interface.                                                                                                                                                                        |
| boar             | board                                                       |                   | • Supports modulation schemes from QPSK to 256QAM.                                                                                                                                                  |
|                  |                                                             |                   | • Supports integrated IP radio and SDH radio. The supported service modes are Native E1+Ethernet, Native STM-1+Ethernet or SDH.                                                                     |
|                  |                                                             |                   | • Supports the AM function.                                                                                                                                                                         |
|                  |                                                             |                   | • Supports bandwidth acceleration at air interfaces (Ethernet frame header compression).                                                                                                            |
|                  |                                                             |                   | • Supports the PLA function.                                                                                                                                                                        |
|                  |                                                             |                   | • Supports the EPLA function when using CSHNA.                                                                                                                                                      |

| Board<br>Acronym | Board Name     | Valid Slot        | Description                                                                                                                                                                |
|------------------|----------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ISX2             | Universal XPIC | Slot 1 to slot 14 | • Provides one IF interface.                                                                                                                                               |
|                  | IF board       |                   | <ul> <li>Supports modulation schemes from QPSK to 256QAM.</li> </ul>                                                                                                       |
|                  |                |                   | • Supports integrated IP radio and SDH radio. The supported service modes are Native E1+Ethernet, Native STM-1+Ethernet or SDH.                                            |
|                  |                |                   | • Supports the XPIC function.                                                                                                                                              |
|                  |                |                   | • Supports the AM function.                                                                                                                                                |
|                  |                |                   | • Supports the AM booster function.                                                                                                                                        |
|                  |                |                   | • Supports bandwidth acceleration at air interfaces (Ethernet frame header compression).                                                                                   |
|                  |                |                   | • Supports the PLA function.                                                                                                                                               |
|                  |                |                   | • Supports the EPLA function when using CSHNA.                                                                                                                             |
| ISV3             | Versatile IF   | Slot 1 to slot 14 | Provides one IF interface.                                                                                                                                                 |
|                  | board          |                   | • Supports multiple IF running modes:                                                                                                                                      |
|                  |                |                   | <ul> <li>IS3: The highest-order modulation mode is<br/>2048QAM. When working in IS3 mode, ISV3<br/>boards can interconnect with each other or with<br/>RTN 905.</li> </ul> |
|                  |                |                   | <ul> <li>IS2: The highest-order modulation mode is<br/>256QAM. When working in IS2 mode, ISV3<br/>boards can interconnect with ISU2/ISX2 boards.</li> </ul>                |
|                  |                |                   | • Supports integrated IP microwave and SDH microwave. The supported service modes are Native E1+Ethernet, Native STM-1+Ethernet or SDH.                                    |
|                  |                |                   | • Supports the XPIC function.                                                                                                                                              |
|                  |                |                   | • Supports the AM function.                                                                                                                                                |
|                  |                |                   | • Supports bandwidth acceleration at air interfaces (Ethernet frame header compression).                                                                                   |
|                  |                |                   | • Supports enhanced compression at air interfaces (Ethernet payload compression).                                                                                          |
|                  |                |                   | • Supports the PLA function.                                                                                                                                               |
|                  |                |                   | • Supports the EPLA function when using CSHNA.                                                                                                                             |

| Board<br>Acronym | Board Name            | Valid Slot        | Description                                                                                                                                                                       |
|------------------|-----------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ISM6             | Two-channel           | Slot 1 to slot 14 | Provides two IF interfaces.                                                                                                                                                       |
|                  | versatile IF<br>board |                   | The two IF interfaces can be used together or independently.                                                                                                                      |
|                  |                       |                   | • Supports multiple IF running modes:                                                                                                                                             |
|                  |                       |                   | <ul> <li>IS6: The highest-order modulation mode is<br/>4096QAM. The maximum channel spacing is<br/>112 MHz (in witch the highest-order modulation<br/>mode is 512QAM).</li> </ul> |
|                  |                       |                   | <ul> <li>IS3: The highest-order modulation mode is<br/>2048QAM. When working in IS3 mode, ISM6<br/>boards can interconnect with ISV3 baords or<br/>RTN 905.</li> </ul>            |
|                  |                       |                   | <ul> <li>IS2: The highest-order modulation mode is<br/>256QAM. When working in IS2 mode, ISM6<br/>boards can interconnect with ISU2/ISX2 boards.</li> </ul>                       |
|                  |                       |                   | <ul> <li>Supports integrated IP radio and SDH radio.<br/>Available service modes include Native E1<br/>+Ethernet, Native STM-1+Ethernet, and SDH.</li> </ul>                      |
|                  |                       |                   | • Supports 1+1 protection, which is implemented based on the two IF channels on the board.                                                                                        |
|                  |                       |                   | • Supports XPIC, which is implemented based on the two IF channels on the board.                                                                                                  |
|                  |                       |                   | • Supports 1+1 protection for an XPIC group, which is implemented based on two boards.                                                                                            |
|                  |                       |                   | • Supports intra-board PLA.                                                                                                                                                       |
|                  |                       |                   | • Supports EPLA when working with the CSHNA board.                                                                                                                                |
|                  |                       |                   | • Supports AM.                                                                                                                                                                    |
|                  |                       |                   | • Supports bandwidth acceleration at air interfaces (Ethernet frame header compression).                                                                                          |
|                  |                       |                   | • Hardware ready for the multiple-input multiple-<br>output (MIMO) function.                                                                                                      |
| IF1              | SDH IF board          | Slot 1 to slot 14 | Provides one IF interface.                                                                                                                                                        |
|                  |                       |                   | • Supports modulation schemes from QPSK to 128QAM.                                                                                                                                |
|                  |                       |                   | • Supports the TU-based PDH radio solution and the STM-1-based SDH radio solution.                                                                                                |

| Board<br>Acronym | Board Name                                                        | Valid Slot        | Description                                                                                                                                                                    |
|------------------|-------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IFU2             | Universal IF                                                      | Slot 1 to slot 14 | Provides one IF interface.                                                                                                                                                     |
|                  | board                                                             |                   | <ul> <li>Supports modulation schemes from QPSK to 256QAM.</li> </ul>                                                                                                           |
|                  |                                                                   |                   | • Supports integrated IP microwave in Native E1<br>+Ethernet service mode.                                                                                                     |
|                  |                                                                   |                   | • Supports the AM function.                                                                                                                                                    |
|                  |                                                                   |                   | • Supports the EPLA function when using CSHNA.                                                                                                                                 |
| IFX2             | Universal XPIC                                                    | Slot 1 to slot 14 | Provides one IF interface.                                                                                                                                                     |
|                  | IF board                                                          |                   | • Supports modulation schemes from QPSK to 256QAM.                                                                                                                             |
|                  |                                                                   |                   | • Supports integrated IP microwave in Native E1<br>+Ethernet mode.                                                                                                             |
|                  |                                                                   |                   | • Supports the XPIC function.                                                                                                                                                  |
|                  |                                                                   |                   | • Supports the AM function.                                                                                                                                                    |
|                  |                                                                   |                   | • Supports the EPLA function when using CSHNA.                                                                                                                                 |
| SL1D             | 2xSTM-1<br>interface board                                        | Slot 1 to slot 14 | Uses SFP modules to provide two STM-1 optical/ electrical interfaces.                                                                                                          |
| SL1DA            | 2xSTM-1<br>interface board                                        | Slot 1 to slot 6  | • Uses SFP modules to provide two STM-1 optical/ electrical interfaces.                                                                                                        |
|                  |                                                                   |                   | • Support K byte transparent transmission.                                                                                                                                     |
| CQ1              | 4-port<br>channelized<br>STM-1 interface                          | Slot 1 to slot 14 | <ul> <li>Uses the SFP optical module to provide four<br/>channelized STM-1 optical/electrical interfaces.</li> <li>Summaria CES E1 and ML_DDD E1 for ations for E1a</li> </ul> |
|                  | board                                                             |                   | <ul> <li>Supports CES E1 and ML-PPP E1 functions for E1s<br/>in STM-1 frame.</li> </ul>                                                                                        |
|                  |                                                                   |                   | • Supports transmission of overhead bytes over CES E1.                                                                                                                         |
| EM6T             | 6-port RJ45                                                       | Slot 1 to slot 14 | • Provides four FE electrical interfaces.                                                                                                                                      |
|                  | Ethernet/<br>Gigabit Ethernet                                     |                   | • Provides two GE electrical interfaces that are compatible with the FE electrical interface.                                                                                  |
|                  | interface board                                                   |                   | • Supports synchronous Ethernet.                                                                                                                                               |
| EM6F             | 4-port RJ45 + 2-                                                  | Slot 1 to slot 14 | • Provides four FE electrical interfaces.                                                                                                                                      |
|                  | port SFP Fast<br>Ethernet/<br>Gigabit Ethernet<br>interface board |                   | • Uses SFP modules to provide two GE/FE optical interfaces or GE electrical interfaces. The GE electrical interfaces are compatible with the FE electrical interfaces.         |
|                  |                                                                   |                   | • Supports the synchronous Ethernet.                                                                                                                                           |


| Board<br>Acronym | Board Name                                                                                                   | Valid Slot        | Description                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------|--------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EM6TA            | 6-port RJ45<br>Ethernet/<br>Gigabit Ethernet<br>interface board                                              | Slot 1 to slot 14 | <ul> <li>Provides four FE electrical interfaces.</li> <li>Provides two GE electrical interfaces that are compatible with the FE electrical interface.</li> <li>Supports the synchronous Ethernet.</li> <li>Supports the IEEE 1588v2 feature.</li> </ul>                                                                                                                                                          |
| EM6FA            | 4-port RJ45 + 2-<br>port SFP Fast<br>Ethernet/<br>Gigabit Ethernet<br>interface board                        | Slot 1 to slot 14 | <ul> <li>Provides four FE electrical interfaces.</li> <li>Uses SFP modules to provide two GE/FE optical interfaces or GE electrical interfaces. The GE electrical interfaces are compatible with the FE electrical interfaces.</li> <li>Supports the synchronous Ethernet.</li> <li>Supports the IEEE 1588v2 feature.</li> </ul>                                                                                 |
| EG4              | 2-port RJ45/SFP<br>+ 2-port RJ45<br>Gigabit Ethernet<br>interface board                                      | Slot 1 to slot 14 | <ul> <li>Provides four GE interfaces, of which two can be<br/>RJ45 GE electrical interfaces or SFP GE optical<br/>interfaces, and the other two can be only RJ45 GE<br/>electrical interfaces. The GE electrical interfaces are<br/>compatible with the FE electrical interfaces.</li> <li>Supports the synchronous Ethernet.</li> <li>Supports the IEEE 1588v2 feature.</li> </ul>                              |
| EG4P             | 2-port RJ45/SFP<br>+ 2-port RJ45<br>Gigabit Ethernet<br>interface board<br>with the power<br>supply function | Slot 1 to slot 14 | <ul> <li>Provides four GE interfaces, of which two can be RJ45 GE electrical interfaces or SFP GE optical interfaces, and the other two can be only RJ45 GE electrical interfaces and support the power over Ethernet function. The GE electrical interfaces are compatible with the FE electrical interfaces.</li> <li>Supports the synchronous Ethernet.</li> <li>Supports the IEEE 1588v2 feature.</li> </ul> |
| EX1              | 1x10GE<br>interface board                                                                                    | slot 1 to slot 2  | <ul> <li>Uses XFP modules to provide one 10GE interface.</li> <li>Supports synchronous Ethernet.</li> <li>Supports IEEE 1588v2.</li> <li>NOTE         <ul> <li>The RTN 980 supports EX1 boards only if it houses CSHNA boards.</li> </ul> </li> </ul>                                                                                                                                                            |


| Board<br>Acronym | Board Name                                                                                             | Valid Slot        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------|--------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EFP8             | 8-port RJ45 FE<br>EoPDH<br>processing<br>board with the<br>switching<br>function                       | Slot 1 to slot 14 | <ul> <li>Provides eight FE electrical interfaces.</li> <li>Bridges to the packet plane through one internal GE interface.</li> <li>Supports the processing of EoPDH services.</li> <li>Supports Ethernet transparent transmission services and Layer 2 switching services.</li> <li>Supports synchronous Ethernet.</li> </ul>                                                                                                                                                                           |
| EMS6             | 4-port RJ45 and<br>2-port SFP FE/<br>GE EoSDH<br>processing<br>board with the<br>switching<br>function | Slot 1 to slot 6  | <ul> <li>Provides four FE electrical interfaces.</li> <li>Uses SFP modules to provide two GE optical interfaces or GE electrical interfaces. The GE electrical interfaces are compatible with the FE electrical interfaces.</li> <li>Bridges to the packet plane through one internal GE interface.</li> <li>Supports the processing of EoSDH services.</li> <li>Supports Ethernet transparent transmission services and Layer 2 switching services.</li> <li>Supports synchronous Ethernet.</li> </ul> |
| ML1              | 16xE1 (Smart)<br>tributary board                                                                       | Slot 1 to slot 14 | <ul> <li>Provides sixteen 75-ohm or 120-ohm Smart E1 interfaces.</li> <li>Supports CES E1, ATM/IMA E1, ML-PPP E1, and Fractional E1.</li> </ul>                                                                                                                                                                                                                                                                                                                                                         |
| MD1              | 32xE1 (Smart)<br>tributary board                                                                       | Slot 1 to slot 14 | <ul> <li>Provides thirty-two 75-ohm or 120-ohm Smart E1 interfaces.</li> <li>Supports CES E1, ATM/IMA E1, ML-PPP E1, and Fractional E1.</li> </ul>                                                                                                                                                                                                                                                                                                                                                      |
| SP3S             | 16xE1 tributary<br>board                                                                               | Slot 1 to slot 14 | Provides sixteen 75-ohm or 120-ohm TDM E1 interfaces.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SP3D             | 32xE1 tributary board                                                                                  | Slot 1 to slot 14 | Provides thirty-two 75-ohm or 120-ohm TDM E1 interfaces.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AUX              | Auxiliary<br>interface board                                                                           | Slot 1 to slot 14 | Provides one orderwire interface, one asynchronous data interface, one synchronous data interface, and four-input and two-output external alarm interfaces.                                                                                                                                                                                                                                                                                                                                             |
| PIU              | Power board                                                                                            | slot 26/27        | Provides one -48 V/-60 V DC power input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FAN              | Fan board                                                                                              | slot 28           | Cools and ventilates the IDU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

## 3.2.2 ODU

The ODU is an integrated system that is available in several models. The architectures and working principles of the various ODU models are similar.

## **Block Diagram**





## Signal Processing in the Transmit Direction

The multiplexer splits the signal from the IF cable into a 350 MHz IF signal, a 5.5 MHz O&M uplink signal, and a -48 V DC power signal.

In the transmit direction, the IF signal is processed as follows:

- 1. After the up-conversion, filtering, and amplification are completed, the IF signal is converted into the RF signal and then is sent to the AMP amplifier unit.
- 2. The AMP amplifies the RF signal (the output power of the signal can be controlled by the IDU software).
- 3. After the amplification, the RF signal is sent to the antenna through the duplexer.

The O&M uplink signal is a 5.5 MHz ASK-modulated signal and is demodulated in the CTRL control unit.

The -48 V DC power signal is sent to the PWR power unit where the secondary power supply that uses a different voltage is generated and provided to the modules of the ODU.

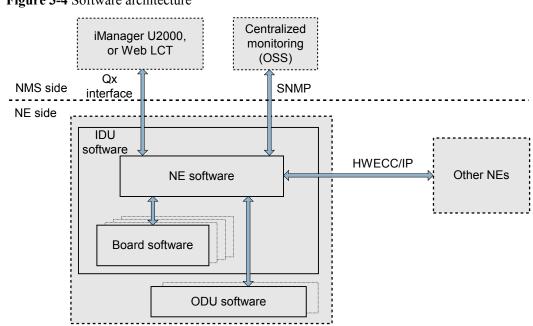
## Signal Processing in the Receive Direction

The duplexer separates the RF signal from the antenna signal. The RF signal is amplified in the low noise amplifier (LNA). After the down-conversion, filtering, and amplification are completed, the RF signal is converted into the 140 MHz IF signal and then is sent to the multiplexer.

The O&M downlink signal is modulated under the ASK scheme in the CTRL unit. The 10 MHz signal is generated through the modulation and is sent to the multiplexer. The CTRL unit also

detects the received signal power through the RSSI detection circuit and provides the RSSI interface.

The IF signal and the O&M downlink signal are combined in the multiplexer and then are sent to the IDU through the IF cable.


# 3.3 Software Structure

The OptiX RTN 980 software consists of the NMS software, IDU software, and ODU software.

## **Functional Block Diagram**

The OptiX RTN 980 software consists of IDU software and ODU software, as shown in **Figure 3-4**.

- The OptiX RTN 980 uses Qx interfaces to communicate with the iManager U2000 or Web LCT. The Qx interfaces are management protocol interfaces designed for Huawei's OptiX equipment. The protocol stack and messages used by Qx interfaces are developed based on ITU-T G.773, ITU-T Q.811, and ITU-T Q.812.
- The OptiX RTN 980 provides a Simple Network Management Protocol (SNMP) agent, so a third-party centralized NMS can query alarms, performance events, and many configuration data through SNMP interfaces.
- OptiX NEs send network management messages with each other using the HWECC protocol or IP protocol.



## Figure 3-4 Software architecture

## **IDU Software**

The IDU software consists of NE software and board software.

- The NE software manages, monitors, and controls the running status of the IDU. Through the NE software, the NMS communicates with boards, and manages the NE. The NE software communicates with the ODU software to manage and control the operation of the ODU.
- The board software manages and controls the running status of other boards of the IDU except the system control, switching, and timing board. The board software of the Ethernet interface board or Ethernet processing board is stand-alone and runs board CPU. Software of other boards is integrated as software modules with the NE software and runs in the CPU of the system control, switching, and timing board.

## **ODU Software**

The ODU software manages and controls the running status of the ODU. The ODU software controls the running of the ODU based on the parameters transmitted by the IDU software. The ODU running status is reported to the IDU software.

# 3.4 Service Signal Processing Flow

The signal processing flows for the SDH/PDH microwave, Hybrid microwave, and packet microwave are different.

## 3.4.1 SDH/PDH Microwave

This section describes how an IF1 board transmits the E1 services that the SP3S receives. It serves as an example to illustrate the processing flow for SDH/PDH microwave service signals.

Figure 3-5 Service signal processing flow of the SDH/PDH microwave

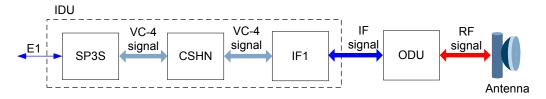
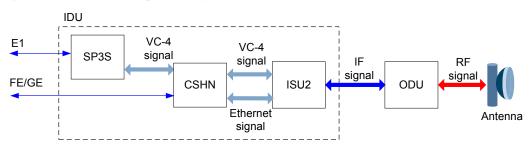



Table 3-3 Service signal processing flow of the SDH/PDH microwave in the transmit direction

| NO. | Component | Signal Processing Description                                                |  |
|-----|-----------|------------------------------------------------------------------------------|--|
| 1   | SP3S      | • Receives E1 signals.                                                       |  |
|     |           | • Performs HDB3 decoding.                                                    |  |
|     |           | • Maps E1 service signals into VC-12 signals.                                |  |
|     |           | • Multiplexes the VC-12 signals into VC-4 signals.                           |  |
|     |           | • Transmits the VC-4 signals to the timeslot cross-connect unit of the CSHN. |  |

| NO. | Component | Signal Processing Description                                                                                                                                                      |
|-----|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2   | CSHN      | The timeslot cross-connect unit grooms VC-12 signals to the VC-4 signals of the IF1 board.                                                                                         |
| 3   | IF1       | • Demultiplexes the VC-12 signals to be transmitted from VC-4 signals.                                                                                                             |
|     |           | • Maps the VC-12 signals into the TU-12-based or STM-1-<br>based microwave frame payload, and adds microwave<br>frame overheads and pointers to form complete<br>microwave frames. |
|     |           | • Performs FEC coding.                                                                                                                                                             |
|     |           | • Performs digital modulation.                                                                                                                                                     |
|     |           | • Performs D/A conversion.                                                                                                                                                         |
|     |           | • Performs analog modulation.                                                                                                                                                      |
|     |           | • Combines the analog IF signals and ODU O&M signals.                                                                                                                              |
|     |           | • Transmits the combined signals and -48 V power to the ODU through the IF cable.                                                                                                  |
| 4   | ODU       | <ul> <li>Splits the analog IF signals, ODU O&amp;M signals, and -48<br/>V power.</li> </ul>                                                                                        |
|     |           | • Converts the analog IF signals into RF signals through up conversions and amplification.                                                                                         |
|     |           | • Transmits the RF signals to the antenna through the waveguide.                                                                                                                   |

| Table 2 1 Comisso sign   | 1 processing flow | of the SDU/DDU mig  | rowaya in the reading direction  |    |
|--------------------------|-------------------|---------------------|----------------------------------|----|
| I able 3-4 Scivice Signa | i processing now  | of the SDH/FDH line | crowave in the receive direction | 1. |


| NO. | Component | Signal Processing Description                                                                |
|-----|-----------|----------------------------------------------------------------------------------------------|
| 1   | ODU       | • Isolates and filters RF signals.                                                           |
|     |           | • Converts the RF signals into analog IF signals through down conversions and amplification. |
|     |           | • Combines the IF signals and the ODU O&M signals.                                           |
|     |           | • Transmits the combined signals to the IF board through the IF cable.                       |

| NO. | Component | Signal Processing Description                                                                           |
|-----|-----------|---------------------------------------------------------------------------------------------------------|
| 2   | IF1       | <ul> <li>Splits the received analog IF signals and ODU O&amp;M signals.</li> </ul>                      |
|     |           | • Performs A/D conversion for the IF signals.                                                           |
|     |           | • Performs digital demodulation.                                                                        |
|     |           | • Performs time domain adaptive equalization.                                                           |
|     |           | • Performs FEC decoding.                                                                                |
|     |           | • Synchronizes and descrambles the frames.                                                              |
|     |           | • Extracts overheads from microwave frames.                                                             |
|     |           | • Extracts VC-12 signals from the microwave frames and multiplexes the VC-12 signals into VC-4 signals. |
|     |           | • Transmits the VC-4 signals to the timeslot cross-connect unit of the CSHN.                            |
| 3   | CSHN      | The timeslot cross-connect unit grooms VC-12 signals to the VC-4 signals of the SP3S.                   |
| 4   | SP3S      | • Demultiplexes VC-12 signals from VC-4 signals.                                                        |
|     |           | • Demaps E1 service signals from the VC-12 signals.                                                     |
|     |           | • Performs HDB3 coding.                                                                                 |
|     |           | • Outputs E1 signals.                                                                                   |

# 3.4.2 Hybrid Microwave

This section describes how an ISU2 board transmits E1 services that the SP3S board receives and FE/GE services that the CSHN board receives. It serves as an example to illustrate the processing flow for Hybrid microwave service signals.

Figure 3-6 Service signal processing flow of the Hybrid microwave

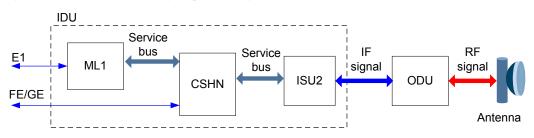


| NO. | Component       | Signal Processing Description                                                                                                                                                                               |
|-----|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | SP3S            | <ul> <li>Receives E1 signals.</li> <li>Performs HDB3 decoding.</li> </ul>                                                                                                                                   |
|     |                 | <ul> <li>Maps E1 service signals into VC-12 signals.</li> <li>Matrix 1 and 12 in a list of VC 4 in a list.</li> </ul>                                                                                       |
|     |                 | <ul> <li>Multiplexes the VC-12 signals into VC-4 signals.</li> <li>Transmits the VC-4 signals to the timeslot cross-connect unit of the CSHN.</li> </ul>                                                    |
|     | CSHN (Ethernet  | • Receives FE/GE signals.                                                                                                                                                                                   |
|     | interface unit) | • Performs decoding.                                                                                                                                                                                        |
|     |                 | • Aligns frames, strips preamble codes, and processes CRC codes.                                                                                                                                            |
|     |                 | • Forwards Ethernet frames to the packet switching unit of the CSHN.                                                                                                                                        |
| 2   | CSHN            | • Based on the service configuration, the timeslot cross-<br>connect unit grooms VC-12 signals to the VC-4 signals of<br>the ISU2 board.                                                                    |
|     |                 | • The packet switching unit processes Ethernet frames<br>based on the configuration and the Layer 2 protocol, and<br>then forwards the processed Ethernet frames to the ISU2<br>through the microwave port. |
| 3   | ISU2            | • Selects the proper modulation scheme based on the current channel quality.                                                                                                                                |
|     |                 | • Demultiplexes the VC-12 signals to be transmitted from VC-4 signals.                                                                                                                                      |
|     |                 | • Demaps E1 service signals from the VC-12 signals.                                                                                                                                                         |
|     |                 | • Maps the E1 service signals and Ethernet frames into the microwave frame payload, and adds microwave frame overheads to form complete microwave frames.                                                   |
|     |                 | • Performs FEC coding.                                                                                                                                                                                      |
|     |                 | • Performs digital modulation.                                                                                                                                                                              |
|     |                 | • Performs D/A conversion.                                                                                                                                                                                  |
|     |                 | • Performs analog modulation                                                                                                                                                                                |
|     |                 | • Combines the analog IF signals and ODU O&M signals.                                                                                                                                                       |
|     |                 | • Transmits the combined signals and -48 V power to the ODU through the IF cable.                                                                                                                           |

 Table 3-5 Service signal processing flow of the Hybrid microwave in the transmit direction

| NO. | Component | Signal Processing Description                                                              |
|-----|-----------|--------------------------------------------------------------------------------------------|
| 4   | ODU       | • Splits the analog IF signals, ODU O&M signals, and -48 V power.                          |
|     |           | • Converts the analog IF signals into RF signals through up conversions and amplification. |
|     |           | • Transmits the RF signals to the antenna through the waveguide.                           |

Table 3-6 Service signal processing flow of the Hybrid microwave in the receive direction


| NO. | Component | Signal Processing Description                                                                                                                                                                       |
|-----|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | ODU       | • Isolates and filters RF signals.                                                                                                                                                                  |
|     |           | • Converts the RF signals into analog IF signals through down conversions and amplification.                                                                                                        |
|     |           | • Combines the IF signals and the ODU O&M signals.                                                                                                                                                  |
|     |           | • Transmits the combined signals to the IF board through the IF cable.                                                                                                                              |
| 2   | ISU2      | <ul> <li>Splits the received analog IF signals and ODU O&amp;M signals.</li> </ul>                                                                                                                  |
|     |           | • Performs A/D conversion.                                                                                                                                                                          |
|     |           | • Performs digital demodulation.                                                                                                                                                                    |
|     |           | • Performs time domain adaptive equalization.                                                                                                                                                       |
|     |           | • Performs FEC decoding.                                                                                                                                                                            |
|     |           | • Synchronizes and descrambles the frames.                                                                                                                                                          |
|     |           | • Extracts overheads from microwave frames.                                                                                                                                                         |
|     |           | • Extracts E1 service signals from the microwave frames and maps the E1 service signals into VC-12 signals.                                                                                         |
|     |           | • Multiplexes the VC-12 signals into VC-4 signals and transmits the VC-4 signals to the timeslot cross-connect unit of the CSHN.                                                                    |
|     |           | • Extracts Ethernet frames from microwave frames, and transmits the Ethernet frames to the packet switching unit of the CSHN.                                                                       |
| 3   | CSHN      | • Based on the service configuration, the timeslot cross-<br>connect unit grooms VC-12 signals to the VC-4 signals of<br>the SP3S.                                                                  |
|     |           | • The packet switching unit processes Ethernet frames<br>based on the configuration and the Layer 2 protocol, and<br>then forwards the processed Ethernet frames to the<br>Ethernet interface unit. |

| NO. | Component                         | Signal Processing Description                                                                                                                                                             |
|-----|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4   | SP3S                              | <ul> <li>Demultiplexes VC-12 signals from VC-4 signals.</li> <li>Demaps E1 service signals from the VC-12 signals.</li> <li>Performs HDB3 coding.</li> <li>Outputs E1 signals.</li> </ul> |
|     | CSHN (Ethernet<br>interface unit) | <ul> <li>Aligns frames, adds preamble codes, and processes CRC codes.</li> <li>Performs coding.</li> <li>Outputs FE/GE signals.</li> </ul>                                                |

## 3.4.3 Packet Microwave

This section describes how an ISU2 board transmits the TDM E1 and ATM/IMA E1 services that the ML1 receives, and the FE/GE services that the CSHN receives. It serves as an example to illustrate the processing flow for Packet microwave service signals.

Figure 3-7 Flow of service signal processing



**Table 3-7** Service signal processing in the transmit direction

| NO. | Component | Signal Processing Description                                                                                                                                                                                     |
|-----|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | ML1       | <ul> <li>Receives TDM E1 signals and ATM/IMA E1 signals.</li> <li>Extracts service payloads from TDM E1 signals and performs the PWE3 encapsulation to form the Ethernet frames that carry PW packets.</li> </ul> |
|     |           | • Demultiplexes ATM cells from ATM/IMA E1 signals and performs the PWE3 encapsulation to form the Ethernet frames that carry PW packets.                                                                          |
|     |           | • Forwards Ethernet frames to the packet switching unit of the CSHN.                                                                                                                                              |

| NO. | Component                         | Signal Processing Description                                                                                                                                                                                                                             |
|-----|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | CSHN (Ethernet<br>interface unit) | • Receives FE/GE signals.                                                                                                                                                                                                                                 |
|     |                                   | • Performs decoding.                                                                                                                                                                                                                                      |
|     |                                   | • Delimits frames, strips preambles, and processes cyclic redundancy check (CRC) codes.                                                                                                                                                                   |
|     |                                   | • Forwards Ethernet frames to the packet switching unit of the CSHN.                                                                                                                                                                                      |
| 2   | CSHN                              | • Performs Layer 2 processing for the Ethernet signals that are transmitted from the Ethernet interface unit based on the configuration and the Layer 2 protocol, and then performs PWE3 encapsulation to form the Ethernet frames that carry PW packets. |
|     |                                   | • Processes the Ethernet frames that carry and isolate PW packets based on the service configuration and the Layer 3 protocol, and then forwards the processed Ethernet frames to ISU2.                                                                   |
| 3   | ISU2                              | • Selects the proper modulation scheme based on the quality of the channel.                                                                                                                                                                               |
|     |                                   | • Receives the Ethernet signals transmitted from the CSHN.                                                                                                                                                                                                |
|     |                                   | • Forms Ethernet service signals and microwave frame overheads into microwave frames.                                                                                                                                                                     |
|     |                                   | • Performs FEC coding.                                                                                                                                                                                                                                    |
|     |                                   | • Performs digital modulation.                                                                                                                                                                                                                            |
|     |                                   | • Performs D/A conversion.                                                                                                                                                                                                                                |
|     |                                   | • Performs analog modulation                                                                                                                                                                                                                              |
|     |                                   | • Combines the analog IF signals and ODU O&M signals.                                                                                                                                                                                                     |
|     |                                   | • Transmits the combined signals and -48 V power to the ODU through the IF cable.                                                                                                                                                                         |
| 4   | ODU                               | • Splits the analog IF signals, ODU O&M signals, and -48 V power.                                                                                                                                                                                         |
|     |                                   | • Converts the analog IF signals into RF signals through up conversions and amplification.                                                                                                                                                                |
|     |                                   | • Transmits the RF signals to the antenna through the waveguide.                                                                                                                                                                                          |

| NO. | Component                         | Signal Processing Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | ODU                               | <ul> <li>Isolates and filters RF signals.</li> <li>Converts the RF signals into analog IF signals through down conversions and amplification.</li> <li>Combines the IF signals and the ODU O&amp;M signals.</li> <li>Transmits the combined signals to the IF boards.</li> </ul>                                                                                                                                                                                                                                                           |
| 2   | ISU2                              | <ul> <li>Splits the received analog IF signals and ODU O&amp;M signals.</li> <li>Performs A/D conversion.</li> <li>Performs digital demodulation.</li> <li>Performs time domain adaptive equalization.</li> <li>Performs FEC decoding.</li> <li>Synchronizes and descrambles the frames.</li> <li>Extracts overheads from microwave frames.</li> <li>Extracts Ethernet frames from microwave frames, and transmits the Ethernet frames to the packet switching unit of the CSHN.</li> </ul>                                                |
| 3   | CSHN                              | <ul> <li>Processes the Ethernet frames that carry PW packets based on the service configuration and the Layer 3 protocol, and then forwards the processed Ethernet frames.</li> <li>Forwards Ethernet frames to the ML1 directly. In the case of the Ethernet frames that need to be forwarded to the Ethernet interface unit, extracts Ethernet frames from PW packets, performs layer 2 processing based on the configuration and the Layer 2 protocol, and then forwards the Ethernet frames to the Ethernet interface unit.</li> </ul> |
| 4   | ML1                               | <ul> <li>Extracts ATM cells, and TDM E1 service payloads from PW packets.</li> <li>Multiplexes the ATM cells into the ATM/IMA E1 signals inversely.</li> <li>Performs HDB3 coding.</li> <li>Outputs E1 signals.</li> <li>Delimits frames adds preambles and processes CPC</li> </ul>                                                                                                                                                                                                                                                       |
|     | CSHN (Ethernet<br>interface unit) | <ul> <li>Delimits frames, adds preambles, and processes CRC codes.</li> <li>Performs coding.</li> <li>Outputs FE/GE signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                    |

Table 3-8 Service signal processing flow in the receive direction

# **4** Networking and Applications

# **About This Chapter**

The OptiX RTN 980 provides complete microwave transmission solutions and supports various types of networking solutions to meet the diverse customer requirements.

#### 4.1 Typical Network Topologies

The OptiX RTN 980 supports various network topologies.

### 4.2 Networking with the OptiX RTN 310/380

The OptiX RTN 980 supports power over Ethernet function. It can be cooperated with the OptiX RTN 310/380 (a full outdoor equipment) directly, and works as service convergence nodes.

## 4.3 Feature Application (MPLS Packet Service)

The MPLS/PWE3 technology allows for the transmission of multiple types of services in packet switching networks. The OptiX RTN 980 can transmit three types of packet services: CES services, ATM services, and Ethernet services.

#### 4.4 Feature Application (Traversing the Original Network)

When carriers build microwave networks, the original local backhaul networks may not be suitable for transmitting the services carried on microwave networks. In this case, the OptiX RTN 980 can provide features that enable services to traverse the local backhaul networks.

# 4.1 Typical Network Topologies

The OptiX RTN 980 supports various network topologies.

## 4.1.1 Multi-directional Nodal Convergence

The OptiX RTN 980 supports the nodal convergence of radio links in a maximum of 20 directions, and supports various transmission modes in the upstream direction.

## **Network Diagram**

As nodal microwave equipment, the OptiX RTN 980 supports the convergence of large-capacity radio links in multi-directions. Figure 4-1 provides an example.

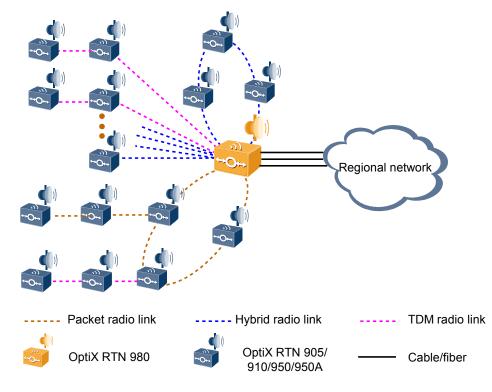



Figure 4-1 Multi-directional Nodal Convergence

## **Convergence of Radio Links**

- Supports the convergence of radio links in a maximum of 20 directions.
- Supports the convergence of TDM radio links, Hybrid radio links, and Packet radio links at the same time.
- Supports the convergence of microwave chain subnets and the microwave ring subnets.

## **Upstream Transmission**

- Supports the convergence of the TDM microwave services and Hybrid microwave services, and then transmission of them to the TDM network and the metropolitan Ethernet network in upstream direction in Native mode.
- Supports the convergence of the Packet microwave services, and then direct transmission of them to the PSN in the upstream direction by swapping MPLS labels.
- Supports the convergence of the TDM microwave services and Hybrid microwave services, encapsulation of them by the MPLS/PWE3 protocol, and then transmission of them to the PSN as gateway equipment.

## 4.1.2 Large-Capacity Microwave Convergence Ring

The OptiX RTN 980 can form a large-capacity convergence ring and support various protection schemes for a ring network.

## **Network Diagram**

OptiX RTN 980 can form a large-capacity convergence ring. Figure 4-2 provides an example.

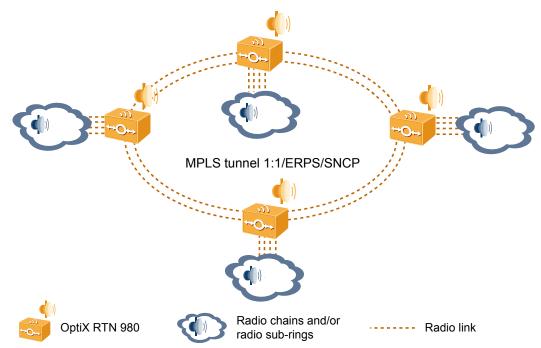



Figure 4-2 Large-capacity convergence ring

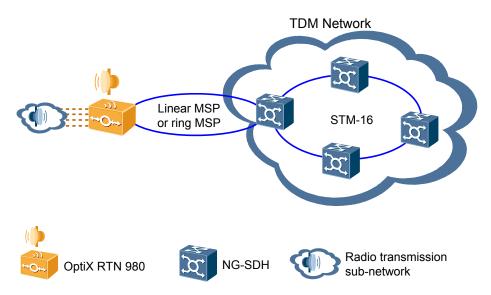
## **Types of Radio Links**

- The OptiX RTN 980 on the convergence ring can converge the services on the microwave sub-ring or microwave sub-link.
- The radio links on the convergence ring can use XPIC, N+1, and other RF configuration modes to achieve large-capacity transmission.

- When using Hybrid radio links, the convergence ring can converge the Hybrid microwave services or TDM microwave services directly.
- When using Packet radio links, the convergence ring can do as follows:
  - Converge the Packet microwave services at the access layer and transmit them to the PSN directly for service backhaul.
  - Converge the Hybrid microwave services or TDM microwave services, encapsulate them into packet signals through the MPLS/PWE3 technology on the OptiX RTN 980, and transmit them to the PSN directly for service backhaul.

#### **Protection Schemes**

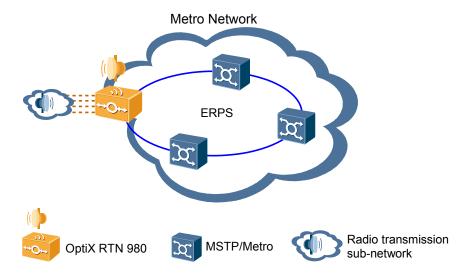
- On the Hybrid microwave convergence ring, the TDM services can be configured with SNCP, and the Ethernet services can be configured with ERPS.
- On the Packet microwave convergence ring, the services can be configured with the MPLS tunnel 1:1 protection or PW 1:1 protection.


### 4.1.3 Upstream Networking

The OptiX RTN 980 can form a ring network with the upstream equipment, or can be connected to the upstream equipment through a protection link, to achieve reliable service backhaul.

#### **Upstream Networking of TDM Services**

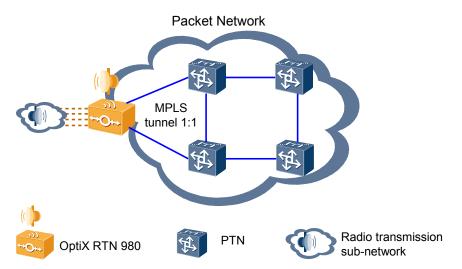
The OptiX RTN 980 can form a two-fiber bidirectional MS shared protection ring with SDH equipment through the STM-4 ports, or can be connected to MSTP equipment through the STM-1/STM-4 ports configured with the 1+1/1:1 linear MSP. **Figure 4-3** provides an example of the upstream networking of TDM services.


Figure 4-3 Upstream ring network of TDM services



#### **Upstream Networking of Ethernet Services**

The OptiX RTN 980 can form an ERPS ring with the metropolitan area network (MAN) equipment through the GE ports, or can be connected to the MAN equipment through the FE/GE ports configured with the LAG protection. **Figure 4-4** provides an example of the upstream networking for Ethernet services.


Figure 4-4 Upstream ring network for Ethernet services



#### **Upstream Networking of MPLS Services**

The OptiX RTN 980 can form a ring network or a mesh network with MPLS packet switching equipment through the GE ports. MPLS tunnel 1:1 protection is adopted. **Figure 4-5** provides an example of the upstream networking of MPLS services.

Figure 4-5 Upstream ring network of MPLS services



## 4.2 Networking with the OptiX RTN 310/380

The OptiX RTN 980 supports power over Ethernet function. It can be cooperated with the OptiX RTN 310/380 (a full outdoor equipment) directly, and works as service convergence nodes.

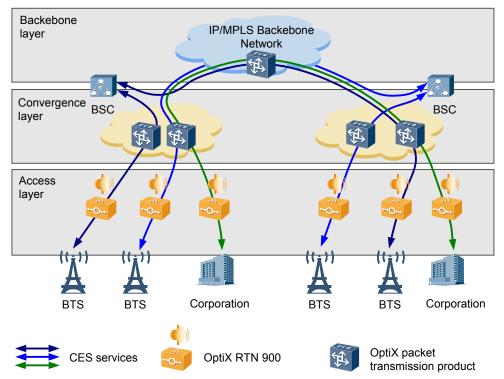
The OptiX RTN 310/380 integrates service interfaces, IF modules, and an RF modules. The OptiX RTN 980 does not need to use IF boards when working with the OptiX RTN 310/380. The OptiX RTN 980 can be equipped with an EG4P board which provides power over Ethernet function. The EG4P board is connected to the OptiX RTN 310/380 with P&E cables, which transmits Ethernet signals and supplies power for the OptiX RTN 310/380.

Access Layer Aggregation Layer  $((_{\hat{k}}))$ NodeB  $((_{\pm}))$ P&F RNC NodeB ((+))NodeB  $((_{\pm}))$ NodeB RNC OptiX RTN 310/380 OptiX RTN 950/980/950A P&E cable

Figure 4-6 Networking with the OptiX RTN 310/380

## 4.3 Feature Application (MPLS Packet Service)


The MPLS/PWE3 technology allows for the transmission of multiple types of services in packet switching networks. The OptiX RTN 980 can transmit three types of packet services: CES services, ATM services, and Ethernet services.


## 4.3.1 CES Services

On the OptiX RTN 980, CES services are constructed using the TDM PWE3 technology. That is, TDM E1 services are encapsulated into PW packets, and the PW packets are transmitted through a PW on the PSN.

#### **Application Example**

Circuit emulation service (CES) is mainly used to transmit mobile backhauled services and enterprise private line services. As shown in **Figure 4-7**, a 2G base station or an enterprise private line connects to the OptiX RTN 980 through a TDM line. The OptiX RTN 980 encapsulates the TDM signals into packets, and then transmits the packets to the opposite end through a PW on the PSN.



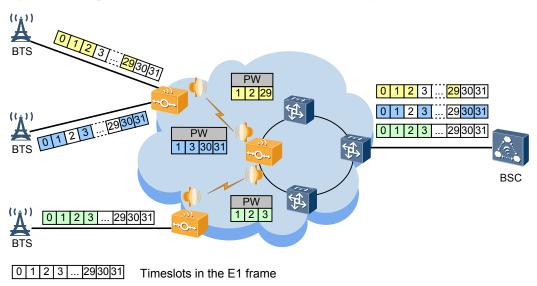


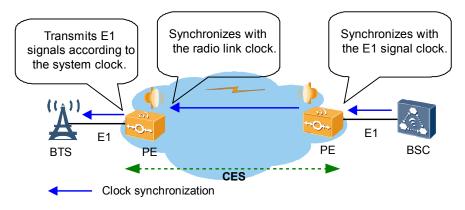
#### **Emulation Modes**

The OptiX RTN 980 supports CES services in structured emulation mode and non-structured emulation mode.

- The structured emulation mode is the CESoPSN mode. The equipment is aware of the frame structure, framing mode, and timeslot information in the TDM circuit.
- The non-structured emulation mode is the SAToP mode. The equipment is not aware of the frame structure. Instead, the equipment considers the TDM signals as consecutive bit streams, and then emulates and transparently transmits the TDM signals.

As shown in **Figure 4-8**, the OptiX RTN 980 in CESoPSN mode supports the compression of idle 64 kbit/s timeslots in TDM E1 signals to save transmission bandwidth.





Figure 4-8 Compression of idle 64 kbit/s timeslots in TDM E1 signals

#### Service Clocks

Clock information is an important feature of TDM services. The OptiX RTN 980 supports the retiming clocks and CES ACR clocks of CES services.

In retiming synchronization mode, the system clocks of all PEs on the network are synchronized. The system clock of a PE is considered as the service transmit clock (retiming). As shown in **Figure 4-9**, the system clock of BTS synchronizes itself with the service clock of PE. In this manner, all PEs and CEs are synchronous, and the transmit clocks of TDM services on all CEs and PEs are synchronous.

Figure 4-9 Retiming synchronization mode of CES service clocks



In ACR mode, the clock is extracted from the TDM interface on the PE on the ingress side. On the PE on the egress side, the clock of the emulated TDM service is recovered based on the clock information in the CES service. **Figure 4-10** shows the retiming synchronization mode of CES service clocks.

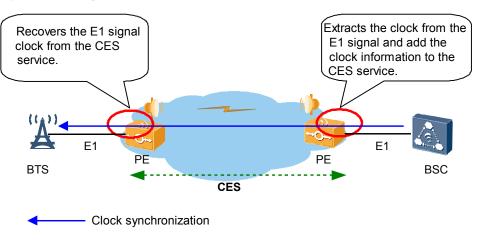



Figure 4-10 Adaptive synchronization mode of CES service clocks

#### **Channelized STM-1 Emulation**

The OptiX RTN 980 supports the transparent transmission of STM-1 services in packet networks through CES emulation of channelized STM-1 services. As shown in Figure 4-11, section overhead bytes and 63xE1 signals in STM-1 frames can be encapsulated into CES services for transmission in packet networks.

During channelized STM-1 emulation, line clock synchronization across the SDH network can be implemented in the following two modes:

- The system clock of the OptiX RTN 980 is synchronized with SDH equipment through SDH line clocks.
- The OptiX RTN 980 derives the transmit clock from the receive clock through the lineclock retiming function. Therefore, the receive clock and transmit clock are synchronous on the SDH equipment.

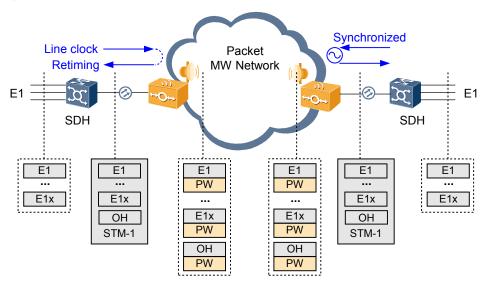
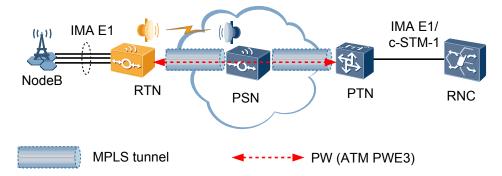



Figure 4-11 Channelized STM-1 emulation


## 4.3.2 ATM/IMA Services

The OptiX RTN 980 supports ATM PWE3 services. The ATM/IMA E1 technology is used to transmit ATM services to the OptiX RTN equipment, and then the ATM cells are encapsulated into PW packets. The packets are then transmitted in the MPLS tunnel on the PSN.

#### **Application Example**

ATM/IMA services are mainly backhauled services of base stations. With the ATM/IMA E1 technology, the ATM services from NodeB are transmitted to the OptiX RTN 980. On the OptiX RTN 980, PWE3 emulation is performed for the ATM services. Then, the services are transmitted over PWs in MPLS tunnels across the PSN towards the RNC. Before being sent to the RNC, the services are decapsulated on the OptiX PTN/RTN equipment. Figure 4-12 shows the application example.

Figure 4-12 Example of ATM/IMA services



#### ATM/IMA Services on the UNI Side

On the UNI side, the OptiX RTN 980 supports the following ATM/IMA functions:

- Supports the IMA E1 technology in which an IMA group is comprised of E1 links.
- Supports the Fractional IMA technology in which an IMA group is comprised of Fractional E1 links.

#### ATM PWE3 Services on the NNI Side

On the NNI side, the OptiX RTN 980 supports the following ATM PWE3 functions:

- One-to-one VCC mapping scheme: One VCC is mapped into one PW.
- N-to-one VCC mapping scheme: N (N $\leq$ 32) VCCs are mapped into one PW.
- One-to-one VPC mapping scheme: One VPC is mapped into one PW.
- N-to-one VPC mapping scheme: N (N $\leq$ 32) VPCs are mapped into one PW.
- On one PW, a maximum of 31 ATM cells can be concatenated.
- ATM transparent service.

## **4.3.3 Ethernet Services**

The OptiX RTN 980 supports Ethernet PWE3 services. Therefore, PWs can be used to transmit E-Line services, E-Aggr services and E-LAN Services (VPLS).

#### **E-Line Services**

The E-Line technology is used to transmit isolated Ethernet private line services.

**Figure 4-13** illustrates an example of how E-Line services are applied on the OptiX RTN 980. Company A has branches in City 1 and City 3; Company B has branches in City 2 and City 3; Company C has branches in City 1 and City 2. The branches of Company A, Company B, and Company C each have specific data communication requirements. In this application scenario, the OptiX RTN 980 can provide E-Line services for Company A, Company B, and Company C that can meet each of their respective needs while ensuring that the service data of each company is separated.

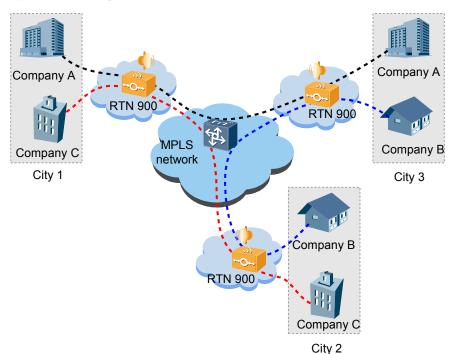


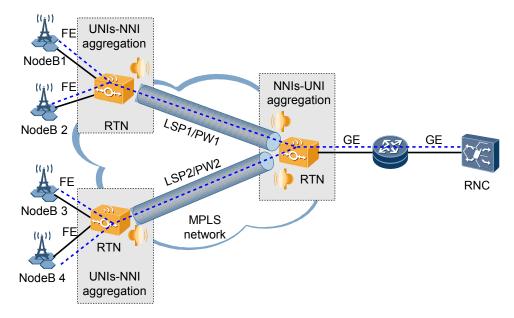

Figure 4-13 Example of E-Line services

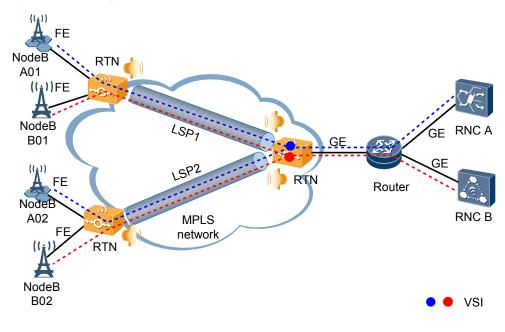
#### **E-Aggr Services**

The E-Aggr technology is used to transmit multipoint-to-point bidirectional aggregation services. An E-Aggr service has multiple aggregation sources and one aggregation sink. The aggregation sources can communicate with the aggregation sink, but the aggregation sources are isolated from each other.

E-Aggr services are distinguished based on VLAN tag switching. E-Aggr services simplify service configuration, and QoS processing can be performed at aggregation points.

**Figure 4-14** shows the application of E-Aggr services on a mobile bearer network. On the base station side, services from different base stations are aggregated to a PW; on the RNC side, services on multiple PWs are aggregated at an interface and then transmitted to the RNC.





Figure 4-14 Example of E-Aggr services

#### **VPLS Services**

Virtual private LAN service (VPLS) is a Layer 2 virtual private network (VPN) technology that provides multipoint connectivity over a Multiprotocol Label Switching (MPLS) network.

VPLS uses virtual switch instances (VSIs) to enable Layer 2 forwarding. One VPN corresponds to one VSI to which PWs and UNI ports can be mounted. Each VSI maintains a forwarding table that includes MAC addresses and their associated PWs or V-UNIs, and forwards traffic based on table entries. The OptiX RTN 980 can be configured with multiple VSIs to support coexistence of multiple VPNs.

**Figure 4-15** shows a mobile backhaul network. The NodeBs that belong to the same RNC use VLAN IDs to differentiate services, and they use the same group of VLAN IDs. To isolate services between the two RNCs (as well as their NodeBs) while enabling VPN communication between each RNC and their NodeBs, you can create two VSIs on the convergence RTN node.



#### Figure 4-15 Example of VPLS services

## 4.4 Feature Application (Traversing the Original Network)

When carriers build microwave networks, the original local backhaul networks may not be suitable for transmitting the services carried on microwave networks. In this case, the OptiX RTN 980 can provide features that enable services to traverse the local backhaul networks.

## 4.4.1 Traversing a TDM Network by Using the EoPDH/EoSDH Feature

The EoPDH/EoSDH feature provides a solution that transmits Ethernet services over E1 signals so that carriers can transmit Ethernet services on the existing TDM networks.

In most cases, a new radio access network transmits the Ethernet services from 3G base stations in Native mode over the Integrated IP radio links, but a large number of TDM networks exist on the local backhaul network at the convergence layer; therefore, Ethernet service cannot be directly transmitted. In this case, the OptiX RTN 980 at the convergence node of microwave services can use the EoPDH/EoSDH feature to transmit Ethernet services.

The EoPDH/EoSDH feature is used to encapsulate the Ethernet services on the Integrated IP radio links or the Ethernet services locally added into E1/STM-1 signals. The feature then transmits the Ethernet services over the existing TDM networks. At the last node on the TDM network, the MSTP or RTN equipment that supports the EoPDH/EoSDH feature is used to decapsulate the Ethernet services for transmission. For details, see Figure 4-16.

#### ΠΝΟΤΕ

With the application of the EoPDH/EoSDH feature, the Ethernet services that are encapsulated into E1 signals can also be transmitted over SDH/PDH radio links provided by the IF1 board. In this case, the IF board need not be replaced. In addition, the TDM radio network that is comprised of the OptiX RTN 980 NEs can be upgraded to a multi-service network that supports Ethernet service transmission.

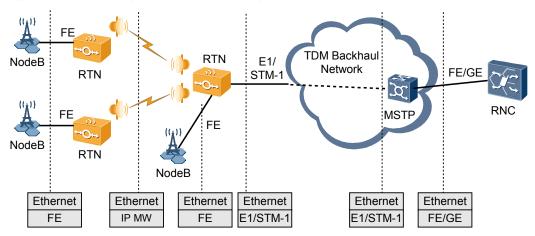



Figure 4-16 Traversing a TDM network using the EoPDH/EoSDH feature

## 4.4.2 Using ML-PPP to Transmit Services Through a TDM Network

The multilink PPP (ML-PPP) technology is a solution in which E1 is used to bear MPLS tunnels. Using ML-PPP, carriers can transmit packet services through the existing TDM network.

During the evolution to packet backhaul networks, base station services received through E1, ATM/IMA, or FE/GE interfaces are backhauled as packet services by using the MPLS/PWE3 technology. However, legacy TDM-based backhaul networks or TDM leased lines cannot backhaul packet services directly. Packet backhaul can be implemented by using the ML-PPP function on OptiX RTN 980, the convergence node of microwave services. The ML-PPP function bundles multiple E1s into an ML-PPP group to carry MPLS tunnels and backhaul packet services. E1 channels on CQ1, a channelized STM-1 board, can also be bundled into an ML-PPP group.

As shown in **Figure 4-17**, ML-PPP helps the equipment to encapsulate the packet services on the Integrated IP radio links or the Ethernet services locally added into E1 signals and then to transmit the Ethernet services over the existing TDM networks. After the services traverse a TDM network, the OptiX PTN equipment (or OptiX RTN equipment) decapsulates Ethernet services before transmission.

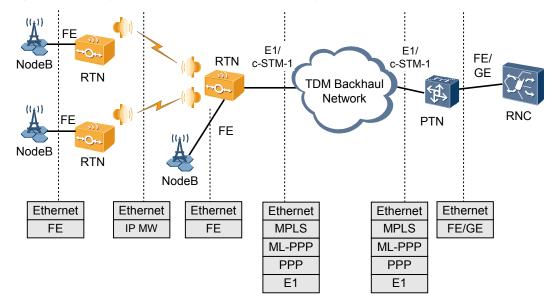



Figure 4-17 Using ML-PPP to transmit services through a TDM network

## 4.4.3 Traversing a Layer 2 Network by Using VLAN Sub-interfaces

The method of adding VLAN IDs to MPLS tunnels enables the MPLS tunnels to traverse a Layer 2 network. This means that carriers can use their live Layer 2 networks to transmit packet services.

Generally, all NEs that an LSP traverses support MPLS. In certain circumstances, however, LSPs need to traverse a Layer 2 network (such as a metropolitan Ethernet network) that does not support MPLS. As shown in **Figure 4-18**, BTSs and NodeBs are located at the same site, and they transmit services to the BSC and RNC by using the MPLS or PWE3 technology. These services are transmitted to the Layer 2 network separately. The BSC and RNC are located at different convergence sites. In this scenario, the VLAN sub-interface technology can be used to create sub-interfaces with different VLAN IDs on an Ethernet port, therefore adding VLAN IDs to Ethernet frames that carry these LSPs. (LSPs and VLAN IDs have one-to-one mappings.) Within the Layer 2 network, services are transmitted based on VLAN IDs rather than MPLS, enabling LSPs to traverse the Layer 2 network.

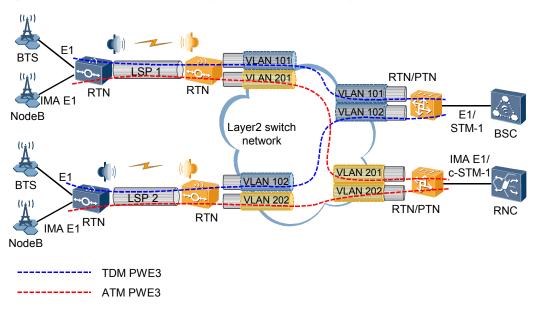



Figure 4-18 MPLS tunnels traversing a Layer 2 network using VLAN sub-interfaces

# **5** Network Management System

## **About This Chapter**

This chapter describes the network management solution and the NMS software that constitutes this solution.

#### 5.1 Network Management Solution

Huawei offers a complete transmission network management solution compliant with TMN for different function domains and customer groups on telecommunication networks.

#### 5.2 Web LCT

The Web LCT is a local maintenance terminal. The Web LCT provides the following management functions at the NE layer: NE management, alarm management, performance management, configuration management, communication management, security management, and HOP management.

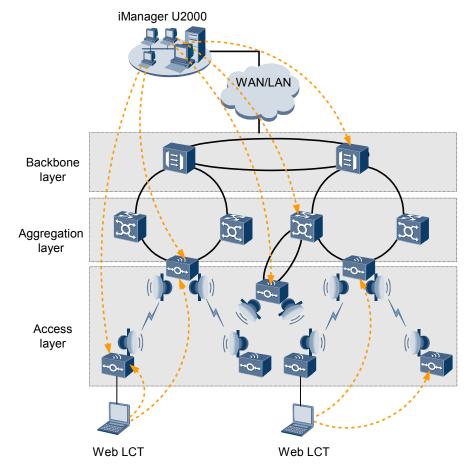
#### 5.3 U2000

The U2000 is a network-level network management system. A user can access the U2000 server through a U2000 client to manage Huawei transport subnets in a unified manner. The U2000 can provide NE-level and network-level management functions.

## 5.1 Network Management Solution

Huawei offers a complete transmission network management solution compliant with TMN for different function domains and customer groups on telecommunication networks.

The NM solutions consist of the following:


• iManager U2000 Web LCT local maintenance terminal

The Web LCT, a Web-based local maintenance terminal, is used to manage local and remote NEs on a per-site or hop basis.

• iManager U2000 unified network management system

The iManager U2000, a network-level management system, is used to manage Huawei transmission equipment such as the OptiX RTN, PTN, MSTP, and WDM equipment.

Figure 5-1 Network management solution for transmission networks



## 5.2 Web LCT

The Web LCT is a local maintenance terminal. The Web LCT provides the following management functions at the NE layer: NE management, alarm management, performance

management, configuration management, communication management, security management, and HOP management.

#### **Function Overview**

| Function                    | Description                                                                                                                                                                                                                                                                                                         |  |  |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| NE Management               | <ul> <li>Search of NEs</li> <li>Addition/Deletion of NEs</li> <li>Login or logout of NEs</li> <li>Start NE Explorer</li> </ul>                                                                                                                                                                                      |  |  |
| Alarm Management            | <ul> <li>Setting of alarm monitoring strategies</li> <li>Viewing of alarms</li> <li>Deletion of alarms</li> </ul>                                                                                                                                                                                                   |  |  |
| Performance Management      | <ul> <li>Setting of performance monitoring strategies</li> <li>Viewing of performance events</li> <li>Resetting of performance registers</li> </ul>                                                                                                                                                                 |  |  |
| Configuration Management    | <ul> <li>Basic NE information configuration</li> <li>Radio link configuration</li> <li>Protection configuration</li> <li>Interface configuration</li> <li>Service configuration</li> <li>Clock configuration</li> </ul>                                                                                             |  |  |
| Communication<br>Management | <ul> <li>Communication parameter management</li> <li>DCC management</li> <li>Inband DCN management</li> <li>L2DCN management</li> <li>HWECC protocol management</li> <li>IP protocol management</li> </ul>                                                                                                          |  |  |
| Security Management         | <ul> <li>NE user management</li> <li>NE user group management</li> <li>LCT access control</li> <li>Online user management</li> <li>NE security parameters</li> <li>NE security log</li> <li>NMS user management</li> <li>NMS log management</li> <li>File transmission protocol management (FTP or SFTP)</li> </ul> |  |  |

| Table 5-1 Management functions of Web LCT | Table 5-1 | Management | functions | of Web LCT |
|-------------------------------------------|-----------|------------|-----------|------------|
|-------------------------------------------|-----------|------------|-----------|------------|

| Function       | Description                                                                                                          |  |
|----------------|----------------------------------------------------------------------------------------------------------------------|--|
| HOP Management | • Parameters on both ends of a hop can be set on the sa interface.                                                   |  |
|                | • After the parameters on one end of a hop are set, the parameters on the other end are assigned values accordingly. |  |

## 5.3 U2000

The U2000 is a network-level network management system. A user can access the U2000 server through a U2000 client to manage Huawei transport subnets in a unified manner. The U2000 can provide NE-level and network-level management functions.

#### **Function Overview**

| Functional N                   | Iodule                            | Description                                                                                                                                                                                                                                    |
|--------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NE level mana                  | agement                           | <ul> <li>NE panel browsing</li> <li>Built-in NE explorer implementing all-around NE-level management</li> </ul>                                                                                                                                |
| Network<br>level<br>management | Topology<br>management            | <ul> <li>Physical topology view</li> <li>End-to-end topology management of services</li> <li>Clock view</li> <li>Automatic topology discovery</li> <li>Customized topology view</li> <li>Backup gateway configuration</li> </ul>               |
|                                | Network-level alarm<br>management | <ul> <li>Networkwide alarm monitoring, statistics, and management</li> <li>Customized alarm query templates</li> <li>Alarm correlation analysis</li> <li>Alarm time localization</li> <li>Alarm notification</li> <li>Alarm dumping</li> </ul> |

 Table 5-2 Management Functions of U2000

| Functional N  | Aodule                                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | Network-level<br>performance<br>management   | <ul> <li>Creation of performance monitoring templates</li> <li>Scheduled monitoring and real-time monitoring</li> <li>Browsing of historical performance data</li> <li>Graphic display of performance data</li> <li>Comparison of performance data in different periods or based on different resources</li> <li>Historical performance data dump</li> </ul>                                                                                    |
|               | Network-level<br>configuration<br>management | <ul> <li>End-to-end configuration of TDM services</li> <li>End-to-end configuration of MPLS tunnels and<br/>PWE3 services</li> <li>End-to-end configuration of Native E-Line/E-<br/>LAN services</li> </ul>                                                                                                                                                                                                                                     |
|               | Network-level<br>diagnosis and test          | <ul> <li>One-click connectivity test of packet services</li> <li>One-click performance test of packet services</li> <li>One-click smart diagnosis of packet service faults</li> </ul>                                                                                                                                                                                                                                                           |
|               | Network-level<br>communication<br>management | <ul><li>DCC view management</li><li>Inter-NE Ping and Traceroute tests</li></ul>                                                                                                                                                                                                                                                                                                                                                                |
|               | Network-level<br>security management         | <ul> <li>Account policy management</li> <li>User group management</li> <li>Rights management</li> <li>RADIUS authentication on user rights</li> <li>SSLv3 encrypted communication between U2000 server and U2000 client</li> <li>SSLv3 encrypted communication between U2000 server and gateway NE</li> <li>Access Control List (ACL) management of the U2000 server</li> <li>Access Control List (ACL) management of the gateway NE</li> </ul> |
| Inventory mar | nagement                                     | <ul> <li>Inventory management of equipment such as NEs, boards, and ports</li> <li>Inventory management of fibers and links</li> </ul>                                                                                                                                                                                                                                                                                                          |
| Log managem   | ent                                          | <ul> <li>Management of NMS operation logs, system logs, and security logs</li> <li>NE Security Log management</li> <li>NE Syslog management</li> </ul>                                                                                                                                                                                                                                                                                          |

| Functional Module      | Description                                                                                                                                                            |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Database management    | <ul> <li>NMS database backup and restoration</li> <li>NE database backup and restoration</li> <li>Synchronization between NE data and NMS data</li> </ul>              |  |
| NE Software management | <ul> <li>NE software loading and upgrading</li> <li>NE Software database management</li> <li>NE data saving, backup, and restoration</li> </ul>                        |  |
| Report management      | <ul> <li>Management of alarm reports, log reports, and resource reports</li> <li>Viewing reports by using Internet Explorer</li> <li>Output of report files</li> </ul> |  |
| Northbound interface   | <ul> <li>SNMP, CORBA, and XML northbound interfaces</li> <li>Performance text interfaces</li> </ul>                                                                    |  |

## **6** Technical Specifications

## **About This Chapter**

This chapter describes the technical specifications of the OptiX RTN 980.

#### 6.1 RF Performance

This chapter describes the radio frequency (RF) performance and various technical specifications related to microwaves.

#### 6.2 Predicted Equipment Reliability

Equipment reliability is measured by mean time between failures (MTBF), and predicated equipment reliability complies with the Telcordia SR-332 standard.

#### 6.3 Interface Performance

This section describes the technical specifications of services and auxiliary interfaces.

#### 6.4 Clock Timing and Synchronization Performance

The clock timing performance and synchronization performance of the product meet relevant ITU-T recommendations.

#### 6.5 Integrated System Performance

Integrated system performance includes the dimensions, weight, power consumption, power supply, EMC, surge protection, safety, and environment.

## 6.1 RF Performance

This chapter describes the radio frequency (RF) performance and various technical specifications related to microwaves.

## 6.1.1 Microwave Work Modes

This section lists the microwave work modes that the OptiX RTN980 supports base on IF boards.

#### 6.1.1.1 Microwave Work Modes (IF1 board)

The IF1 board supports SDH/PDH microwave work modes.

#### 

The channel spacings supported by the OptiX RTN 980 comply with ETSI standards. Channel spacings 14/28/56 MHz apply to most frequency bands; but channel spacings 13.75/27.5/55 MHz apply to the 18 GHz frequency band.

| Service Capacity | Modulation Scheme | Channel Spacing (MHz) |
|------------------|-------------------|-----------------------|
| 4xE1             | QPSK              | 7                     |
| 4xE1             | 16QAM             | 3.5                   |
| 8xE1             | QPSK              | 14 (13.75)            |
| 8xE1             | 16QAM             | 7                     |
| 16xE1            | QPSK              | 28 (27.5)             |
| 16xE1            | 16QAM             | 14 (13.75)            |
| 22xE1            | 32QAM             | 14 (13.75)            |
| 26xE1            | 64QAM             | 14 (13.75)            |
| 35xE1            | 16QAM             | 28 (27.5)             |
| 44xE1            | 32QAM             | 28 (27.5)             |
| 53xE1            | 64QAM             | 28 (27.5)             |
| STM-1            | 128QAM            | 28 (27.5)             |

Table 6-1 SDH/PDH microwave work modes (IF1 board)

#### 6.1.1.2 Microwave Work Modes (IFU2 board)

The IFU2 board supports Integrated IP microwave work modes.

#### 

The channel spacings supported by the OptiX RTN 980 comply with ETSI standards. Channel spacings 14/28/56 MHz apply to most frequency bands; but channel spacings 13.75/27.5/55 MHz apply to the 18 GHz frequency band.

| Channel Spacing<br>(MHz) | Modulation<br>Scheme | Maximum<br>Number of E1s in<br>Hybrid<br>Microwave | Native Ethernet<br>Throughput<br>(Mbit/s) |
|--------------------------|----------------------|----------------------------------------------------|-------------------------------------------|
| 7                        | QPSK                 | 5                                                  | 9 to 12                                   |
| 7                        | 16QAM                | 10                                                 | 20 to 24                                  |
| 7                        | 32QAM                | 12                                                 | 24 to 29                                  |
| 7                        | 64QAM                | 15                                                 | 31 to 37                                  |
| 7                        | 128QAM               | 18                                                 | 37 to 44                                  |
| 7                        | 256QAM               | 21                                                 | 43 to 51                                  |
| 14 (13.75)               | QPSK                 | 10                                                 | 20 to 23                                  |
| 14 (13.75)               | 16QAM                | 20                                                 | 41 to 48                                  |
| 14 (13.75)               | 32QAM                | 24                                                 | 50 to 59                                  |
| 14 (13.75)               | 64QAM                | 31                                                 | 65 to 76                                  |
| 14 (13.75)               | 128QAM               | 37                                                 | 77 to 90                                  |
| 14 (13.75)               | 256QAM               | 43                                                 | 90 to 104                                 |
| 28 (27.5)                | QPSK                 | 20                                                 | 41 to 48                                  |
| 28 (27.5)                | 16QAM                | 40                                                 | 82 to 97                                  |
| 28 (27.5)                | 32QAM                | 52                                                 | 108 to 125                                |
| 28 (27.5)                | 64QAM                | 64                                                 | 130 to 150                                |
| 28 (27.5)                | 128QAM               | 75                                                 | 160 to 180                                |
| 28 (27.5)                | 256QAM               | 75                                                 | 180 to 210                                |
| 56 (55)                  | QPSK                 | 40                                                 | 82 to 97                                  |
| 56 (55)                  | 16QAM                | 75                                                 | 165 to 190                                |
| 56 (55)                  | 32QAM                | 75                                                 | 208 to 240                                |
| 56 (55)                  | 64QAM                | 75                                                 | 260 to 310                                |
| 56 (55)                  | 128QAM               | 75                                                 | 310 to 360                                |
| 56 (55)                  | 256QAM               | 75                                                 | 360 to 420                                |

 Table 6-2 Integrated IP microwave work modes (IFU2 board)

#### 

For the integrated IP microwave work mode that the IFU2/IFX2 board supports:

- The throughput specifications listed in the tables are based on untagged Ethernet frames with a length ranging from 64 bytes to 1518 bytes
- E1 services need to occupy the corresponding bandwidth of the air interface capacity. The bandwidth remaining after the E1 service capacity is subtracted from the air interface capacity can be provided for Ethernet services.

#### 6.1.1.3 Microwave Work Modes (IFX2 board)

The IFX2 board supports Integrated IP microwave work modes.

#### ΠΝΟΤΕ

The channel spacings supported by the OptiX RTN 980 comply with ETSI standards. Channel spacings 14/28/56 MHz apply to most frequency bands; but channel spacings 13.75/27.5/55 MHz apply to the 18 GHz frequency band.

| Channel Spacing<br>(MHz) | Modulation<br>Scheme | Maximum<br>Number of E1s in<br>Hybrid<br>Microwave | Native Ethernet<br>Throughput<br>(Mbit/s) |
|--------------------------|----------------------|----------------------------------------------------|-------------------------------------------|
| 7                        | QPSK                 | 4                                                  | 9 to 11                                   |
| 7                        | 16QAM                | 9                                                  | 19 to 23                                  |
| 7                        | 32QAM                | 11                                                 | 24 to 29                                  |
| 7                        | 64QAM                | 14                                                 | 31 to 36                                  |
| 14 (13.75)               | QPSK                 | 9                                                  | 20 to 23                                  |
| 14 (13.75)               | 16QAM                | 19                                                 | 40 to 47                                  |
| 14 (13.75)               | 32QAM                | 24                                                 | 50 to 59                                  |
| 14 (13.75)               | 64QAM                | 30                                                 | 63 to 73                                  |
| 14 (13.75)               | 128QAM               | 36                                                 | 75 to 88                                  |
| 28 (27.5)                | QPSK                 | 19                                                 | 41 to 48                                  |
| 28 (27.5)                | 16QAM                | 40                                                 | 84 to 97                                  |
| 28 (27.5)                | 32QAM                | 49                                                 | 103 to 120                                |
| 28 (27.5)                | 64QAM                | 63                                                 | 130 to 150                                |
| 28 (27.5)                | 128QAM               | 75                                                 | 160 to 180                                |
| 28 (27.5)                | 256QAM               | 75                                                 | 180 to 210                                |

Table 6-3 Integrated IP microwave work modes (IFX2 board)

| Channel Spacing<br>(MHz) | Modulation<br>Scheme | Maximum<br>Number of E1s in<br>Hybrid<br>Microwave | Native Ethernet<br>Throughput<br>(Mbit/s) |
|--------------------------|----------------------|----------------------------------------------------|-------------------------------------------|
| 56 (55)                  | QPSK                 | 39                                                 | 83 to 97                                  |
| 56 (55)                  | 16QAM                | 75                                                 | 165 to 190                                |
| 56 (55)                  | 32QAM                | 75                                                 | 210 to 245                                |
| 56 (55)                  | 64QAM                | 75                                                 | 260 to 305                                |
| 56 (55)                  | 128QAM               | 75                                                 | 310 to 360                                |
| 56 (55)                  | 256QAM               | 75                                                 | 360 to 410                                |

#### NOTE

For the IFX2 board, the microwave work modes are the same regardless of whether the XPIC function is enabled or disabled.

When the channel spacing is 7 MHz or 14 MHz and the XPIC function is enabled, the IFX2 board only supports the XMC-2 ODU.

When the XPIC function is enabled and the frequency band is 26 GHz to 42 GHz, the 7MHz/64QAM and 14MHz/128QAM work modes are not supported.

#### ΠΝΟΤΕ

For the integrated IP microwave work mode that the IFU2/IFX2 board supports:

- The throughput specifications listed in the tables are based on untagged Ethernet frames with a length ranging from 64 bytes to 1518 bytes
- E1 services need to occupy the corresponding bandwidth of the air interface capacity. The bandwidth remaining after the E1 service capacity is subtracted from the air interface capacity can be provided for Ethernet services.

#### 6.1.1.4 Microwave Work Modes (ISU2 board)

The ISU2 board supports SDH microwave work modes and Integrated IP microwave work modes.

#### 

The channel spacings supported by the OptiX RTN 980 comply with ETSI standards. Channel spacings 14/28/56 MHz apply to most frequency bands; but channel spacings 13.75/27.5/55 MHz apply to the 18 GHz frequency band.

#### **SDH Microwave Work Modes**

**Table 6-4** SDH microwave work modes (ISU2 board)

| Service Capacity | Modulation Scheme | Channel Spacing (MHz) |
|------------------|-------------------|-----------------------|
| STM-1            | 128QAM            | 28 (27.5)             |

| Service Capacity | Modulation Scheme | Channel Spacing (MHz) |
|------------------|-------------------|-----------------------|
| 2xSTM-1          | 128QAM            | 56 (55)               |
| 2xSTM-1          | 256QAM            | 50                    |

### Integrated IP Microwave Work Modes

| Channel          | Modulation | Maximum                    | Native Ethernet Throughput (Mbit/s)           |                                                         |                                                         |            |  |
|------------------|------------|----------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------|--|
| Spacing<br>(MHz) |            | Without<br>Compressio<br>n | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |            |  |
| 3.5              | QPSK       | 2                          | 4 to 5                                        | 4 to 6                                                  | 4 to 6                                                  | 4 to 10    |  |
| 3.5              | 16QAM      | 4                          | 9 to 11                                       | 9 to 13                                                 | 9 to 13                                                 | 9 to 20    |  |
| 7                | QPSK       | 5                          | 10 to 13                                      | 10 to 15                                                | 10 to 22                                                | 10 to 33   |  |
| 7                | 16QAM      | 10                         | 20 to 26                                      | 20 to 30                                                | 20 to 44                                                | 20 to 66   |  |
| 7                | 32QAM      | 12                         | 25 to 32                                      | 25 to 36                                                | 25 to 54                                                | 25 to 80   |  |
| 7                | 64QAM      | 15                         | 31 to 40                                      | 31 to 47                                                | 31 to 67                                                | 31 to 100  |  |
| 7                | 128QAM     | 18                         | 37 to 47                                      | 37 to 56                                                | 37 to 80                                                | 37 to 119  |  |
| 7                | 256QAM     | 20                         | 41 to 53                                      | 41 to 62                                                | 41 to 90                                                | 42 to 134  |  |
| 14 (13.75)       | QPSK       | 10                         | 20 to 26                                      | 20 to 31                                                | 20 to 44                                                | 20 to 66   |  |
| 14 (13.75)       | 16QAM      | 20                         | 41 to 52                                      | 41 to 61                                                | 41 to 89                                                | 41 to 132  |  |
| 14 (13.75)       | 32QAM      | 24                         | 51 to 65                                      | 51 to 77                                                | 51 to 110                                               | 51 to 164  |  |
| 14 (13.75)       | 64QAM      | 31                         | 65 to 83                                      | 65 to 96                                                | 65 to 140                                               | 65 to 209  |  |
| 14 (13.75)       | 128QAM     | 37                         | 76 to 97                                      | 76 to 113                                               | 76 to 165                                               | 76 to 245  |  |
| 14 (13.75)       | 256QAM     | 42                         | 87 to 111                                     | 87 to 131                                               | 87 to 189                                               | 88 to 281  |  |
| 28 (27.5)        | QPSK       | 20                         | 41 to 52                                      | 41 to 62                                                | 41 to 89                                                | 41 to 132  |  |
| 28 (27.5)        | 16QAM      | 40                         | 82 to 105                                     | 82 to 124                                               | 82 to 178                                               | 83 to 265  |  |
| 28 (27.5)        | 32QAM      | 52                         | 107 to 136                                    | 107 to 161                                              | 107 to 230                                              | 107 to 343 |  |
| 28 (27.5)        | 64QAM      | 64                         | 131 to 168                                    | 131 to 198                                              | 131 to 283                                              | 132 to 424 |  |
| 28 (27.5)        | 128QAM     | 75                         | 155 to 198                                    | 155 to 233                                              | 155 to 333                                              | 156 to 495 |  |

Table 6-5 Integrated IP microwave work modes (ISU2, E1 + Ethernet)

| Channel          | Modulation | Maximum                                    | Native Ethernet Throughput (Mbit/s) |                                               |                                                         |                                                         |
|------------------|------------|--------------------------------------------|-------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Spacing<br>(MHz) | Scheme     | Number of<br>E1s in<br>Hybrid<br>Microwave | Without<br>Compressio<br>n          | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |
| 28 (27.5)        | 256QAM     | 75                                         | 181 to 230                          | 181 to 272                                    | 181 to 388                                              | 182 to 577                                              |
| 56 (55)          | QPSK       | 40                                         | 82 to 105                           | 82 to 124                                     | 82 to 178                                               | 83 to 265                                               |
| 56 (55)          | 16QAM      | 75                                         | 166 to 212                          | 166 to 250                                    | 165 to 356                                              | 167 to 533                                              |
| 56 (55)          | 32QAM      | 75                                         | 206 to 262                          | 206 to 308                                    | 206 to 437                                              | 207 to 659                                              |
| 56 (55)          | 64QAM      | 75                                         | 262 to 333                          | 262 to 388                                    | 262 to 567                                              | 264 to 836                                              |
| 56 (55)          | 128QAM     | 75                                         | 309 to 396                          | 309 to 466                                    | 309 to 656                                              | 311 to 983                                              |
| 56 (55)          | 256QAM     | 75                                         | 360 to 456                          | 360 to 538                                    | 360 to 777                                              | 362 to 1000                                             |
| 40               | QPSK       | 27                                         | 56 to 72                            | 56 to 84                                      | 56 to 122                                               | 57 to 182                                               |
| 40               | 16QAM      | 55                                         | 114 to 145                          | 114 to 172                                    | 114 to 247                                              | 114 to 366                                              |
| 40               | 32QAM      | 71                                         | 147 to 187                          | 147 to 221                                    | 147 to 318                                              | 148 to 474                                              |
| 40               | 64QAM      | 75                                         | 181 to 230                          | 181 to 272                                    | 181 to 388                                              | 182 to 583                                              |
| 40               | 128QAM     | 75                                         | 215 to 272                          | 215 to 323                                    | 215 to 456                                              | 216 to 691                                              |
| 40               | 256QAM     | 75                                         | 249 to 318                          | 249 to 375                                    | 249 to 538                                              | 251 to 800                                              |
| 50               | QPSK       | 35                                         | 73 to 92                            | 73 to 107                                     | 73 to 153                                               | 73 to 235                                               |
| 50               | 16QAM      | 71                                         | 148 to 186                          | 148 to 216                                    | 148 to 309                                              | 148 to 473                                              |
| 50               | 32QAM      | 75                                         | 191 to 240                          | 191 to 278                                    | 191 to 398                                              | 191 to 610                                              |
| 50               | 64QAM      | 75                                         | 235 to 295                          | 235 to 340                                    | 235 to 490                                              | 235 to 750                                              |
| 50               | 128QAM     | 75                                         | 275 to 345                          | 275 to 400                                    | 275 to 570                                              | 275 to 875                                              |
| 50               | 256QAM     | 75                                         | 317 to 396                          | 317 to 459                                    | 317 to 659                                              | 317 to 1000                                             |

| Channel          | Modulation | Number of                                   | Native Ethern              | net Throughpu                                 | ıt (Mbit/s)                                             |                                                         |
|------------------|------------|---------------------------------------------|----------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Spacing<br>(MHz) | Scheme     | STM-1<br>Services in<br>Hybrid<br>Microwave | Without<br>Compressio<br>n | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |
| 28 (27.5)        | 128QAM     | 1                                           | 155 to 198                 | 155 to 233                                    | 155 to 333                                              | 156 to 495                                              |
| 28 (27.5)        | 256QAM     | 1                                           | 181 to 230                 | 181 to 272                                    | 181 to 388                                              | 182 to 577                                              |
| 40               | 64QAM      | 1                                           | 181 to 230                 | 181 to 272                                    | 181 to 388                                              | 182 to 583                                              |
| 40               | 128QAM     | 1                                           | 215 to 272                 | 215 to 323                                    | 215 to 456                                              | 216 to 691                                              |
| 40               | 256QAM     | 1                                           | 249 to 318                 | 249 to 375                                    | 249 to 538                                              | 251 to 800                                              |
| 50               | 32QAM      | 1                                           | 191 to 240                 | 191 to 278                                    | 191 to 398                                              | 191 to 610                                              |
| 50               | 64QAM      | 1                                           | 235 to 295                 | 235 to 340                                    | 235 to 490                                              | 235 to 750                                              |
| 50               | 128QAM     | 1                                           | 275 to 345                 | 275 to 400                                    | 275 to 570                                              | 275 to 875                                              |
| 50               | 256QAM     | 1                                           | 317 to 396                 | 317 to 459                                    | 317 to 659                                              | 317 to 1000                                             |
| 56 (55)          | 16QAM      | 1                                           | 166 to 212                 | 166 to 250                                    | 165 to 356                                              | 167 to 533                                              |
| 56 (55)          | 32QAM      | 1                                           | 206 to 262                 | 206 to 308                                    | 206 to 437                                              | 207 to 659                                              |
| 56 (55)          | 64QAM      | 1                                           | 262 to 333                 | 262 to 388                                    | 262 to 567                                              | 264 to 836                                              |
| 56 (55)          | 128QAM     | 1                                           | 309 to 396                 | 309 to 466                                    | 309 to 656                                              | 311 to 983                                              |
| 56 (55)          | 256QAM     | 1                                           | 360 to 456                 | 360 to 538                                    | 360 to 777                                              | 362 to 1000                                             |

Table 6-6 Integrated IP microwave work modes (ISU2 board, Native STM-1 + Ethernet service)

#### 

For the integrated IP microwave work mode that the ISU2/ISX2 board supports:

- The throughput specifications listed in the tables are based on the following conditions.
  - Without compression: untagged Ethernet frames with a length ranging from 64 bytes to 9600 bytes
  - With L2 frame header compression: untagged Ethernet frames with a length ranging from 64 bytes to 9600 bytes
  - With L2+L3 frame header compression (IPv4): UDP messages, untagged Ethernet frames with a length ranging from 64 bytes to 9600 bytes
  - With L2+L3 frame header compression (IPv6): UDP messages, S-tagged Ethernet frames with a length ranging from 92 bytes to 9600 bytes
- E1/STM-1 services need to occupy the corresponding bandwidth of the air interface capacity. The bandwidth remaining after the E1/STM-1 service capacity is subtracted from the air interface capacity can be provided for Ethernet services.

#### 6.1.1.5 Microwave Work Modes (ISX2 board)

The ISX2 board supports SDH microwave work modes and Integrated IP microwave work modes.

#### ΠΝΟΤΕ

The channel spacings supported by the OptiX RTN 980 comply with ETSI standards. Channel spacings 14/28/56 MHz apply to most frequency bands; but channel spacings 13.75/27.5/55 MHz apply to the 18 GHz frequency band.

#### **SDH Microwave Work Modes**

| Service Capacity                                                                                                                                             | Modulation Scheme | Channel Spacing (MHz) |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|--|--|--|--|
| STM-1                                                                                                                                                        | 128QAM            | 28 (27.5)             |  |  |  |  |
| 2xSTM-1                                                                                                                                                      | 128QAM            | 56 (55)               |  |  |  |  |
| 2xSTM-1                                                                                                                                                      | 256QAM            | 50                    |  |  |  |  |
| <b>NOTE</b><br>For the ISX2 board in SDH service mode, the microwave work modes are the same regardless of whether the XPIC function is enabled or disabled. |                   |                       |  |  |  |  |

 Table 6-7 SDH microwave work modes (ISX2 board@IS2-mode)

#### **Integrated IP Microwave Work Modes**

Table 6-8 Integrated IP microwave work modes (ISX2 board, E1 + Ethernet service, XPIC disabled)

| Channel          |        | Maximum                                    | 01                         |                                               |                                                         |                                                         |
|------------------|--------|--------------------------------------------|----------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Spacing<br>(MHz) | Scheme | Number of<br>E1s in<br>Hybrid<br>Microwave | Without<br>Compressio<br>n | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |
| 7                | QPSK   | 5                                          | 10 to 13                   | 10 to 15                                      | 10 to 22                                                | 10 to 33                                                |
| 7                | 16QAM  | 10                                         | 20 to 26                   | 20 to 30                                      | 20 to 44                                                | 20 to 66                                                |
| 7                | 32QAM  | 12                                         | 25 to 32                   | 25 to 36                                      | 25 to 54                                                | 25 to 80                                                |
| 7                | 64QAM  | 15                                         | 31 to 40                   | 31 to 47                                      | 31 to 67                                                | 31 to 100                                               |
| 7                | 128QAM | 18                                         | 37 to 47                   | 37 to 56                                      | 37 to 80                                                | 37 to 119                                               |
| 7                | 256QAM | 20                                         | 41 to 53                   | 41 to 62                                      | 41 to 90                                                | 42 to 134                                               |
| 14 (13.75)       | QPSK   | 10                                         | 20 to 26                   | 20 to 31                                      | 20 to 44                                                | 20 to 66                                                |
| 14 (13.75)       | 16QAM  | 20                                         | 41 to 52                   | 41 to 61                                      | 41 to 89                                                | 41 to 132                                               |

| Channel          |        |                                            | Native Ethernet Throughput (Mbit/s) |                                               |                                                         |                                                         |  |
|------------------|--------|--------------------------------------------|-------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|
| Spacing<br>(MHz) | Scheme | Number of<br>E1s in<br>Hybrid<br>Microwave | Without<br>Compressio<br>n          | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |  |
| 14 (13.75)       | 32QAM  | 24                                         | 51 to 65                            | 51 to 77                                      | 51 to 110                                               | 51 to 164                                               |  |
| 14 (13.75)       | 64QAM  | 31                                         | 65 to 83                            | 65 to 96                                      | 65 to 140                                               | 65 to 209                                               |  |
| 14 (13.75)       | 128QAM | 37                                         | 76 to 97                            | 76 to 113                                     | 76 to 165                                               | 76 to 245                                               |  |
| 14 (13.75)       | 256QAM | 42                                         | 87 to 111                           | 87 to 131                                     | 87 to 189                                               | 88 to 281                                               |  |
| 28 (27.5)        | QPSK   | 20                                         | 41 to 52                            | 41 to 62                                      | 41 to 89                                                | 41 to 132                                               |  |
| 28 (27.5)        | 16QAM  | 40                                         | 82 to 105                           | 82 to 124                                     | 82 to 178                                               | 83 to 265                                               |  |
| 28 (27.5)        | 32QAM  | 52                                         | 107 to 136                          | 107 to 161                                    | 107 to 230                                              | 107 to 343                                              |  |
| 28 (27.5)        | 64QAM  | 64                                         | 131 to 168                          | 131 to 198                                    | 131 to 283                                              | 132 to 424                                              |  |
| 28 (27.5)        | 128QAM | 75                                         | 155 to 198                          | 155 to 233                                    | 155 to 333                                              | 156 to 495                                              |  |
| 28 (27.5)        | 256QAM | 75                                         | 181 to 230                          | 181 to 272                                    | 181 to 388                                              | 182 to 577                                              |  |
| 56 (55)          | QPSK   | 40                                         | 82 to 105                           | 82 to 124                                     | 82 to 178                                               | 83 to 265                                               |  |
| 56 (55)          | 16QAM  | 75                                         | 166 to 212                          | 166 to 250                                    | 165 to 356                                              | 167 to 533                                              |  |
| 56 (55)          | 32QAM  | 75                                         | 206 to 262                          | 206 to 308                                    | 206 to 437                                              | 207 to 659                                              |  |
| 56 (55)          | 64QAM  | 75                                         | 262 to 333                          | 262 to 388                                    | 262 to 567                                              | 264 to 836                                              |  |
| 56 (55)          | 128QAM | 75                                         | 309 to 396                          | 309 to 466                                    | 309 to 656                                              | 311 to 983                                              |  |
| 56 (55)          | 256QAM | 75                                         | 360 to 456                          | 360 to 538                                    | 360 to 777                                              | 362 to 1000                                             |  |
| 40               | QPSK   | 27                                         | 56 to 72                            | 56 to 84                                      | 56 to 122                                               | 57 to 182                                               |  |
| 40               | 16QAM  | 55                                         | 114 to 145                          | 114 to 172                                    | 114 to 247                                              | 114 to 366                                              |  |
| 40               | 32QAM  | 71                                         | 147 to 187                          | 147 to 221                                    | 147 to 318                                              | 148 to 474                                              |  |
| 40               | 64QAM  | 75                                         | 181 to 230                          | 181 to 272                                    | 181 to 388                                              | 182 to 583                                              |  |
| 40               | 128QAM | 75                                         | 215 to 272                          | 215 to 323                                    | 215 to 456                                              | 216 to 691                                              |  |
| 40               | 256QAM | 75                                         | 249 to 318                          | 249 to 375                                    | 249 to 538                                              | 251 to 800                                              |  |
| 50               | QPSK   | 35                                         | 73 to 92                            | 73 to 107                                     | 73 to 153                                               | 73 to 235                                               |  |
| 50               | 16QAM  | 71                                         | 148 to 186                          | 148 to 216                                    | 148 to 309                                              | 148 to 473                                              |  |
| 50               | 32QAM  | 75                                         | 191 to 240                          | 191 to 278                                    | 191 to 398                                              | 191 to 610                                              |  |
| 50               | 64QAM  | 75                                         | 235 to 295                          | 235 to 340                                    | 235 to 490                                              | 235 to 750                                              |  |

| Channel          | Modulation | Maximum<br>Number of<br>E1s in<br>Hybrid<br>Microwave | Native Ethernet Throughput (Mbit/s) |                                               |                                                         |                                                         |  |
|------------------|------------|-------------------------------------------------------|-------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|
| Spacing<br>(MHz) | Scheme     |                                                       | Without<br>Compressio<br>n          | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |  |
| 50               | 128QAM     | 75                                                    | 275 to 345                          | 275 to 400                                    | 275 to 570                                              | 275 to 875                                              |  |
| 50               | 256QAM     | 75                                                    | 317 to 396                          | 317 to 459                                    | 317 to 659                                              | 317 to 1000                                             |  |

 Table 6-9 Integrated IP microwave work modes (ISX2, E1 + Ethernet, XPIC enabled)

| Channel          | Modulation | Maximum                                    | Native Ethernet Throughput (Mbit/s) |                                               |                                                         |                                                         |  |
|------------------|------------|--------------------------------------------|-------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|
| Spacing<br>(MHz) | Scheme     | Number of<br>E1s in<br>Hybrid<br>Microwave | Without<br>Compressio<br>n          | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |  |
| 7                | QPSK       | 4                                          | 10 to 13                            | 10 to 15                                      | 10 to 22                                                | 10 to 33                                                |  |
| 7                | 16QAM      | 9                                          | 20 to 26                            | 20 to 30                                      | 20 to 44                                                | 20 to 66                                                |  |
| 7                | 32QAM      | 11                                         | 25 to 32                            | 25 to 36                                      | 25 to 54                                                | 25 to 80                                                |  |
| 7                | 64QAM      | 14                                         | 31 to 40                            | 31 to 47                                      | 31 to 67                                                | 31 to 100                                               |  |
| 14 (13.75)       | QPSK       | 9                                          | 20 to 26                            | 20 to 31                                      | 20 to 44                                                | 20 to 66                                                |  |
| 14 (13.75)       | 16QAM      | 19                                         | 41 to 52                            | 41 to 61                                      | 41 to 89                                                | 41 to 132                                               |  |
| 14 (13.75)       | 32QAM      | 24                                         | 51 to 65                            | 51 to 77                                      | 51 to 110                                               | 51 to 164                                               |  |
| 14 (13.75)       | 64QAM      | 30                                         | 65 to 83                            | 65 to 96                                      | 65 to 140                                               | 65 to 209                                               |  |
| 14 (13.75)       | 128QAM     | 36                                         | 76 to 97                            | 76 to 113                                     | 76 to 165                                               | 76 to 245                                               |  |
| 28 (27.5)        | QPSK       | 20                                         | 41 to 52                            | 41 to 62                                      | 41 to 89                                                | 41 to 132                                               |  |
| 28 (27.5)        | 16QAM      | 40                                         | 82 to 105                           | 82 to 124                                     | 82 to 178                                               | 83 to 265                                               |  |
| 28 (27.5)        | 32QAM      | 52                                         | 107 to 136                          | 107 to 161                                    | 107 to 230                                              | 107 to 343                                              |  |
| 28 (27.5)        | 64QAM      | 64                                         | 131 to 168                          | 131 to 198                                    | 131 to 283                                              | 132 to 424                                              |  |
| 28 (27.5)        | 128QAM     | 75                                         | 155 to 198                          | 155 to 233                                    | 155 to 333                                              | 156 to 495                                              |  |
| 28 (27.5)        | 256QAM     | 75                                         | 181 to 230                          | 181 to 272                                    | 181 to 388                                              | 182 to 577                                              |  |
| 56 (55)          | QPSK       | 40                                         | 82 to 105                           | 82 to 124                                     | 82 to 178                                               | 83 to 265                                               |  |
| 56 (55)          | 16QAM      | 75                                         | 166 to 212                          | 166 to 250                                    | 165 to 356                                              | 167 to 533                                              |  |

| Channel          | Modulation | Maximum                    | Native Ethernet Throughput (Mbit/s)           |                                                         |                                                         |             |  |
|------------------|------------|----------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------|--|
| Spacing<br>(MHz) |            | Without<br>Compressio<br>n | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |             |  |
| 56 (55)          | 32QAM      | 75                         | 206 to 262                                    | 206 to 308                                              | 206 to 437                                              | 207 to 659  |  |
| 56 (55)          | 64QAM      | 75                         | 262 to 333                                    | 262 to 388                                              | 262 to 567                                              | 264 to 836  |  |
| 56 (55)          | 128QAM     | 75                         | 309 to 396                                    | 309 to 466                                              | 309 to 656                                              | 311 to 983  |  |
| 56 (55)          | 256QAM     | 75                         | 360 to 456                                    | 360 to 538                                              | 360 to 777                                              | 362 to 1000 |  |
| 40               | QPSK       | 27                         | 56 to 72                                      | 56 to 84                                                | 56 to 122                                               | 57 to 182   |  |
| 40               | 16QAM      | 55                         | 114 to 145                                    | 114 to 172                                              | 114 to 247                                              | 114 to 366  |  |
| 40               | 32QAM      | 71                         | 147 to 187                                    | 147 to 221                                              | 147 to 318                                              | 148 to 474  |  |
| 40               | 64QAM      | 75                         | 181 to 230                                    | 181 to 272                                              | 181 to 388                                              | 182 to 583  |  |
| 40               | 128QAM     | 75                         | 215 to 272                                    | 215 to 323                                              | 215 to 456                                              | 216 to 691  |  |
| 40               | 256QAM     | 75                         | 249 to 318                                    | 249 to 375                                              | 249 to 538                                              | 251 to 800  |  |
| 50               | QPSK       | 35                         | 73 to 92                                      | 73 to 107                                               | 73 to 153                                               | 73 to 235   |  |
| 50               | 16QAM      | 71                         | 148 to 186                                    | 148 to 216                                              | 148 to 309                                              | 148 to 473  |  |
| 50               | 32QAM      | 75                         | 191 to 240                                    | 191 to 278                                              | 191 to 398                                              | 191 to 610  |  |
| 50               | 64QAM      | 75                         | 235 to 295                                    | 235 to 340                                              | 235 to 490                                              | 235 to 750  |  |
| 50               | 128QAM     | 75                         | 275 to 345                                    | 275 to 400                                              | 275 to 570                                              | 275 to 875  |  |
| 50               | 256QAM     | 75                         | 317 to 396                                    | 317 to 459                                              | 317 to 659                                              | 317 to 1000 |  |

#### NOTE

When the channel spacing is 7 MHz or 14 MHz and the XPIC function is enabled, the ISX2 board only supports the XMC-2 ODU. When the XPIC function is enabled and the frequency band is 26 GHz to 42 GHz, the 7MHz/64QAM and 14MHz/128QAM work modes are not supported.

| Channel          | Modulation | Number of | Native Ethernet Throughput (Mbit/s) |                                               |                                                         |                                                         |  |
|------------------|------------|-----------|-------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|
| Spacing<br>(MHz) |            |           | Without<br>Compressio<br>n          | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |  |
| 28 (27.5)        | 128QAM     | 1         | 155 to 198                          | 155 to 233                                    | 155 to 333                                              | 156 to 495                                              |  |
| 28 (27.5)        | 256QAM     | 1         | 181 to 230                          | 181 to 272                                    | 181 to 388                                              | 182 to 577                                              |  |
| 40               | 64QAM      | 1         | 181 to 230                          | 181 to 272                                    | 181 to 388                                              | 182 to 583                                              |  |
| 40               | 128QAM     | 1         | 215 to 272                          | 215 to 323                                    | 215 to 456                                              | 216 to 691                                              |  |
| 40               | 256QAM     | 1         | 249 to 318                          | 249 to 375                                    | 249 to 538                                              | 251 to 800                                              |  |
| 50               | 32QAM      | 1         | 191 to 240                          | 191 to 278                                    | 191 to 398                                              | 191 to 610                                              |  |
| 50               | 64QAM      | 1         | 235 to 295                          | 235 to 340                                    | 235 to 490                                              | 235 to 750                                              |  |
| 50               | 128QAM     | 1         | 275 to 345                          | 275 to 400                                    | 275 to 570                                              | 275 to 875                                              |  |
| 50               | 256QAM     | 1         | 317 to 396                          | 317 to 459                                    | 317 to 659                                              | 317 to 1000                                             |  |
| 56 (55)          | 16QAM      | 1         | 166 to 212                          | 166 to 250                                    | 165 to 356                                              | 167 to 533                                              |  |
| 56 (55)          | 32QAM      | 1         | 206 to 262                          | 206 to 308                                    | 206 to 437                                              | 207 to 659                                              |  |
| 56 (55)          | 64QAM      | 1         | 262 to 333                          | 262 to 388                                    | 262 to 567                                              | 264 to 836                                              |  |
| 56 (55)          | 128QAM     | 1         | 309 to 396                          | 309 to 466                                    | 309 to 656                                              | 311 to 983                                              |  |
| 56 (55)          | 256QAM     | 1         | 360 to 456                          | 360 to 538                                    | 360 to 777                                              | 362 to 1000                                             |  |

 Table 6-10 Integrated IP microwave work modes (ISX2 board, Native STM-1 + Ethernet service)

#### NOTE

For the ISX2 board in STM-1 + Ethernet service mode, the microwave work modes are the same regardless of whether the XPIC function is enabled or disabled.

#### ΠΝΟΤΕ

For the integrated IP microwave work mode that the ISU2/ISX2 board supports:

- The throughput specifications listed in the tables are based on the following conditions.
  - Without compression: untagged Ethernet frames with a length ranging from 64 bytes to 9600 bytes
  - With L2 frame header compression: untagged Ethernet frames with a length ranging from 64 bytes to 9600 bytes
  - With L2+L3 frame header compression (IPv4): UDP messages, untagged Ethernet frames with a length ranging from 64 bytes to 9600 bytes
  - With L2+L3 frame header compression (IPv6): UDP messages, S-tagged Ethernet frames with a length ranging from 92 bytes to 9600 bytes
- E1/STM-1 services need to occupy the corresponding bandwidth of the air interface capacity. The bandwidth remaining after the E1/STM-1 service capacity is subtracted from the air interface capacity can be provided for Ethernet services.

#### 6.1.1.6 Microwave Work Modes (ISV3 board)

The ISV3 board supports the SDH microwave work mode and the Integrated IP microwave work mode.

#### 

The channel spacings supported by the OptiX RTN 980 comply with ETSI standards. Channel spacings 14/28/56 MHz apply to most frequency bands; but channel spacings 13.75/27.5/55 MHz apply to the 18 GHz frequency band.

#### IF Running Modes and Microwave Work Modes

The ISV3 board supports two IF running modes: IS3 and IS2. **Table 6-11** describes the IF running modes and **Table 6-12** describes the microwave work modes.

| IF Running Mode | Application Scenario                                                                                                                                                                                                                                                                                                            |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IS3 mode        | IS3 is the default mode applicable to air-interface interconnection between the ISV3 and the ISV3 or applicable to air-interface interconnection between the ISV3 and the OptiX RTN 905.                                                                                                                                        |
|                 | There are 13 types of modulation modes in IS3 mode: QPSK Strong, QPSK, 16QAM Strong, 16QAM, 32QAM, 64QAM, 128QAM, 256QAM, 512QAM, 512QAM Light, 1024QAM, 1024QAM Light, and 2048QAM, among which 2048QAM is used only when AM is enabled. For details on the microwave work modes, see <b>Table 6-15</b> to <b>Table 6-19</b> . |

Table 6-11 IF running modes

| IF Running Mode | Application Scenario                                                                                                                                                                                                                                        |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IS2 mode        | IS2 is an optional mode applicable to air-interface interconnection between the ISV3 and the ISU2/ISX2 board.                                                                                                                                               |
|                 | There are six types of modulation modes in IS2 mode: QPSK, 16QAM, 32QAM, 64QAM, 128QAM, and 256QAM.                                                                                                                                                         |
|                 | • When XPIC is disabled, microwave work modes supported by the ISV3 board are the same as those supported by the ISU2 board. For details on the microwave work modes, see Table 6-4, Table 6-5, and Table 6-6 in 6.1.1.4 Microwave Work Modes (ISU2 board). |
|                 | • When XPIC is enabled, microwave work modes supported by the ISV3 board are the same as those supported by the ISX2 board. For details on the microwave work modes, see Table 6-7, Table 6-9, and Table 6-10 in 6.1.1.5 Microwave Work Modes (ISX2 board). |

#### Table 6-12 Overview of Microwave work modes

| Channel<br>Spacing | Modulation Mode Range (IS3 Running mode)      |                                 | Modulation Mode Range (IS2<br>Running mode) |                                |  |
|--------------------|-----------------------------------------------|---------------------------------|---------------------------------------------|--------------------------------|--|
|                    | non-XPIC                                      | XPIC                            | non-XPIC                                    | XPIC                           |  |
| 3.5 MHz            | N/A                                           |                                 | QPSK to<br>16QAM                            | N/A                            |  |
| 7 MHz              | QPSK Strong to 1024QAM                        | QPSK Strong to 128QAM           | QPSK to<br>256QAM                           | QPSK to<br>64QAM <sup>a</sup>  |  |
| 14 MHz             | QPSK Strong to 1024QAM<br>Light               | QPSK Strong to 256QAM           | QPSK to<br>256QAM                           | QPSK to<br>128QAM <sup>b</sup> |  |
| 28 MHz             | QPSK Strong to 2048QAM                        | QPSK Strong to 1024QAM          | QPSK to 256QAM                              | 1                              |  |
| 56 MHz             | QPSK Strong to 2048QAM                        | QPSK Strong to 1024QAM<br>Light | QPSK to 256QAM                              |                                |  |
| 40 MHz             | QPSK Strong to 2048QAM QPSK Strong to 1024QAM |                                 | QPSK to 256QAM                              |                                |  |
| 50 MHz             | N/A                                           | QPSK to 256QAM                  |                                             |                                |  |

NOTE

- When IF boards work in IS3 mode together with XMC ODUs, highest-order modulation schemes for different channel spacing and frequency bands are listed in Table 6-13 and Table 6-14.
- When IF boards work in IS3 mode together with HP, HPA, SP, or SPA ODUs, only QPSK Strong to 256QAM are supported.
- When IF boards work in IS2 mode, the XPIC function is enabled and the 7/14 MHz channel spacing is used, the IF boards can work with only XMC-2 ODUs.
  - a: When the XPIC function is enabled and the channel spacing is 7 MHz, the 64QAM modulation is not supported for a frequency band within the range from 26 GHz to 42 GHz.
  - b: When the XPIC function is enabled and the channel spacing is 14 MHz, the 128QAM modulation is not supported for a frequency band within the range from 26 GHz to 42 GHz.

| Туре   | Frequency band           | Maximum Modulation @ Channel Spacing |                  |                  |                  |                  |  |
|--------|--------------------------|--------------------------------------|------------------|------------------|------------------|------------------|--|
|        |                          | 7 MHz                                | 14 MHz           | 28 MHz           | 40 MHz           | 56 MHz           |  |
| XMC-2  | 6 GHz                    | 256QAM                               | 256QAM           | 512QAM<br>Light  | 512QAM<br>Light  | 1024QAM          |  |
|        | 7/8 GHz (Normal)         | 256QAM                               | 256QAM           | 256QAM           | 256QAM           | 256QAM           |  |
|        | 7/8 GHz (XMC-2E)         | 256QAM                               | 256QAM           | 2048QAM          | 2048QAM          | 2048QAM          |  |
|        | 10/11 GHz                | 1024QAM                              | 1024QAM<br>Light | 1024QAM<br>Light | 1024QAM<br>Light | 1024QAM<br>Light |  |
|        | 13/15/18/23 GHz          | 1024QAM                              | 1024QAM<br>Light | 2048QAM          | 2048QAM          | 2048QAM          |  |
|        | 26 GHz                   | 1024QAM                              | 1024QAM<br>Light | 1024QAM<br>Light | 1024QAM<br>Light | 1024QAM<br>Light |  |
|        | 28/32 GHz                | 256QAM                               | 256QAM           | 512QAM<br>Light  | 512QAM<br>Light  | 1024QAM          |  |
|        | 38 GHz                   | 512QAM<br>Light                      | 1024QAM          | 2048QAM          | 2048QAM          | 2048QAM          |  |
|        | 42 GHz                   | 512QAM<br>Light                      | 1024QAM          | 1024QAM<br>Light | 1024QAM<br>Light | 1024QAM<br>Light |  |
| XMC-2H | 6/7/8/11 GHz<br>(XMC-2H) | 1024QAM                              | 1024QAM<br>Light | 2048QAM          | 2048QAM          | 2048QAM          |  |
| XMC-3  | 13GHz                    | 1024QAM                              | 1024QAM<br>Light | 2048QAM          | 2048QAM          | 2048QAM          |  |
|        | 15/18/23/26 GHz          | 1024QAM                              | 1024QAM<br>Light | 2048QAM          | 2048QAM          | 2048QAM          |  |
|        | 28 GHz                   | 512QAM                               | 1024QAM          | 2048QAM          | 2048QAM          | 2048QAM          |  |
|        | 32/38 GHz                | 512QAM<br>Light                      | 1024QAM          | 2048QAM          | 2048QAM          | 2048QAM          |  |

 Table 6-13 Highest-order modulation in IS3 mode (non-XPIC, XMC ODUs)

For 13/15/18/23/38 GHz XMC-2 ODUs, only those manufactured since November 2014 support 2048QAM. A 38 GHz XMC-2 ODU supports 2048QAM only when it operates at the normal temperature and when the matching IF cable is longer than 60 m.

| Table 6-14 Highest-order modulatio | on in IS3 mode (XPIC, XMC ODUs)   |  |
|------------------------------------|-----------------------------------|--|
| Table 0-14 Highest-order modulatio | $\sin \sin 1000$ (ALIC, AMC OD05) |  |

| Туре  | Frequency band | Maximum Modulation @ Channel Spacing |        |        |        |        |
|-------|----------------|--------------------------------------|--------|--------|--------|--------|
|       |                | 7 MHz                                | 14 MHz | 28 MHz | 40 MHz | 56 MHz |
| XMC-2 | 6 GHz          | 128QAM                               | 256QAM | 256QAM | 256QAM | 512QAM |

| Туре   | Frequency band           | Maximum Modulation @ Channel Spacing |        |                 |                 |                  |
|--------|--------------------------|--------------------------------------|--------|-----------------|-----------------|------------------|
|        |                          | 7 MHz                                | 14 MHz | 28 MHz          | 40 MHz          | 56 MHz           |
|        | 7/8 GHz (Normal)         | 128QAM                               | 256QAM | 256QAM          | 256QAM          | 256QAM           |
|        | 7/8 GHz (XMC-2E)         | 128QAM                               | 256QAM | 1024QAM         | 1024QAM         | 1024QAM<br>Light |
|        | 10/11 GHz                | 128QAM                               | 256QAM | 512QAM<br>Light | 1024QAM         | 1024QAM<br>Light |
|        | 13/15/18/23/26 GHz       | 128QAM                               | 256QAM | 1024QAM         | 1024QAM         | 1024QAM<br>Light |
|        | 28/32 GHz                | 128QAM                               | 256QAM | 256QAM          | 256QAM          | 512QAM           |
|        | 38/42 GHz                | 128QAM                               | 256QAM | 512QAM          | 512QAM<br>Light | 512QAM<br>Light  |
| XMC-2H | 6/7/8/11 GHz<br>(XMC-2H) | 128QAM                               | 256QAM | 1024QAM         | 1024QAM         | 1024QAM<br>Light |
| XMC-3  | 13/15/18/23 GHz          | 128QAM                               | 256QAM | 1024QAM         | 1024QAM         | 1024QAM<br>Light |
|        | 26 GHz                   | 128QAM                               | 256QAM | 512QAM<br>Light | 1024QAM         | 1024QAM<br>Light |
|        | 28/32/38GHz              | 128QAM                               | 256QAM | 512QAM          | 512QAM<br>Light | 512QAM<br>Light  |

#### SDH Microwave Work Mode

Table 6-15 SDH microwave work modes (ISV3 board@IS3-mode)

| Service Capacity                                                                                                                                                | ervice Capacity Modulation Scheme |           |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------|--|--|--|
| STM-1                                                                                                                                                           | 128QAM                            | 28 (27.5) |  |  |  |
| 2×STM-1                                                                                                                                                         | 128QAM                            | 56 (55)   |  |  |  |
| <b>NOTE</b><br>For the ISV3 board in SDH service mode, the microwave work modes are the same regardless of whether<br>the XPIC function is enabled or disabled. |                                   |           |  |  |  |

# Integrated IP Microwave Work Mode (IS3-Mode)

| Channel          | Modulation      | Maximum                                          | Native Ethernet Throughput (Mbit/s) |                                               |                                                         |                                                         |  |
|------------------|-----------------|--------------------------------------------------|-------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|
| Spacing<br>(MHz) | Scheme          | cheme Number of<br>E1s in<br>Hybrid<br>Microwave |                                     | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |  |
| 7                | QPSK Strong     | 4                                                | 8 to 10                             | 8 to 13                                       | 8 to 20                                                 | 8 to 26                                                 |  |
| 7                | QPSK            | 5                                                | 10 to 13                            | 10 to 16                                      | 10 to 25                                                | 10 to 33                                                |  |
| 7                | 16QAM<br>Strong | 8                                                | 17 to 22                            | 17 to 26                                      | 17 to 41                                                | 18 to 55                                                |  |
| 7                | 16QAM           | 10                                               | 20 to 26                            | 20 to 32                                      | 21 to 49                                                | 21 to 66                                                |  |
| 7                | 32QAM           | 12                                               | 25 to 32                            | 25 to 39                                      | 26 to 61                                                | 26 to 81                                                |  |
| 7                | 64QAM           | 15                                               | 32 to 40                            | 32 to 50                                      | 33 to 77                                                | 33 to 102                                               |  |
| 7                | 128QAM          | 18                                               | 37 to 48                            | 38 to 58                                      | 38 to 90                                                | 39 to 120                                               |  |
| 7                | 256QAM          | 20                                               | 42 to 53                            | 42 to 65                                      | 43 to 101                                               | 44 to 135                                               |  |
| 7                | 512QAM          | 21                                               | 45 to 57                            | 45 to 69                                      | 46 to 107                                               | 46 to 143                                               |  |
| 7                | 512QAM<br>Light | 22                                               | 48 to 61                            | 48 to 74                                      | 49 to 115                                               | 50 to 153                                               |  |
| 7                | 1024QAM         | 23                                               | 51 to 65                            | 51 to 79                                      | 52 to 122                                               | 53 to 163                                               |  |
| 14 (13.75)       | QPSK Strong     | 8                                                | 17 to 22                            | 17 to 27                                      | 17 to 41                                                | 18 to 55                                                |  |
| 14 (13.75)       | QPSK            | 10                                               | 21 to 26                            | 21 to 32                                      | 21 to 50                                                | 21 to 66                                                |  |
| 14 (13.75)       | 16QAM<br>Strong | 16                                               | 35 to 45                            | 35 to 55                                      | 36 to 84                                                | 36 to 113                                               |  |
| 14 (13.75)       | 16QAM           | 20                                               | 41 to 53                            | 42 to 64                                      | 42 to 99                                                | 43 to 133                                               |  |
| 14 (13.75)       | 32QAM           | 24                                               | 52 to 66                            | 52 to 80                                      | 53 to 124                                               | 54 to 166                                               |  |
| 14 (13.75)       | 64QAM           | 31                                               | 65 to 83                            | 66 to 101                                     | 67 to 156                                               | 68 to 208                                               |  |
| 14 (13.75)       | 128QAM          | 37                                               | 77 to 98                            | 78 to 120                                     | 79 to 185                                               | 80 to 247                                               |  |
| 14 (13.75)       | 256QAM          | 42                                               | 88 to 112                           | 89 to 137                                     | 90 to 211                                               | 92 to 282                                               |  |
| 14 (13.75)       | 512QAM          | 44                                               | 94 to 119                           | 94 to 145                                     | 96 to 224                                               | 97 to 299                                               |  |
| 14 (13.75)       | 512QAM<br>Light | 46                                               | 100 to 127                          | 101 to 155                                    | 102 to 240                                              | 104 to 320                                              |  |

Table 6-16 Integrated IP microwave work modes (ISV3 @IS3-mode, E1 + Ethernet, XPIC disabled)

| Channel          | Modulation       | Maximum                                    | Native Ether               | net Throughpu                                 | ıt (Mbit/s)                                             |                                                         |
|------------------|------------------|--------------------------------------------|----------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Spacing<br>(MHz) | Scheme           | Number of<br>E1s in<br>Hybrid<br>Microwave | Without<br>Compressio<br>n | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |
| 14 (13.75)       | 1024QAM          | 48                                         | 104 to 131                 | 104 to 161                                    | 106 to 248                                              | 108 to 331                                              |
| 14 (13.75)       | 1024QAM<br>Light | 50                                         | 109 to 138                 | 110 to 169                                    | 111 to 260                                              | 113 to 347                                              |
| 28 (27.5)        | QPSK Strong      | 17                                         | 36 to 46                   | 36 to 56                                      | 37 to 87                                                | 38 to 116                                               |
| 28 (27.5)        | QPSK             | 20                                         | 42 to 54                   | 43 to 66                                      | 43 to 102                                               | 44 to 135                                               |
| 28 (27.5)        | 16QAM<br>Strong  | 34                                         | 73 to 93                   | 74 to 114                                     | 75 to 176                                               | 76 to 234                                               |
| 28 (27.5)        | 16QAM            | 40                                         | 86 to 109                  | 86 to 133                                     | 88 to 205                                               | 89 to 274                                               |
| 28 (27.5)        | 32QAM            | 52                                         | 110 to 139                 | 110 to 170                                    | 112 to 262                                              | 114 to 350                                              |
| 28 (27.5)        | 64QAM            | 64                                         | 135 to 172                 | 136 to 210                                    | 138 to 324                                              | 141 to 432                                              |
| 28 (27.5)        | 128QAM           | 75                                         | 160 to 203                 | 162 to 248                                    | 164 to 383                                              | 167 to 511                                              |
| 28 (27.5)        | 256QAM           | 75                                         | 183 to 232                 | 184 to 284                                    | 187 to 438                                              | 190 to 584                                              |
| 28 (27.5)        | 512QAM           | 75                                         | 196 to 249                 | 198 to 304                                    | 200 to 469                                              | 204 to 626                                              |
| 28 (27.5)        | 512QAM<br>Light  | 75                                         | 210 to 266                 | 212 to 325                                    | 214 to 502                                              | 218 to 670                                              |
| 28 (27.5)        | 1024QAM          | 75                                         | 217 to 275                 | 219 to 337                                    | 222 to 520                                              | 226 to 693                                              |
| 28 (27.5)        | 1024QAM<br>Light | 75                                         | 228 to 289                 | 230 to 353                                    | 233 to 545                                              | 237 to 727                                              |
| 28 (27.5)        | 2048QAM          | 75                                         | 245 to 306                 | 248 to 379                                    | 250 to 585                                              | 254 to 780                                              |
| 56 (55)          | QPSK Strong      | 34                                         | 73 to 93                   | 74 to 114                                     | 75 to 176                                               | 76 to 235                                               |
| 56 (55)          | QPSK             | 40                                         | 86 to 109                  | 87 to 133                                     | 88 to 206                                               | 89 to 275                                               |
| 56 (55)          | 16QAM<br>Strong  | 68                                         | 148 to 188                 | 150 to 230                                    | 151 to 355                                              | 154 to 473                                              |
| 56 (55)          | 16QAM            | 75                                         | 173 to 220                 | 175 to 269                                    | 177 to 415                                              | 180 to 553                                              |
| 56 (55)          | 32QAM            | 75                                         | 217 to 275                 | 219 to 336                                    | 222 to 519                                              | 226 to 692                                              |
| 56 (55)          | 64QAM            | 75                                         | 273 to 346                 | 275 to 423                                    | 279 to 653                                              | 284 to 871                                              |
| 56 (55)          | 128QAM           | 75                                         | 323 to 409                 | 326 to 501                                    | 330 to 772                                              | 336 to 1000                                             |
| 56 (55)          | 256QAM           | 75                                         | 369 to 467                 | 372 to 571                                    | 376 to 882                                              | 384 to 1000                                             |

| Channel          | Modulation       | Maximum                                    | Native Ether               | net Throughpu                                 | ıt (Mbit/s)                                             |                                                         |
|------------------|------------------|--------------------------------------------|----------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Spacing<br>(MHz) | Scheme           | Number of<br>E1s in<br>Hybrid<br>Microwave | Without<br>Compressio<br>n | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |
| 56 (55)          | 512QAM           | 75                                         | 395 to 501                 | 398 to 612                                    | 404 to 945                                              | 411 to 1000                                             |
| 56 (55)          | 512QAM<br>Light  | 75                                         | 423 to 536                 | 426 to 655                                    | 432 to 1000                                             | 440 to 1000                                             |
| 56 (55)          | 1024QAM          | 75                                         | 447 to 567                 | 451 to 693                                    | 456 to 1000                                             | 465 to 1000                                             |
| 56 (55)          | 1024QAM<br>Light | 75                                         | 481 to 609                 | 485 to 745                                    | 491 to 1000                                             | 500 to 1000                                             |
| 56 (55)          | 2048QAM          | 75                                         | 504 to 636                 | 507 to 780                                    | 512 to 1000                                             | 522 to 1000                                             |
| 40               | QPSK Strong      | 23                                         | 50 to 63                   | 50 to 77                                      | 51 to 119                                               | 52 to 159                                               |
| 40               | QPSK             | 27                                         | 58 to 74                   | 58 to 90                                      | 59 to 139                                               | 60 to 186                                               |
| 40               | 16QAM<br>Strong  | 46                                         | 100 to 127                 | 101 to 156                                    | 102 to 240                                              | 104 to 321                                              |
| 40               | 16QAM            | 55                                         | 117 to 149                 | 118 to 182                                    | 120 to 281                                              | 122 to 375                                              |
| 40               | 32QAM            | 71                                         | 150 to 190                 | 151 to 232                                    | 153 to 359                                              | 156 to 478                                              |
| 40               | 64QAM            | 75                                         | 185 to 235                 | 187 to 287                                    | 189 to 443                                              | 193 to 591                                              |
| 40               | 128QAM           | 75                                         | 219 to 278                 | 221 to 339                                    | 224 to 524                                              | 228 to 699                                              |
| 40               | 256QAM           | 75                                         | 253 to 321                 | 255 to 392                                    | 258 to 605                                              | 263 to 807                                              |
| 40               | 512QAM           | 75                                         | 268 to 340                 | 270 to 415                                    | 274 to 641                                              | 279 to 855                                              |
| 40               | 512QAM<br>Light  | 75                                         | 287 to 363                 | 289 to 444                                    | 293 to 686                                              | 298 to 915                                              |
| 40               | 1024QAM          | 75                                         | 302 to 383                 | 304 to 468                                    | 309 to 723                                              | 314 to 964                                              |
| 40               | 1024QAM<br>Light | 75                                         | 317 to 402                 | 320 to 491                                    | 324 to 758                                              | 330 to 1000                                             |
| 40               | 2048QAM          | 75                                         | 333 to 418                 | 335 to 515                                    | 338 to 795                                              | 345 to 1000                                             |

| Channel          | Modulation      | Maximum                                    | Native Ether               | net Throughpu                                 | ıt (Mbit/s)                                             |                                                         |
|------------------|-----------------|--------------------------------------------|----------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Spacing<br>(MHz) | Scheme          | Number of<br>E1s in<br>Hybrid<br>Microwave | Without<br>Compressio<br>n | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |
| 7                | QPSK Strong     | 3                                          | 8 to 10                    | 8 to 12                                       | 8 to 19                                                 | 8 to 25                                                 |
| 7                | QPSK            | 4                                          | 10 to 12                   | 10 to 15                                      | 10 to 24                                                | 10 to 32                                                |
| 7                | 16QAM<br>Strong | 6                                          | 16 to 21                   | 17 to 26                                      | 17 to 40                                                | 17 to 53                                                |
| 7                | 16QAM           | 9                                          | 20 to 25                   | 20 to 31                                      | 20 to 48                                                | 21 to 64                                                |
| 7                | 32QAM           | 11                                         | 24 to 31                   | 25 to 38                                      | 25 to 59                                                | 25 to 79                                                |
| 7                | 64QAM           | 14                                         | 31 to 39                   | 31 to 48                                      | 32 to 74                                                | 32 to 99                                                |
| 7                | 128QAM          | 17                                         | 36 to 46                   | 37 to 56                                      | 37 to 87                                                | 38 to 117                                               |
| 14 (13.75)       | QPSK Strong     | 8                                          | 16 to 21                   | 17 to 26                                      | 17 to 40                                                | 17 to 53                                                |
| 14 (13.75)       | QPSK            | 9                                          | 20 to 25                   | 20 to 31                                      | 20 to 48                                                | 21 to 64                                                |
| 14 (13.75)       | 16QAM<br>Strong | 16                                         | 34 to 43                   | 34 to 53                                      | 35 to 82                                                | 35 to 109                                               |
| 14 (13.75)       | 16QAM           | 19                                         | 40 to 51                   | 40 to 62                                      | 41 to 97                                                | 42 to 129                                               |
| 14 (13.75)       | 32QAM           | 24                                         | 50 to 64                   | 51 to 78                                      | 51 to 121                                               | 52 to 161                                               |
| 14 (13.75)       | 64QAM           | 30                                         | 63 to 80                   | 64 to 98                                      | 65 to 152                                               | 66 to 202                                               |
| 14 (13.75)       | 128QAM          | 36                                         | 75 to 95                   | 76 to 116                                     | 77 to 180                                               | 78 to 240                                               |
| 14 (13.75)       | 256QAM          | 40                                         | 85 to 107                  | 85 to 131                                     | 86 to 203                                               | 88 to 270                                               |
| 28 (27.5)        | QPSK Strong     | 17                                         | 36 to 46                   | 36 to 56                                      | 37 to 87                                                | 38 to 116                                               |
| 28 (27.5)        | QPSK            | 20                                         | 42 to 54                   | 43 to 66                                      | 43 to 102                                               | 44 to 135                                               |
| 28 (27.5)        | 16QAM<br>Strong | 34                                         | 73 to 93                   | 74 to 114                                     | 75 to 176                                               | 76 to 234                                               |
| 28 (27.5)        | 16QAM           | 40                                         | 86 to 109                  | 86 to 133                                     | 88 to 205                                               | 89 to 274                                               |
| 28 (27.5)        | 32QAM           | 52                                         | 110 to 139                 | 110 to 170                                    | 112 to 262                                              | 114 to 350                                              |
| 28 (27.5)        | 64QAM           | 64                                         | 135 to 172                 | 136 to 210                                    | 138 to 324                                              | 141 to 432                                              |
| 28 (27.5)        | 128QAM          | 75                                         | 160 to 203                 | 162 to 248                                    | 164 to 383                                              | 167 to 511                                              |
| 28 (27.5)        | 256QAM          | 75                                         | 182 to 230                 | 183 to 281                                    | 185 to 434                                              | 189 to 579                                              |

| Table 6-17 Integrated IP microwave work modes | (ISV3 @IS3-mode, E1 + Ethernet, XPIC enabled) |
|-----------------------------------------------|-----------------------------------------------|
|-----------------------------------------------|-----------------------------------------------|

| Channel          | Modulation       | Maximum                                    | Native Ether               | net Throughpu                                 | ıt (Mbit/s)                                             |                                                         |
|------------------|------------------|--------------------------------------------|----------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Spacing<br>(MHz) | Scheme           | Number of<br>E1s in<br>Hybrid<br>Microwave | Without<br>Compressio<br>n | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |
| 28 (27.5)        | 512QAM           | 75                                         | 188 to 239                 | 190 to 292                                    | 192 to 450                                              | 196 to 601                                              |
| 28 (27.5)        | 512QAM<br>Light  | 75                                         | 201 to 255                 | 203 to 312                                    | 206 to 482                                              | 210 to 643                                              |
| 28 (27.5)        | 1024QAM          | 75                                         | 215 to 272                 | 216 to 333                                    | 219 to 513                                              | 223 to 685                                              |
| 56 (55)          | QPSK Strong      | 34                                         | 73 to 93                   | 74 to 114                                     | 75 to 176                                               | 76 to 235                                               |
| 56 (55)          | QPSK             | 40                                         | 86 to 109                  | 87 to 133                                     | 88 to 206                                               | 89 to 275                                               |
| 56 (55)          | 16QAM<br>Strong  | 68                                         | 148 to 188                 | 150 to 230                                    | 151 to 355                                              | 154 to 473                                              |
| 56 (55)          | 16QAM            | 75                                         | 173 to 220                 | 175 to 269                                    | 177 to 415                                              | 180 to 553                                              |
| 56 (55)          | 32QAM            | 75                                         | 217 to 275                 | 219 to 336                                    | 222 to 519                                              | 226 to 692                                              |
| 56 (55)          | 64QAM            | 75                                         | 273 to 346                 | 275 to 423                                    | 279 to 653                                              | 284 to 871                                              |
| 56 (55)          | 128QAM           | 75                                         | 323 to 409                 | 326 to 501                                    | 330 to 772                                              | 336 to 1000                                             |
| 56 (55)          | 256QAM           | 75                                         | 365 to 462                 | 368 to 565                                    | 372 to 872                                              | 379 to 1000                                             |
| 56 (55)          | 512QAM           | 75                                         | 379 to 481                 | 382 to 588                                    | 387 to 907                                              | 395 to 1000                                             |
| 56 (55)          | 512QAM<br>Light  | 75                                         | 406 to 514                 | 409 to 629                                    | 414 to 971                                              | 422 to 1000                                             |
| 56 (55)          | 1024QAM          | 75                                         | 433 to 548                 | 436 to 670                                    | 441 to 1000                                             | 450 to 1000                                             |
| 56 (55)          | 1024QAM<br>Light | 75                                         | 454 to 575                 | 458 to 703                                    | 463 to 1000                                             | 472 to 1000                                             |
| 40               | QPSK Strong      | 23                                         | 50 to 63                   | 50 to 77                                      | 51 to 119                                               | 52 to 159                                               |
| 40               | QPSK             | 27                                         | 58 to 74                   | 58 to 90                                      | 59 to 139                                               | 60 to 186                                               |
| 40               | 16QAM<br>Strong  | 46                                         | 100 to 127                 | 101 to 156                                    | 102 to 240                                              | 104 to 321                                              |
| 40               | 16QAM            | 55                                         | 117 to 149                 | 118 to 182                                    | 120 to 281                                              | 122 to 375                                              |
| 40               | 32QAM            | 71                                         | 150 to 190                 | 151 to 232                                    | 153 to 359                                              | 156 to 478                                              |
| 40               | 64QAM            | 75                                         | 185 to 235                 | 187 to 287                                    | 189 to 443                                              | 193 to 591                                              |
| 40               | 128QAM           | 75                                         | 219 to 278                 | 221 to 339                                    | 224 to 524                                              | 228 to 699                                              |
| 40               | 256QAM           | 75                                         | 251 to 318                 | 253 to 389                                    | 256 to 600                                              | 261 to 800                                              |

| Channel          | Modulation       | Maximum | Native Ethernet Throughput (Mbit/s) |                                               |                                                         |                                                         |  |
|------------------|------------------|---------|-------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|
| Spacing<br>(MHz) | E1s in<br>Hybrid | E1s in  | Without<br>Compressio<br>n          | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |  |
| 40               | 512QAM           | 75      | 257 to 326                          | 259 to 399                                    | 263 to 615                                              | 268 to 821                                              |  |
| 40               | 512QAM<br>Light  | 75      | 275 to 349                          | 277 to 427                                    | 281 to 658                                              | 286 to 878                                              |  |
| 40               | 1024QAM          | 75      | 293 to 372                          | 296 to 454                                    | 300 to 701                                              | 305 to 935                                              |  |

Table 6-18 Integrated IP microwave work modes (ISV3 board @IS3 mode, STM-1 + Ethernet, XPIC disabled)

| Channel          | Modulation       | Number of                                   | Native Ethernet Throughput (Mbit/s) |                                               |                                                         |                                                         |  |
|------------------|------------------|---------------------------------------------|-------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|
| Spacing<br>(MHz) | Scheme           | STM-1<br>Services in<br>Hybrid<br>Microwave | Without<br>Compressio<br>n          | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |  |
| 28 (27.5)        | 128QAM           | 1                                           | 160 to 203                          | 162 to 248                                    | 164 to 383                                              | 167 to 511                                              |  |
| 28 (27.5)        | 256QAM           | 1                                           | 183 to 232                          | 184 to 284                                    | 187 to 438                                              | 190 to 584                                              |  |
| 28 (27.5)        | 512QAM           | 1                                           | 196 to 249                          | 198 to 304                                    | 200 to 469                                              | 204 to 626                                              |  |
| 28 (27.5)        | 512QAM<br>Light  | 1                                           | 210 to 266                          | 212 to 325                                    | 214 to 502                                              | 218 to 670                                              |  |
| 28 (27.5)        | 1024QAM          | 1                                           | 217 to 275                          | 219 to 337                                    | 222 to 520                                              | 226 to 693                                              |  |
| 28 (27.5)        | 1024QAM<br>Light | 1                                           | 228 to 289                          | 230 to 353                                    | 233 to 545                                              | 237 to 727                                              |  |
| 28 (27.5)        | 2048QAM          | 1                                           | 245 to 306                          | 248 to 379                                    | 250 to 585                                              | 254 to 780                                              |  |
| 56 (55)          | 16QAM            | 1                                           | 173 to 220                          | 175 to 269                                    | 177 to 415                                              | 180 to 553                                              |  |
| 56 (55)          | 32QAM            | 1                                           | 217 to 275                          | 219 to 336                                    | 222 to 519                                              | 226 to 692                                              |  |
| 56 (55)          | 64QAM            | 1                                           | 273 to 346                          | 275 to 423                                    | 279 to 653                                              | 284 to 871                                              |  |
| 56 (55)          | 128QAM           | 1                                           | 323 to 409                          | 326 to 501                                    | 330 to 772                                              | 336 to 1000                                             |  |
| 56 (55)          | 256QAM           | 1                                           | 369 to 467                          | 372 to 571                                    | 376 to 882                                              | 384 to 1000                                             |  |
| 56 (55)          | 512QAM           | 1                                           | 395 to 501                          | 398 to 612                                    | 404 to 945                                              | 411 to 1000                                             |  |
| 56 (55)          | 512QAM<br>Light  | 1                                           | 423 to 536                          | 426 to 655                                    | 432 to 1000                                             | 440 to 1000                                             |  |

| Channel          | Modulation       | Number of                                   | Native Ethernet Throughput (Mbit/s) |                                               |                                                         |                                                         |  |
|------------------|------------------|---------------------------------------------|-------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|
| Spacing<br>(MHz) | Scheme           | STM-1<br>Services in<br>Hybrid<br>Microwave | Without<br>Compressio<br>n          | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |  |
| 56 (55)          | 1024QAM          | 1                                           | 447 to 567                          | 451 to 693                                    | 456 to 1000                                             | 465 to 1000                                             |  |
| 56 (55)          | 1024QAM<br>Light | 1                                           | 481 to 609                          | 485 to 745                                    | 491 to 1000                                             | 500 to 1000                                             |  |
| 56 (55)          | 2048QAM          | 1                                           | 504 to 636                          | 507 to 780                                    | 512 to 1000                                             | 522 to 1000                                             |  |
| 40               | 64QAM            | 1                                           | 185 to 235                          | 187 to 287                                    | 189 to 443                                              | 193 to 591                                              |  |
| 40               | 128QAM           | 1                                           | 219 to 278                          | 221 to 339                                    | 224 to 524                                              | 228 to 699                                              |  |
| 40               | 256QAM           | 1                                           | 253 to 321                          | 255 to 392                                    | 258 to 605                                              | 263 to 807                                              |  |
| 40               | 512QAM           | 1                                           | 268 to 340                          | 270 to 415                                    | 274 to 641                                              | 279 to 855                                              |  |
| 40               | 512QAM<br>Light  | 1                                           | 287 to 363                          | 289 to 444                                    | 293 to 686                                              | 298 to 915                                              |  |
| 40               | 1024QAM          | 1                                           | 302 to 383                          | 304 to 468                                    | 309 to 723                                              | 314 to 964                                              |  |
| 40               | 1024QAM<br>Light | 1                                           | 317 to 402                          | 320 to 491                                    | 324 to 758                                              | 330 to 1000                                             |  |
| 40               | 2048QAM          | 1                                           | 333 to 418                          | 335 to 515                                    | 338 to 795                                              | 345 to 1000                                             |  |

 Table 6-19 Integrated IP microwave work modes (ISV3 board @IS3-mode, STM-1 + Ethernet, XPIC enabled)

| Channel                 | Modulation      | Number of                                   | Native Ethernet Throughput (Mbit/s) |                                               |                                                         |                                                         |  |
|-------------------------|-----------------|---------------------------------------------|-------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|
| Spacing Scheme<br>(MHz) | Scheme          | STM-1<br>Services in<br>Hybrid<br>Microwave | Without<br>Compressio<br>n          | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |  |
| 28 (27.5)               | 128QAM          | 1                                           | 160 to 203                          | 162 to 248                                    | 164 to 383                                              | 167 to 511                                              |  |
| 28 (27.5)               | 256QAM          | 1                                           | 182 to 230                          | 183 to 281                                    | 185 to 434                                              | 189 to 579                                              |  |
| 28 (27.5)               | 512QAM          | 1                                           | 188 to 239                          | 190 to 292                                    | 192 to 450                                              | 196 to 601                                              |  |
| 28 (27.5)               | 512QAM<br>Light | 1                                           | 201 to 255                          | 203 to 312                                    | 206 to 482                                              | 210 to 643                                              |  |
| 28 (27.5)               | 1024QAM         | 1                                           | 215 to 272                          | 216 to 333                                    | 219 to 513                                              | 223 to 685                                              |  |
| 56 (55)                 | 16QAM           | 1                                           | 173 to 220                          | 175 to 269                                    | 177 to 415                                              | 180 to 553                                              |  |

| Channel          | Modulation       | Number of                                   | Native Ethernet Throughput (Mbit/s) |                                               |                                                         |                                                         |  |
|------------------|------------------|---------------------------------------------|-------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|
| Spacing<br>(MHz) | Scheme           | STM-1<br>Services in<br>Hybrid<br>Microwave | Without<br>Compressio<br>n          | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |  |
| 56 (55)          | 32QAM            | 1                                           | 217 to 275                          | 219 to 336                                    | 222 to 519                                              | 226 to 692                                              |  |
| 56 (55)          | 64QAM            | 1                                           | 273 to 346                          | 275 to 423                                    | 279 to 653                                              | 284 to 871                                              |  |
| 56 (55)          | 128QAM           | 1                                           | 323 to 409                          | 326 to 501                                    | 330 to 772                                              | 336 to 1000                                             |  |
| 56 (55)          | 256QAM           | 1                                           | 365 to 462                          | 368 to 565                                    | 372 to 872                                              | 379 to 1000                                             |  |
| 56 (55)          | 512QAM           | 1                                           | 379 to 481                          | 382 to 588                                    | 387 to 907                                              | 395 to 1000                                             |  |
| 56 (55)          | 512QAM<br>Light  | 1                                           | 406 to 514                          | 409 to 629                                    | 414 to 971                                              | 422 to 1000                                             |  |
| 56 (55)          | 1024QAM          | 1                                           | 433 to 548                          | 436 to 670                                    | 441 to 1000                                             | 450 to 1000                                             |  |
| 56 (55)          | 1024QAM<br>Light | 1                                           | 454 to 575                          | 458 to 703                                    | 463 to 1000                                             | 472 to 1000                                             |  |
| 40               | 64QAM            | 1                                           | 185 to 235                          | 187 to 287                                    | 189 to 443                                              | 193 to 591                                              |  |
| 40               | 128QAM           | 1                                           | 219 to 278                          | 221 to 339                                    | 224 to 524                                              | 228 to 699                                              |  |
| 40               | 256QAM           | 1                                           | 251 to 318                          | 253 to 389                                    | 256 to 600                                              | 261 to 800                                              |  |
| 40               | 512QAM           | 1                                           | 257 to 326                          | 259 to 399                                    | 263 to 615                                              | 268 to 821                                              |  |
| 40               | 512QAM<br>Light  | 1                                           | 275 to 349                          | 277 to 427                                    | 281 to 658                                              | 286 to 878                                              |  |
| 40               | 1024QAM          | 1                                           | 293 to 372                          | 296 to 454                                    | 300 to 701                                              | 305 to 935                                              |  |

#### 

For the integrated IP microwave work modes (@IS3 mode) that the ISV3 board supports:

- The throughput specifications listed in the tables are based on the following conditions.
  - Without compression: untagged Ethernet frames with a length ranging from 64 bytes to 1518 bytes
  - With L2 frame header compression: untagged Ethernet frames with a length ranging from 64 bytes to 1518 bytes
  - With L2+L3 frame header compression (IPv4): UDP messages, C-tagged Ethernet frames with a length ranging from 64 bytes to 1518 bytes
  - With L2+L3 frame header compression (IPv6): UDP messages, S-tagged Ethernet frames with a length ranging from 92 bytes to 1518 bytes
- E1/STM-1 services need to occupy the corresponding bandwidth of the air interface capacity. The bandwidth remaining after the E1/STM-1 service capacity is subtracted from the air interface capacity can be provided for Ethernet services.

### 6.1.1.7 Microwave Work Modes (ISM6 board)

The ISM6 board supports the SDH microwave work mode and the Integrated IP microwave work mode.

#### ΠΝΟΤΕ

On ISM6 boards, the backplane bandwidth for TDM services is 2xVC-4 (equivalent to 2xSTM-1 or 126xE1), and the maximum backplane bandwidth for packet services is 1 Gbit/s or 2.5 Gbit/s. Total service capacity does not exceed the backplane bandwidth when two IF channels are used together.

- If working with CSHN boards, an ISM6 board in any of slots 1 to 6 provides a maximum of 2.5 Gbit/ s backplane bandwidth, and that in any of slots 7 to 14 provides a maximum of 1 Gbit/s backplane bandwidth;
- If working with CSHNA boards, the maximum backplane bandwidth of an ISM6 board is as following:
  - Slot 1 or 2: 2.5 Gbit/s
  - Slot 3 to 6: 2.5 Gbit/s (when EPLA is configured) or 1 Gbit/s (when EPLA is not configured)
  - Slot 7 to 14: 1 Gbit/s

#### IF Running Modes and Microwave Working Modes

ISM6 boards can work in three types of IF running modes: IS6, IS3, and IS2. **Table 6-20** describes the IF running modes and microwave working modes.

| Table 6-20 IF  | running  | modes and | microwave | working   | modes |
|----------------|----------|-----------|-----------|-----------|-------|
| 1 4010 0 20 11 | 1 anning | moues and | morenare  | " of ming | moues |

| IF Running<br>Mode | Application Scenario                                                                                                                                                                                                                                  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IS6                | • The IS6 mode provides high bandwidth and large capacity.                                                                                                                                                                                            |
|                    | • The IS6 mode supports 12 types of modulation modes, including QPSK Strong, QPSK, 16QAM Strong, 16QAM, 32QAM, 64QAM, 128QAM, 256QAM, 512QAM, 1024QAM, 2048QAM, and 4096QAM, among which 4096QAM is used only when AM is enabled.                     |
|                    | • The XMC-3 ODU supports the IS6 mode.                                                                                                                                                                                                                |
|                    | • For information about the highest-order modulation scheme supported by each frequency band, see <b>Table 6-21</b> to <b>Table 6-22</b> .                                                                                                            |
|                    | • For information about the supported radio working modes, see <b>Table 6-23</b> to <b>Table 6-27</b> .                                                                                                                                               |
| IS3                | • The IS3 mode provides large capacity. When working in this mode, ISM6 boards can interconnect with ISV3 boards or with OptiX RTN 905.                                                                                                               |
|                    | • The IS3 mode supports 13 types of modulation modes, including QPSK Strong, QPSK, 16QAM Strong, 16QAM, 32QAM, 64QAM, 128QAM, 256QAM, 512QAM, 512QAM Light, 1024QAM, 1024QAM Light, and 2048QAM, among which 2048QAM is used only when AM is enabled. |
|                    | • ISM6 boards in IS3 mode can work with the XMC-2, XMC-2H, and XMC-3 ODU.                                                                                                                                                                             |
|                    | • ISM6 boards working in IS3 mode support the same radio working modes as ISV3 boards.<br>For details, see <b>6.1.1.6 Microwave Work Modes (ISV3 board)</b> .                                                                                         |

| IF Running<br>Mode | Application Scenario                                                                                                                                                                                                                                                                        |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IS2                | • The IS2 mode provides standard capacity. When working in this mode, ISM6 boards can interconnect with ISU2/ISX2 boards.                                                                                                                                                                   |
|                    | • The IS2 mode supports six types of modulation modes: QPSK, 16QAM, 32QAM, 64QAM, 128QAM, and 256QAM.                                                                                                                                                                                       |
|                    | • ISM6 boards in IS2 mode can work with the XMC-2, XMC-2H, and XMC-3 ODU.                                                                                                                                                                                                                   |
|                    | • ISM6 boards working in IS2 mode and with XPIC disabled support the same radio working modes as ISU2 boards. For information about the supported radio working modes, see <b>Table 6-4</b> , <b>Table 6-5</b> , and <b>Table 6-6</b> in <b>6.1.1.4 Microwave Work Modes (ISU2 board)</b> . |
|                    | • ISM6 boards working in IS2 mode and with XPIC enabled support the same radio working modes as ISX2 boards. For information about the supported radio working modes, see <b>Table 6-7</b> , <b>Table 6-9</b> , and <b>Table 6-10</b> in <b>6.1.1.5 Microwave Work Modes (ISX2 board)</b> . |

Table 6-21 Highest-order modulation scheme supported by the IS6 mode (XPIC disabled, the XMC-3 ODU used)

| Frequency              | Maximum M | odulation @ C | hannel Spacing | g       |         |         |
|------------------------|-----------|---------------|----------------|---------|---------|---------|
| band                   | 7 MHz     | 14 MHz        | 28 MHz         | 40 MHz  | 56 MHz  | 112 MHz |
| 13/15/18/23/<br>26 GHz | 1024QAM   | 2048QAM       | 4096QAM        | 4096QAM | 4096QAM | N/A     |
| 28/38 GHz              | 1024QAM   | 2048QAM       | 2048QAM        | 2048QAM | 2048QAM | N/A     |
| 32 GHz                 | 1024QAM   | 2048QAM       | 2048QAM        | 2048QAM | 2048QAM | 512QAM  |

NOTE

• At the 28 GHz or 32 GHz frequency band, 14 MHz/2048QAM is supported only when AM is enabled and ATPC is disabled.

- The 4096QAM modulation scheme is supported only when AM is enabled and ATPC is disabled. When the 4096QAM modulation scheme is used, IF cables must meet the following conditions:
  - For 26 GHz frequency band: an IF cable must be shorter than 30 m or longer than 40 m when using 28 MHz channel spacing; an IF cable must be shorter than 30 m or longer than 80 m when using 40/50 MHz channel spacing.
  - For 13/15/18/23 GHz frequency bands, please contact Huawei engineers to obtain the IF cable requirements.

| Frequency              |        |         |         |         |         |         |
|------------------------|--------|---------|---------|---------|---------|---------|
| band                   | 7 MHz  | 14 MHz  | 28 MHz  | 40 MHz  | 56 MHz  | 112 MHz |
| 13/15/18/23/<br>26 GHz | 512QAM | 1024QAM | 2048QAM | 2048QAM | 2048QAM | N/A     |
| 28/38 GHz              | 512QAM | 1024QAM | 1024QAM | 1024QAM | 1024QAM | N/A     |

Table 6-22 Highest-order modulation scheme supported by the IS6 mode (XPIC enabled, the XMC-3 ODU used)

512QAM

32 GHz

1024QAM

1024QAM

1024QAM

512QAM

1024QAM

#### 

The channel spacings supported by the OptiX RTN 980 comply with ETSI standards. Channel spacings 14/28/56 MHz apply to most frequency bands; but channel spacings 13.75/27.5/55 MHz apply to the 18 GHz frequency band.

### SDH microwave work mode (IS6-mode)

| Table 6-23 SDH microwave work mode (IS6-mode) |
|-----------------------------------------------|
|-----------------------------------------------|

| Service Capacity Modulation Scheme Channel Spacing (MHz)                                                                                                   |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| STM-1 128QAM 28 (27.5)                                                                                                                                     |  |  |  |  |  |  |  |
| 2xSTM-1 128QAM 56 (55)                                                                                                                                     |  |  |  |  |  |  |  |
| NOTE<br>In IS6 running mode and SDH service mode, the microwave work modes are the same regardless of whether the XPIC function<br>is enabled or disabled. |  |  |  |  |  |  |  |

## Integrated IP microwave work mode (IS6-mode, E1+Ethernet)

| Channel          | Modulation      | Maximum                                    | Native Ethernet Throughput (Mbit/s)           |                                               |                                                         |                                                         |  |
|------------------|-----------------|--------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|
| Spacing<br>(MHz) | Scheme          | Number of<br>E1s in<br>Hybrid<br>Microwave | Native<br>Ethernet<br>Throughpu<br>t (Mbit/s) | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |  |
| 7                | QPSK Strong     | 4                                          | 8 to 10                                       | 8 to 12                                       | 8 to 19                                                 | 8 to 25                                                 |  |
| 7                | QPSK            | 5                                          | 10 to 13                                      | 10 to 16                                      | 10 to 25                                                | 10 to 32                                                |  |
| 7                | 16QAM<br>Strong | 8                                          | 17 to 21                                      | 17 to 26                                      | 17 to 41                                                | 18 to 53                                                |  |
| 7                | 16QAM           | 10                                         | 20 to 26                                      | 20 to 32                                      | 21 to 49                                                | 21 to 63                                                |  |
| 7                | 32QAM           | 12                                         | 25 to 32                                      | 25 to 39                                      | 26 to 61                                                | 26 to 78                                                |  |
| 7                | 64QAM           | 15                                         | 32 to 40                                      | 32 to 50                                      | 33 to 77                                                | 33 to 98                                                |  |
| 7                | 128QAM          | 18                                         | 37 to 47                                      | 38 to 58                                      | 38 to 90                                                | 39 to 116                                               |  |
| 7                | 256QAM          | 20                                         | 43 to 54                                      | 43 to 66                                      | 43 to 102                                               | 44 to 131                                               |  |
| 7                | 512QAM          | 22                                         | 47 to 60                                      | 47 to 73                                      | 48 to 113                                               | 49 to 145                                               |  |
| 7                | 1024QAM         | 25                                         | 51 to 65                                      | 52 to 80                                      | 52 to 123                                               | 53 to 158                                               |  |

| Channel          | Modulation      | Maximum                                    | Native Ethernet Throughput (Mbit/s)           |                                               |                                                         |                                                         |  |
|------------------|-----------------|--------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|
| Spacing<br>(MHz) | Scheme          | Number of<br>E1s in<br>Hybrid<br>Microwave | Native<br>Ethernet<br>Throughpu<br>t (Mbit/s) | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |  |
| 14 (13.75)       | QPSK Strong     | 27                                         | 17 to 21                                      | 17 to 26                                      | 17 to 41                                                | 18 to 53                                                |  |
| 14 (13.75)       | QPSK            | 28                                         | 20 to 26                                      | 21 to 32                                      | 21 to 49                                                | 21 to 64                                                |  |
| 14 (13.75)       | 16QAM<br>Strong | 8                                          | 35 to 44                                      | 35 to 54                                      | 36 to 84                                                | 36 to 108                                               |  |
| 14 (13.75)       | 16QAM           | 10                                         | 41 to 52                                      | 42 to 64                                      | 42 to 99                                                | 43 to 127                                               |  |
| 14 (13.75)       | 32QAM           | 16                                         | 52 to 66                                      | 52 to 80                                      | 53 to 124                                               | 54 to 159                                               |  |
| 14 (13.75)       | 64QAM           | 19                                         | 65 to 83                                      | 66 to 101                                     | 66 to 156                                               | 68 to 200                                               |  |
| 14 (13.75)       | 128QAM          | 25                                         | 77 to 98                                      | 78 to 120                                     | 79 to 185                                               | 80 to 237                                               |  |
| 14 (13.75)       | 256QAM          | 31                                         | 89 to 113                                     | 90 to 138                                     | 91 to 214                                               | 93 to 274                                               |  |
| 14 (13.75)       | 512QAM          | 37                                         | 99 to 125                                     | 99 to 153                                     | 101 to 236                                              | 103 to 303                                              |  |
| 14 (13.75)       | 1024QAM         | 43                                         | 104 to 132                                    | 105 to 162                                    | 106 to 250                                              | 109 to 321                                              |  |
| 14 (13.75)       | 2048QAM         | 47                                         | 115 to 146                                    | 116 to 179                                    | 118 to 276                                              | 120 to 354                                              |  |
| 28 (27.5)        | QPSK Strong     | 50                                         | 36 to 46                                      | 36 to 56                                      | 37 to 86                                                | 37 to 111                                               |  |
| 28 (27.5)        | QPSK            | 55                                         | 42 to 54                                      | 42 to 66                                      | 43 to 101                                               | 44 to 130                                               |  |
| 28 (27.5)        | 16QAM<br>Strong | 57                                         | 73 to 93                                      | 74 to 114                                     | 75 to 175                                               | 76 to 225                                               |  |
| 28 (27.5)        | 16QAM           | 17                                         | 86 to 109                                     | 86 to 133                                     | 87 to 205                                               | 89 to 263                                               |  |
| 28 (27.5)        | 32QAM           | 20                                         | 109 to 139                                    | 110 to 170                                    | 112 to 262                                              | 114 to 337                                              |  |
| 28 (27.5)        | 64QAM           | 35                                         | 135 to 172                                    | 136 to 210                                    | 138 to 324                                              | 141 to 416                                              |  |
| 28 (27.5)        | 128QAM          | 41                                         | 160 to 203                                    | 161 to 248                                    | 163 to 383                                              | 167 to 492                                              |  |
| 28 (27.5)        | 256QAM          | 52                                         | 185 to 234                                    | 186 to 287                                    | 189 to 443                                              | 192 to 568                                              |  |
| 28 (27.5)        | 512QAM          | 65                                         | 207 to 262                                    | 208 to 320                                    | 211 to 494                                              | 215 to 635                                              |  |
| 28 (27.5)        | 1024QAM         | 75                                         | 219 to 277                                    | 220 to 339                                    | 223 to 523                                              | 228 to 672                                              |  |
| 28 (27.5)        | 2048QAM         | 75                                         | 242 to 306                                    | 244 to 374                                    | 247 to 578                                              | 251 to 742                                              |  |
| 28 (27.5)        | 4096QAM         | 75                                         | 258 to 327                                    | 260 to 400                                    | 263 to 617                                              | 268 to 792                                              |  |
| 56 (55)          | QPSK Strong     | 75                                         | 73 to 93                                      | 74 to 114                                     | 75 to 176                                               | 76 to 226                                               |  |
| 56 (55)          | QPSK            | 75                                         | 86 to 109                                     | 87 to 133                                     | 88 to 206                                               | 89 to 264                                               |  |

| Channel          | Modulation      | Maximum                                    | Native Ethernet Throughput (Mbit/s)           |                                               |                                                         |                                                         |  |
|------------------|-----------------|--------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|
| Spacing<br>(MHz) | Scheme          | Number of<br>E1s in<br>Hybrid<br>Microwave | Native<br>Ethernet<br>Throughpu<br>t (Mbit/s) | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |  |
| 56 (55)          | 16QAM<br>Strong | 75                                         | 148 to 188                                    | 149 to 230                                    | 151 to 355                                              | 154 to 456                                              |  |
| 56 (55)          | 16QAM           | 35                                         | 173 to 220                                    | 175 to 268                                    | 177 to 414                                              | 180 to 532                                              |  |
| 56 (55)          | 32QAM           | 41                                         | 217 to 275                                    | 219 to 336                                    | 221 to 519                                              | 226 to 666                                              |  |
| 56 (55)          | 64QAM           | 71                                         | 273 to 346                                    | 275 to 423                                    | 279 to 653                                              | 284 to 838                                              |  |
| 56 (55)          | 128QAM          | 75                                         | 323 to 409                                    | 326 to 500                                    | 330 to 772                                              | 336 to 991                                              |  |
| 56 (55)          | 256QAM          | 75                                         | 373 to 473                                    | 376 to 578                                    | 381 to 891                                              | 388 to 1145                                             |  |
| 56 (55)          | 512QAM          | 75                                         | 417 to 528                                    | 420 to 645                                    | 425 to 996                                              | 433 to 1278                                             |  |
| 56 (55)          | 1024QAM         | 75                                         | 450 to 571                                    | 454 to 698                                    | 460 to 1076                                             | 468 to 1382                                             |  |
| 56 (55)          | 2048QAM         | 75                                         | 502 to 636                                    | 506 to 777                                    | 512 to 1199                                             | 522 to 1539                                             |  |
| 56 (55)          | 4096QAM         | 75                                         | 535 to 678                                    | 540 to 829                                    | 546 to 1280                                             | 557 to 1643                                             |  |
| 40               | QPSK Strong     | 75                                         | 49 to 63                                      | 50 to 77                                      | 51 to 119                                               | 51 to 153                                               |  |
| 40               | QPSK            | 75                                         | 58 to 74                                      | 58 to 90                                      | 59 to 139                                               | 60 to 179                                               |  |
| 40               | 16QAM<br>Strong | 75                                         | 100 to 127                                    | 101 to 156                                    | 102 to 240                                              | 104 to 309                                              |  |
| 40               | 16QAM           | 24                                         | 117 to 149                                    | 118 to 182                                    | 120 to 281                                              | 122 to 360                                              |  |
| 40               | 32QAM           | 28                                         | 150 to 190                                    | 151 to 232                                    | 153 to 359                                              | 156 to 460                                              |  |
| 40               | 64QAM           | 48                                         | 185 to 235                                    | 187 to 287                                    | 189 to 443                                              | 192 to 568                                              |  |
| 40               | 128QAM          | 56                                         | 219 to 277                                    | 221 to 339                                    | 223 to 524                                              | 228 to 672                                              |  |
| 40               | 256QAM          | 72                                         | 253 to 320                                    | 255 to 392                                    | 258 to 605                                              | 263 to 776                                              |  |
| 40               | 512QAM          | 75                                         | 282 to 358                                    | 285 to 438                                    | 288 to 675                                              | 294 to 867                                              |  |
| 40               | 1024QAM         | 75                                         | 304 to 386                                    | 307 to 472                                    | 311 to 728                                              | 317 to 934                                              |  |
| 40               | 2048QAM         | 75                                         | 330 to 418                                    | 332 to 511                                    | 337 to 788                                              | 343 to 1012                                             |  |
| 40               | 4096QAM         | 75                                         | 344 to 436                                    | 347 to 533                                    | 351 to 823                                              | 358 to 1056                                             |  |
| 112              | QPSK Strong     | 75                                         | 148 to 188                                    | 149 to 229                                    | 151 to 354                                              | 154 to 455                                              |  |
| 112              | QPSK            | 75                                         | 173 to 219                                    | 174 to 268                                    | 177 to 414                                              | 180 to 531                                              |  |

| Channel          | Modulation      | Maximum<br>Number of<br>E1s in<br>Hybrid<br>Microwave | Native Ethernet Throughput (Mbit/s)           |                                               |                                                         |                                                         |  |
|------------------|-----------------|-------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|
| Spacing<br>(MHz) | Scheme          |                                                       | Native<br>Ethernet<br>Throughpu<br>t (Mbit/s) | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |  |
| 112              | 16QAM<br>Strong | 75                                                    | 298 to 377                                    | 300 to 461                                    | 304 to 712                                              | 310 to 914                                              |  |
| 112              | 16QAM           | 70                                                    | 348 to 441                                    | 351 to 539                                    | 355 to 831                                              | 362 to 1067                                             |  |
| 112              | 32QAM           | 75                                                    | 435 to 551                                    | 439 to 674                                    | 444 to 1040                                             | 453 to 1336                                             |  |
| 112              | 64QAM           | 75                                                    | 548 to 694                                    | 552 to 848                                    | 559 to 1309                                             | 570 to 1680                                             |  |
| 112              | 128QAM          | 75                                                    | 647 to 820                                    | 653 to 1003                                   | 661 to 1547                                             | 673 to 1987                                             |  |
| 112              | 256QAM          | 75                                                    | 747 to 947                                    | 753 to 1158                                   | 763 to 1786                                             | 777 to 2293                                             |  |
| 112              | 512QAM          | 75                                                    | 835 to 1058                                   | 841 to 1293                                   | 852 to 1995                                             | 868 to 2415                                             |  |

 Table 6-25 Integrated IP microwave work mode (IS6 mode, E1 + Ethernet, XPIC)

| Channel          | Modulation      | Maximum                                    | Native Ethernet Throughput (Mbit/s)           |                                               |                                                         |                                                         |  |
|------------------|-----------------|--------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|
| Spacing<br>(MHz) | Scheme          | Number of<br>E1s in<br>Hybrid<br>Microwave | Native<br>Ethernet<br>Throughpu<br>t (Mbit/s) | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |  |
| 7                | QPSK Strong     | 3                                          | 8 to 10                                       | 8 to 12                                       | 8 to 19                                                 | 8 to 24                                                 |  |
| 7                | QPSK            | 4                                          | 10 to 12                                      | 10 to 15                                      | 10 to 24                                                | 10 to 31                                                |  |
| 7                | 16QAM<br>Strong | 8                                          | 16 to 21                                      | 17 to 26                                      | 17 to 40                                                | 17 to 51                                                |  |
| 7                | 16QAM           | 9                                          | 20 to 25                                      | 20 to 31                                      | 20 to 48                                                | 20 to 61                                                |  |
| 7                | 32QAM           | 11                                         | 24 to 31                                      | 25 to 38                                      | 25 to 59                                                | 25 to 76                                                |  |
| 7                | 64QAM           | 15                                         | 31 to 39                                      | 31 to 48                                      | 32 to 74                                                | 32 to 96                                                |  |
| 7                | 128QAM          | 17                                         | 36 to 46                                      | 37 to 56                                      | 37 to 87                                                | 38 to 112                                               |  |
| 7                | 256QAM          | 20                                         | 42 to 53                                      | 42 to 65                                      | 43 to 101                                               | 44 to 130                                               |  |
| 7                | 512QAM          | 22                                         | 47 to 60                                      | 47 to 73                                      | 48 to 113                                               | 49 to 145                                               |  |
| 14 (13.75)       | QPSK Strong     | 25                                         | 16 to 21                                      | 16 to 26                                      | 17 to 40                                                | 17 to 51                                                |  |
| 14 (13.75)       | QPSK            | 8                                          | 20 to 25                                      | 20 to 31                                      | 20 to 48                                                | 21 to 62                                                |  |

| Channel                 | Modulation      | Maximum                                    | Native Ether                                  | net Throughpu                                 | ıt (Mbit/s)                                             |                                                         |
|-------------------------|-----------------|--------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Spacing Scheme<br>(MHz) | Scheme          | Number of<br>E1s in<br>Hybrid<br>Microwave | Native<br>Ethernet<br>Throughpu<br>t (Mbit/s) | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |
| 14 (13.75)              | 16QAM<br>Strong | 9                                          | 34 to 43                                      | 34 to 53                                      | 35 to 82                                                | 35 to 105                                               |
| 14 (13.75)              | 16QAM           | 16                                         | 40 to 51                                      | 40 to 62                                      | 41 to 96                                                | 42 to 124                                               |
| 14 (13.75)              | 32QAM           | 19                                         | 50 to 64                                      | 51 to 78                                      | 51 to 120                                               | 52 to 155                                               |
| 14 (13.75)              | 64QAM           | 24                                         | 63 to 80                                      | 64 to 98                                      | 64 to 152                                               | 66 to 195                                               |
| 14 (13.75)              | 128QAM          | 30                                         | 75 to 95                                      | 75 to 116                                     | 76 to 179                                               | 78 to 231                                               |
| 14 (13.75)              | 256QAM          | 36                                         | 86 to 109                                     | 86 to 133                                     | 87 to 205                                               | 89 to 263                                               |
| 14 (13.75)              | 512QAM          | 41                                         | 96 to 121                                     | 96 to 148                                     | 98 to 229                                               | 100 to 294                                              |
| 14 (13.75)              | 1024QAM         | 46                                         | 104 to 132                                    | 105 to 162                                    | 106 to 250                                              | 109 to 321                                              |
| 28 (27.5)               | QPSK Strong     | 50                                         | 36 to 46                                      | 36 to 56                                      | 37 to 86                                                | 37 to 111                                               |
| 28 (27.5)               | QPSK            | 17                                         | 42 to 54                                      | 42 to 66                                      | 43 to 101                                               | 44 to 130                                               |
| 28 (27.5)               | 16QAM<br>Strong | 20                                         | 73 to 93                                      | 74 to 114                                     | 75 to 175                                               | 76 to 225                                               |
| 28 (27.5)               | 16QAM           | 35                                         | 86 to 109                                     | 86 to 133                                     | 87 to 205                                               | 89 to 263                                               |
| 28 (27.5)               | 32QAM           | 41                                         | 109 to 139                                    | 110 to 170                                    | 112 to 262                                              | 114 to 337                                              |
| 28 (27.5)               | 64QAM           | 52                                         | 135 to 172                                    | 136 to 210                                    | 138 to 324                                              | 141 to 416                                              |
| 28 (27.5)               | 128QAM          | 65                                         | 160 to 203                                    | 161 to 248                                    | 163 to 383                                              | 167 to 492                                              |
| 28 (27.5)               | 256QAM          | 75                                         | 184 to 233                                    | 185 to 284                                    | 187 to 439                                              | 191 to 564                                              |
| 28 (27.5)               | 512QAM          | 75                                         | 198 to 251                                    | 200 to 307                                    | 202 to 474                                              | 206 to 609                                              |
| 28 (27.5)               | 1024QAM         | 75                                         | 216 to 274                                    | 218 to 335                                    | 221 to 517                                              | 225 to 664                                              |
| 28 (27.5)               | 2048QAM         | 75                                         | 227 to 287                                    | 228 to 351                                    | 231 to 542                                              | 236 to 696                                              |
| 56 (55)                 | QPSK Strong     | 75                                         | 73 to 93                                      | 74 to 114                                     | 75 to 176                                               | 76 to 226                                               |
| 56 (55)                 | QPSK            | 35                                         | 86 to 109                                     | 87 to 133                                     | 88 to 206                                               | 89 to 264                                               |
| 56 (55)                 | 16QAM<br>Strong | 41                                         | 148 to 188                                    | 149 to 230                                    | 151 to 355                                              | 154 to 456                                              |
| 56 (55)                 | 16QAM           | 71                                         | 173 to 220                                    | 175 to 268                                    | 177 to 414                                              | 180 to 532                                              |
| 56 (55)                 | 32QAM           | 75                                         | 217 to 275                                    | 219 to 336                                    | 221 to 519                                              | 226 to 666                                              |

| Channel          | Modulation      | Maximum                                    | Native Ether                                  | net Throughpu                                 | ıt (Mbit/s)                                             |                                                         |
|------------------|-----------------|--------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Spacing<br>(MHz) | Scheme          | Number of<br>E1s in<br>Hybrid<br>Microwave | Native<br>Ethernet<br>Throughpu<br>t (Mbit/s) | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |
| 56 (55)          | 64QAM           | 75                                         | 273 to 346                                    | 275 to 423                                    | 279 to 653                                              | 284 to 838                                              |
| 56 (55)          | 128QAM          | 75                                         | 323 to 409                                    | 326 to 500                                    | 330 to 772                                              | 336 to 991                                              |
| 56 (55)          | 256QAM          | 75                                         | 369 to 467                                    | 372 to 571                                    | 376 to 882                                              | 384 to 1132                                             |
| 56 (55)          | 512QAM          | 75                                         | 400 to 507                                    | 403 to 619                                    | 408 to 956                                              | 416 to 1227                                             |
| 56 (55)          | 1024QAM         | 75                                         | 436 to 552                                    | 439 to 675                                    | 445 to 1041                                             | 453 to 1337                                             |
| 56 (55)          | 2048QAM         | 75                                         | 456 to 578                                    | 460 to 707                                    | 466 to 1091                                             | 475 to 1401                                             |
| 40               | QPSK Strong     | 75                                         | 49 to 63                                      | 50 to 77                                      | 51 to 119                                               | 51 to 153                                               |
| 40               | QPSK            | 24                                         | 58 to 74                                      | 58 to 90                                      | 59 to 139                                               | 60 to 179                                               |
| 40               | 16QAM<br>Strong | 28                                         | 100 to 127                                    | 101 to 156                                    | 102 to 240                                              | 104 to 309                                              |
| 40               | 16QAM           | 48                                         | 117 to 149                                    | 118 to 182                                    | 120 to 281                                              | 122 to 360                                              |
| 40               | 32QAM           | 56                                         | 150 to 190                                    | 151 to 232                                    | 153 to 359                                              | 156 to 460                                              |
| 40               | 64QAM           | 72                                         | 185 to 235                                    | 187 to 287                                    | 189 to 443                                              | 192 to 568                                              |
| 40               | 128QAM          | 75                                         | 219 to 277                                    | 221 to 339                                    | 223 to 524                                              | 228 to 672                                              |
| 40               | 256QAM          | 75                                         | 251 to 318                                    | 253 to 389                                    | 256 to 600                                              | 261 to 770                                              |
| 40               | 512QAM          | 75                                         | 271 to 344                                    | 273 to 420                                    | 277 to 648                                              | 282 to 832                                              |
| 40               | 1024QAM         | 75                                         | 295 to 374                                    | 298 to 458                                    | 302 to 706                                              | 307 to 907                                              |
| 40               | 2048QAM         | 75                                         | 326 to 413                                    | 328 to 505                                    | 333 to 779                                              | 339 to 1000                                             |
| 112              | QPSK Strong     | 75                                         | 147 to 188                                    | 149 to 229                                    | 150 to 354                                              | 152 to 455                                              |
| 112              | QPSK            | 70                                         | 172 to 219                                    | 174 to 268                                    | 175 to 414                                              | 178 to 531                                              |
| 112              | 16QAM<br>Strong | 75                                         | 297 to 377                                    | 300 to 461                                    | 302 to 712                                              | 306 to 914                                              |
| 112              | 16QAM           | 75                                         | 347 to 441                                    | 351 to 539                                    | 352 to 831                                              | 357 to 1067                                             |
| 112              | 32QAM           | 75                                         | 434 to 551                                    | 439 to 674                                    | 441 to 1040                                             | 447 to 1336                                             |
| 112              | 64QAM           | 75                                         | 546 to 694                                    | 552 to 848                                    | 554 to 1309                                             | 562 to 1680                                             |
| 112              | 128QAM          | 75                                         | 646 to 820                                    | 653 to 1003                                   | 656 to 1547                                             | 665 to 1987                                             |
| 112              | 256QAM          | 75                                         | 745 to 947                                    | 753 to 1158                                   | 757 to 1786                                             | 768 to 2293                                             |
|                  |                 |                                            |                                               |                                               |                                                         |                                                         |

| Channel          |        | Maximum                                    | 01 ( / / /                                    |                                               |                                                         |                                                         |  |  |
|------------------|--------|--------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|--|
| Spacing<br>(MHz) | Scheme | Number of<br>E1s in<br>Hybrid<br>Microwave | Native<br>Ethernet<br>Throughpu<br>t (Mbit/s) | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |  |  |
| 112              | 512QAM | 75                                         | 832 to 1058                                   | 841 to 1293                                   | 845 to 1995                                             | 857 to 2415                                             |  |  |

# Integrated IP microwave work mode (IS6-mode, STM-1+Ethernet)

| Channel          | Modulation | Number of                                   | Native Ethernet Throughput (Mbit/s)           |                                               |                                                         |                                                         |  |
|------------------|------------|---------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|
| Spacing<br>(MHz) | Scheme     | STM-1<br>Services in<br>Hybrid<br>Microwave | Native<br>Ethernet<br>Throughpu<br>t (Mbit/s) | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |  |
| 28 (27.5)        | 128QAM     | 1                                           | 160 to 203                                    | 161 to 248                                    | 163 to 383                                              | 167 to 492                                              |  |
| 28 (27.5)        | 256QAM     | 1                                           | 185 to 234                                    | 186 to 287                                    | 189 to 443                                              | 192 to 568                                              |  |
| 28 (27.5)        | 512QAM     | 1                                           | 207 to 262                                    | 208 to 320                                    | 211 to 494                                              | 215 to 635                                              |  |
| 28 (27.5)        | 1024QAM    | 1                                           | 219 to 277                                    | 220 to 339                                    | 223 to 523                                              | 228 to 672                                              |  |
| 28 (27.5)        | 2048QAM    | 1                                           | 242 to 306                                    | 244 to 374                                    | 247 to 578                                              | 251 to 742                                              |  |
| 28 (27.5)        | 4096QAM    | 1                                           | 258 to 327                                    | 260 to 400                                    | 263 to 617                                              | 268 to 792                                              |  |
| 56 (55)          | 16QAM      | 1                                           | 173 to 220                                    | 175 to 268                                    | 177 to 414                                              | 180 to 532                                              |  |
| 56 (55)          | 32QAM      | 1                                           | 217 to 275                                    | 219 to 336                                    | 221 to 519                                              | 226 to 666                                              |  |
| 56 (55)          | 64QAM      | 1                                           | 273 to 346                                    | 275 to 423                                    | 279 to 653                                              | 284 to 838                                              |  |
| 56 (55)          | 128QAM     | 1                                           | 323 to 409                                    | 326 to 500                                    | 330 to 772                                              | 336 to 991                                              |  |
| 56 (55)          | 256QAM     | 1                                           | 373 to 473                                    | 376 to 578                                    | 381 to 891                                              | 388 to 1145                                             |  |
| 56 (55)          | 512QAM     | 1                                           | 417 to 528                                    | 420 to 645                                    | 425 to 996                                              | 433 to 1278                                             |  |
| 56 (55)          | 1024QAM    | 1                                           | 450 to 571                                    | 454 to 698                                    | 460 to 1076                                             | 468 to 1382                                             |  |
| 56 (55)          | 2048QAM    | 1                                           | 502 to 636                                    | 506 to 777                                    | 512 to 1199                                             | 522 to 1539                                             |  |
| 56 (55)          | 4096QAM    | 1                                           | 535 to 678                                    | 540 to 829                                    | 546 to 1280                                             | 557 to 1643                                             |  |
| 40               | 64QAM      | 1                                           | 185 to 235                                    | 187 to 287                                    | 189 to 443                                              | 192 to 568                                              |  |
| 40               | 128QAM     | 1                                           | 219 to 277                                    | 221 to 339                                    | 223 to 524                                              | 228 to 672                                              |  |

 Table 6-26 Integrated IP microwave work mode (IS6 mode, STM-1 + Ethernet, non-XPIC)

| Channel          | Modulation      | Number of                                   | Native Ethernet Throughput (Mbit/s)           |                                               |                                                         |                                                         |  |
|------------------|-----------------|---------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|
| Spacing<br>(MHz) | Scheme          | STM-1<br>Services in<br>Hybrid<br>Microwave | Native<br>Ethernet<br>Throughpu<br>t (Mbit/s) | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |  |
| 40               | 256QAM          | 1                                           | 253 to 320                                    | 255 to 392                                    | 258 to 605                                              | 263 to 776                                              |  |
| 40               | 512QAM          | 1                                           | 282 to 358                                    | 285 to 438                                    | 288 to 675                                              | 294 to 867                                              |  |
| 40               | 1024QAM         | 1                                           | 304 to 386                                    | 307 to 472                                    | 311 to 728                                              | 317 to 934                                              |  |
| 40               | 2048QAM         | 1                                           | 330 to 418                                    | 332 to 511                                    | 337 to 788                                              | 343 to 1012                                             |  |
| 40               | 4096QAM         | 1                                           | 344 to 436                                    | 347 to 533                                    | 351 to 823                                              | 358 to 1056                                             |  |
| 112              | QPSK            | 1                                           | 173 to 219                                    | 174 to 268                                    | 177 to 414                                              | 180 to 531                                              |  |
| 112              | 16QAM<br>Strong | 1                                           | 298 to 377                                    | 300 to 461                                    | 304 to 712                                              | 310 to 914                                              |  |
| 112              | 16QAM           | 1                                           | 348 to 441                                    | 351 to 539                                    | 355 to 831                                              | 362 to 1067                                             |  |
| 112              | 32QAM           | 1                                           | 435 to 551                                    | 439 to 674                                    | 444 to 1040                                             | 453 to 1336                                             |  |
| 112              | 64QAM           | 1                                           | 548 to 694                                    | 552 to 848                                    | 559 to 1309                                             | 570 to 1680                                             |  |
| 112              | 128QAM          | 1                                           | 647 to 820                                    | 653 to 1003                                   | 661 to 1547                                             | 673 to 1987                                             |  |
| 112              | 256QAM          | 1                                           | 747 to 947                                    | 753 to 1158                                   | 763 to 1786                                             | 777 to 2293                                             |  |
| 112              | 512QAM          | 1                                           | 835 to 1058                                   | 841 to 1293                                   | 852 to 1995                                             | 868 to 2415                                             |  |

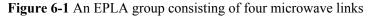
Table 6-27 Integrated IP microwave work mode (IS6 mode, STM-1 + Ethernet, XPIC)

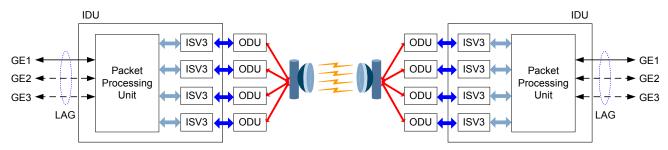
| Channel          | Modulation | Number of                                   | Native Ethernet Throughput (Mbit/s)           |                                               |                                                         |                                                         |  |
|------------------|------------|---------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|
| Spacing<br>(MHz) | Scheme     | STM-1<br>Services in<br>Hybrid<br>Microwave | Native<br>Ethernet<br>Throughpu<br>t (Mbit/s) | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |  |
| 28 (27.5)        | 128QAM     | 1                                           | 160 to 203                                    | 161 to 248                                    | 163 to 383                                              | 167 to 492                                              |  |
| 28 (27.5)        | 256QAM     | 1                                           | 184 to 233                                    | 185 to 284                                    | 187 to 439                                              | 191 to 564                                              |  |
| 28 (27.5)        | 512QAM     | 1                                           | 198 to 251                                    | 200 to 307                                    | 202 to 474                                              | 206 to 609                                              |  |
| 28 (27.5)        | 1024QAM    | 1                                           | 216 to 274                                    | 218 to 335                                    | 221 to 517                                              | 225 to 664                                              |  |
| 28 (27.5)        | 2048QAM    | 1                                           | 227 to 287                                    | 228 to 351                                    | 231 to 542                                              | 236 to 696                                              |  |

| Channel          | Modulation      | Number of                                   | Native Ether                                  | Native Ethernet Throughput (Mbit/s)           |                                                         |                                                         |  |  |
|------------------|-----------------|---------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|--|
| Spacing<br>(MHz) | Scheme          | STM-1<br>Services in<br>Hybrid<br>Microwave | Native<br>Ethernet<br>Throughpu<br>t (Mbit/s) | With L2<br>Frame<br>Header<br>Compressio<br>n | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv4) | With L2+L3<br>Frame<br>Header<br>Compressio<br>n (IPv6) |  |  |
| 56 (55)          | 16QAM           | 1                                           | 173 to 220                                    | 175 to 268                                    | 177 to 414                                              | 180 to 532                                              |  |  |
| 56 (55)          | 32QAM           | 1                                           | 217 to 275                                    | 219 to 336                                    | 221 to 519                                              | 226 to 666                                              |  |  |
| 56 (55)          | 64QAM           | 1                                           | 273 to 346                                    | 275 to 423                                    | 279 to 653                                              | 284 to 838                                              |  |  |
| 56 (55)          | 128QAM          | 1                                           | 323 to 409                                    | 326 to 500                                    | 330 to 772                                              | 336 to 991                                              |  |  |
| 56 (55)          | 256QAM          | 1                                           | 369 to 467                                    | 372 to 571                                    | 376 to 882                                              | 384 to 1132                                             |  |  |
| 56 (55)          | 512QAM          | 1                                           | 400 to 507                                    | 403 to 619                                    | 408 to 956                                              | 416 to 1227                                             |  |  |
| 56 (55)          | 1024QAM         | 1                                           | 436 to 552                                    | 439 to 675                                    | 445 to 1041                                             | 453 to 1337                                             |  |  |
| 56 (55)          | 2048QAM         | 1                                           | 456 to 578                                    | 460 to 707                                    | 466 to 1091                                             | 475 to 1401                                             |  |  |
| 40               | 64QAM           | 1                                           | 185 to 235                                    | 187 to 287                                    | 189 to 443                                              | 192 to 568                                              |  |  |
| 40               | 128QAM          | 1                                           | 219 to 277                                    | 221 to 339                                    | 223 to 524                                              | 228 to 672                                              |  |  |
| 40               | 256QAM          | 1                                           | 251 to 318                                    | 253 to 389                                    | 256 to 600                                              | 261 to 770                                              |  |  |
| 40               | 512QAM          | 1                                           | 271 to 344                                    | 273 to 420                                    | 277 to 648                                              | 282 to 832                                              |  |  |
| 40               | 1024QAM         | 1                                           | 295 to 374                                    | 298 to 458                                    | 302 to 706                                              | 307 to 907                                              |  |  |
| 40               | 2048QAM         | 1                                           | 326 to 413                                    | 328 to 505                                    | 333 to 779                                              | 339 to 1000                                             |  |  |
| 112              | QPSK            | 1                                           | 172 to 219                                    | 174 to 268                                    | 175 to 414                                              | 178 to 531                                              |  |  |
| 112              | 16QAM<br>Strong | 1                                           | 297 to 377                                    | 300 to 461                                    | 302 to 712                                              | 306 to 914                                              |  |  |
| 112              | 16QAM           | 1                                           | 347 to 441                                    | 351 to 539                                    | 352 to 831                                              | 357 to 1067                                             |  |  |
| 112              | 32QAM           | 1                                           | 434 to 551                                    | 439 to 674                                    | 441 to 1040                                             | 447 to 1336                                             |  |  |
| 112              | 64QAM           | 1                                           | 546 to 694                                    | 552 to 848                                    | 554 to 1309                                             | 562 to 1680                                             |  |  |
| 112              | 128QAM          | 1                                           | 646 to 820                                    | 653 to 1003                                   | 656 to 1547                                             | 665 to 1987                                             |  |  |
| 112              | 256QAM          | 1                                           | 745 to 947                                    | 753 to 1158                                   | 757 to 1786                                             | 768 to 2293                                             |  |  |
| 112              | 512QAM          | 1                                           | 832 to 1058                                   | 841 to 1293                                   | 845 to 1995                                             | 857 to 2415                                             |  |  |

#### ΠΝΟΤΕ

- The throughput specifications listed in the tables are based on the following conditions.
  - Without compression: untagged Ethernet frames with a length ranging from 64 bytes to 1518 bytes
  - With L2 frame header compression: untagged Ethernet frames with a length ranging from 64 bytes to 1518 bytes
  - With L2+L3 frame header compression (IPv4): UDP messages, C-tagged Ethernet frames with a length ranging from 70 bytes to 1518 bytes
  - With L2+L3 frame header compression (IPv6): UDP messages, S-tagged Ethernet frames with a length ranging from 94 bytes to 1518 bytes
- E1/STM-1 services need to occupy the corresponding bandwidth of the air interface capacity. The bandwidth remaining after the E1/STM-1 service capacity is subtracted from the air interface capacity can be provided for Ethernet services.


### 6.1.1.8 Throughput of an EPLA Group


This section describes air-interface throughput of an enhanced physical link aggregation (EPLA) group between two sites.

Throughput data in tables listing microwave work modes is measured based on 1+0 microwave links, throughput of an EPLA group is not equal to the total throughput of its member 1+0 microwave links.

In the EPLA group shown in **Figure 6-1**, ISV3 boards work in IS3 mode and the four microwave links are configured consistently. **Table 6-28** lists the throughput of the EPLA group. When more than 1 Gbit/s services are received from the client side, load-sharing LAG must be configured, or a 10GE port must be used for service access.

Table 6-29 lists the throughput of a 4+0 EPLA group on ISM6 boards that work in IS6 mode.





| Table 6-28 Throughput of the EPLA | group consisting of four microwave | links (ISV3 board, IS3 mode, non-XPIC) |
|-----------------------------------|------------------------------------|----------------------------------------|
|                                   | 0                                  | - (                                    |

| Modulation   | Native Ethernet Service Throughput (Mbit/s) |                                                                                  |            |            |            |  |  |  |  |
|--------------|---------------------------------------------|----------------------------------------------------------------------------------|------------|------------|------------|--|--|--|--|
| Scheme       | 7 MHz                                       | 14 MHz                                                                           | 28 MHz     | 40 MHz     | 56 MHz     |  |  |  |  |
| QPSK Strong  | 30 to 37                                    | 64 to 78                                                                         | 136 to 164 | 186 to 225 | 276 to 333 |  |  |  |  |
| QPSK         | 38 to 46                                    | 78 to 94                                                                         | 159 to 192 | 218 to 263 | 322 to 390 |  |  |  |  |
| 16QAM Strong | 64 to 77                                    | 64 to 77         132 to 159         275 to 332         376 to 455         555 to |            |            |            |  |  |  |  |

| Native Ethernet Service Throughput (Mbit/s) |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 7 MHz                                       | 14 MHz                                                                                                                                                     | 28 MHz                                                                                                                                                                                                                                                                                                          | 40 MHz                                                                                                                                                                                                                                                         | 56 MHz                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 77 to 93                                    | 155 to 188                                                                                                                                                 | 321 to 388                                                                                                                                                                                                                                                                                                      | 439 to 531                                                                                                                                                                                                                                                     | 649 to 784                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 95 to 115                                   | 194 to 235                                                                                                                                                 | 410 to 496                                                                                                                                                                                                                                                                                                      | 561 to 679                                                                                                                                                                                                                                                     | 812 to 982                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 120 to 145                                  | 244 to 295                                                                                                                                                 | 507 to 613                                                                                                                                                                                                                                                                                                      | 693 to 838                                                                                                                                                                                                                                                     | 1022 to 1236                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 141 to 170                                  | 289 to 350                                                                                                                                                 | 600 to 725                                                                                                                                                                                                                                                                                                      | 820 to 991                                                                                                                                                                                                                                                     | 1209 to 1461                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 158 to 191                                  | 331 to 400                                                                                                                                                 | 685 to 828                                                                                                                                                                                                                                                                                                      | 946 to 1144                                                                                                                                                                                                                                                    | 1379 to 1668                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 168 to 203                                  | 350 to 423                                                                                                                                                 | 734 to 888                                                                                                                                                                                                                                                                                                      | 1000 to 1212                                                                                                                                                                                                                                                   | 1479 to 1788                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 179 to 216                                  | 374 to 454                                                                                                                                                 | 786 to 950                                                                                                                                                                                                                                                                                                      | 1072 to 1297                                                                                                                                                                                                                                                   | 1582 to 1913                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 191 to 231                                  | 388 to 469                                                                                                                                                 | 813 to 983                                                                                                                                                                                                                                                                                                      | 1129 to 1367                                                                                                                                                                                                                                                   | 1654 to 2022                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| N/A                                         | 407 to 492                                                                                                                                                 | 853 to 1032                                                                                                                                                                                                                                                                                                     | 1183 to 1434                                                                                                                                                                                                                                                   | 1799 to 2175                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                             | 7 MHz         77 to 93         95 to 115         120 to 145         141 to 170         158 to 191         168 to 203         179 to 216         191 to 231 | 7 MHz       14 MHz         77 to 93       155 to 188         95 to 115       194 to 235         120 to 145       244 to 295         141 to 170       289 to 350         158 to 191       331 to 400         168 to 203       350 to 423         179 to 216       374 to 454         191 to 231       388 to 469 | 7 MHz14 MHz28 MHz77 to 93155 to 188321 to 38895 to 115194 to 235410 to 496120 to 145244 to 295507 to 613141 to 170289 to 350600 to 725158 to 191331 to 400685 to 828168 to 203350 to 423734 to 888179 to 216374 to 454786 to 950191 to 231388 to 469813 to 983 | 7 MHz14 MHz28 MHz40 MHz77 to 93155 to 188321 to 388439 to 53195 to 115194 to 235410 to 496561 to 679120 to 145244 to 295507 to 613693 to 838141 to 170289 to 350600 to 725820 to 991158 to 191331 to 400685 to 828946 to 1144168 to 203350 to 423734 to 8881000 to 1212179 to 216374 to 454786 to 9501072 to 1297191 to 231388 to 469813 to 9831129 to 1367 |  |  |  |  |

#### NOTE

Throughput data in this table is calculated based on the scenario in which microwave links transmit Ethernet frames with a length ranging from 64 bytes to 1518 bytes.

| Modulation      | Native Ethernet Service Throughput (Mbit/s) |            |             |              |              |              |  |  |
|-----------------|---------------------------------------------|------------|-------------|--------------|--------------|--------------|--|--|
| Scheme          | 7 MHz                                       | 14 MHz     | 28 MHz      | 40 MHz       | 56 MHz       | 112 MHz      |  |  |
| QPSK Strong     | 31 to 37                                    | 64 to 78   | 136 to 164  | 186 to 225   | 275 to 333   | 554 to 670   |  |  |
| QPSK            | 39 to 47                                    | 78 to 94   | 159 to 192  | 218 to 263   | 322 to 389   | 648 to 783   |  |  |
| 16QAM<br>Strong | 64 to 78                                    | 132 to 159 | 275 to 332  | 376 to 455   | 555 to 671   | 1115 to 1347 |  |  |
| 16QAM           | 77 to 93                                    | 155 to 188 | 321 to 388  | 440 to 531   | 649 to 784   | 1301 to 1573 |  |  |
| 32QAM           | 95 to 115                                   | 194 to 235 | 410 to 496  | 561 to 679   | 812 to 982   | 1628 to 1969 |  |  |
| 64QAM           | 120 to 145                                  | 244 to 296 | 507 to 613  | 693 to 838   | 1022 to 1236 | 2048 to 2476 |  |  |
| 128QAM          | 141 to 170                                  | 289 to 350 | 600 to 725  | 820 to 991   | 1209 to 1461 | 2422 to 2928 |  |  |
| 256QAM          | 160 to 194                                  | 335 to 404 | 693 to 838  | 946 to 1144  | 1395 to 1687 | 2795 to 3380 |  |  |
| 512QAM          | 177 to 214                                  | 370 to 447 | 774 to 936  | 1057 to 1278 | 1558 to 1884 | 3122 to 3774 |  |  |
| 1024QAM         | 193 to 233                                  | 391 to 473 | 819 to 990  | 1139 to 1377 | 1685 to 2037 | N/A          |  |  |
| 2048QAM         | N/A                                         | 432 to 522 | 905 to 1094 | 1234 to 1492 | 1876 to 2269 | N/A          |  |  |
| 4096QAM         | N/A                                         | N/A        | 966 to 1167 | 1288 to 1557 | 2003 to 2421 | N/A          |  |  |

Table 6-29 Throughput of the EPLA group consisting of four microwave links (ISM6 board, IS6 mode, non-XPIC)

| Modulation | Native Ethernet Service Throughput (Mbit/s)    |                                           |                     |                    |                     |                    |  |  |
|------------|------------------------------------------------|-------------------------------------------|---------------------|--------------------|---------------------|--------------------|--|--|
| Scheme     | 7 MHz                                          | 7 MHz 14 MHz 28 MHz 40 MHz 56 MHz 112 MHz |                     |                    |                     |                    |  |  |
| <b>U</b> . | ta in this table is cal<br>4 bytes to 1518 byt |                                           | e scenario in which | microwave links to | ansmit Ethernet fra | umes with a length |  |  |

# 6.1.2 Frequency Band

The ODUs of different series and different types support a variety of operating frequency bands.

#### ΠΝΟΤΕ

Each frequency range in the following tables refers to the range that the corresponding frequency band covers. For the operating frequency range that each T/R spacing supports, see the corresponding *ODU Hardware Description*.

### Frequency Bands (High Power ODU)

| Table 6-30 Frequency | band (XMC-2 ODU) |
|----------------------|------------------|
|----------------------|------------------|

| Frequency<br>Band | Frequency Range (GHz) | T/R Spacing (MHz)                       |
|-------------------|-----------------------|-----------------------------------------|
| 6 GHz             | 5.925 to 7.125        | 252.04, 160/170, 340/350                |
| 7 GHz             | 7.093 to 7.897        | 154, 161, 168, 196, 245                 |
| 8 GHz             | 7.731 to 8.497        | 119/126, 151.614, 208, 266, 310, 311.32 |
| 10 GHz            | 10.130 to 10.650      | 350                                     |
|                   | 10.500 to 10.678      | 91                                      |
| 11 GHz            | 10.675 to 11.745      | 500/490, 530/520                        |
| 13 GHz            | 12.751 to 13.248      | 266                                     |
| 15 GHz            | 14.400 to 15.358      | 315/322, 420, 490, 644, 728             |
| 18 GHz            | 17.685 to 19.710      | 1010/1008, 1092.5, 1560                 |
| 23 GHz            | 21.200 to 23.618      | 1008, 1200, 1232                        |
| 26 GHz            | 24.250 to 26.453      | 1008                                    |
| 28 GHz            | 27.520 to 29.481      | 1008                                    |
| 32 GHz            | 31.815 to 33.383      | 812                                     |
| 38 GHz            | 37.044 to 40.105      | 1260                                    |
| 42 GHz            | 40.522 to 43.464      | 1500                                    |

#### 

In a description of models of XMC-2 ODUs, the frequency band 10 GHz is used to represent the 10 GHz and 10.5 GHz frequency bands.

7/8 GHz XMC-2 ODUs are available in two versions: normal and XMC-2E. Only 8 GHz XMC-2 ODUs of the XMC-2E version support the T/R spacing 310 MHz.

Table 6-31 Frequency band (XMC-2H ODU)

| Frequency<br>Band | Frequency Range (GHz) | T/R Spacing (MHz)                       |
|-------------------|-----------------------|-----------------------------------------|
| 6 GHz             | 5.925 to 6.425 (L6)   | 252.04 (L6)                             |
|                   | 6.425 to 7.125 (U6)   | 340/350 (U6)                            |
| 7 GHz             | 7.093 to 7.897        | 154, 161, 168, 196, 245, 160            |
| 8 GHz             | 7.731 to 8.497        | 119/126, 151.614, 208, 266, 310, 311.32 |
| 11 GHz            | 10.675 to 11.745      | 500/490, 530/520                        |

Table 6-32 Frequency band (XMC-3 ODU)

| Frequency<br>Band | Frequency Range (GHz) | T/R Spacing (MHz)           |
|-------------------|-----------------------|-----------------------------|
| 13 GHz            | 12.751 to 13.248      | 266                         |
| 15 GHz            | 14.400 to 15.358      | 315/322, 420, 490, 644, 728 |
| 18 GHz            | 17.685 to 19.710      | 1010/1008, 1092.5, 1560     |
| 23 GHz            | 21.200 to 23.618      | 1008, 1050, 1200, 1232      |
| 26 GHz            | 24.250 to 26.453      | 1008                        |
| 28 GHz            | 27.520 to 29.481      | 1008                        |
| 32 GHz            | 31.815 to 33.383      | 812                         |
| 38 GHz            | 37.044 to 40.105      | 1260                        |

 Table 6-33 Frequency band (HP ODU)

| Frequency<br>Band | Frequency Range (GHz) | T/R Spacing (MHz)       |
|-------------------|-----------------------|-------------------------|
| 6 GHz             | 5.925 to 6.425 (L6)   | 252.04 (L6)             |
|                   | 6.430 to 7.120 (U6)   | 340 (U6)                |
| 7 GHz             | 7.093 to 7.897        | 154, 161, 168, 196, 245 |

| Frequency<br>Band | Frequency Range (GHz) | T/R Spacing (MHz)                   |
|-------------------|-----------------------|-------------------------------------|
| 8 GHz             | 7.731 to 8.497        | 119, 126, 151.614, 208, 266, 311.32 |
| 10 GHz            | 10.150 to 10.650      | 350                                 |
| 10.5 GHz          | 10.500 to 10.678      | 91                                  |
| 11 GHz            | 10.675 to 11.745      | 490, 500, 530                       |
| 13 GHz            | 12.751 to 13.248      | 266                                 |
| 15 GHz            | 14.400 to 15.353      | 315, 322, 420, 490, 644, 728        |
| 18 GHz            | 17.685 to 19.710      | 1008, 1010, 1560                    |
| 23 GHz            | 21.200 to 23.618      | 1008, 1200, 1232                    |
| 26 GHz            | 24.549 to 26.453      | 1008                                |
| 28 GHz            | 27.520 to 29.481      | 1008                                |
| 32 GHz            | 31.815 to 33.383      | 812                                 |
| 38 GHz            | 37.044 to 40.105      | 700, 1260                           |

 Table 6-34 Frequency Band (HPA ODU)

| Frequency<br>Band | Frequency Range (GHz) | T/R Spacing (MHz)         |
|-------------------|-----------------------|---------------------------|
| 6 GHz             | 5.915-7.125           | 160, 170, 252.04,340, 350 |
| 7 GHz             | 7.093-7.897           | 154, 161, 168, 196, 245   |
| 8 GHz             | 7.731-8.496           | 119, 126, 266, 311.32     |
| 11 GHz            | 10.675-11.745         | 490, 500, 530             |
| 13 GHz            | 12.751-13.248         | 266                       |
| 15 GHz            | 14.400-15.353         | 420, 490, 644, 728        |
| 18 GHz            | 17.685-19.710         | 1008, 1010, 1560          |
| 23 GHz            | 21.200-23.618         | 1008, 1200, 1232          |

# Frequency Bands (Standard Power ODU)

| Frequency<br>Band | Frequency Range (GHz) | T/R Spacing (MHz)            |
|-------------------|-----------------------|------------------------------|
| 7 GHz             | 7.093 to 7.897        | 154, 161, 168, 196, 245      |
| 8 GHz             | 7.731 to 8.496        | 119, 126, 266, 311.32        |
| 11 GHz            | 10.675 to 11.745      | 490, 500, 530                |
| 13 GHz            | 12.751 to 13.248      | 266                          |
| 15 GHz            | 14.400 to 15.353      | 315, 322, 420, 490, 644, 728 |
| 18 GHz            | 17.685 to 19.710      | 1008, 1010, 1560             |
| 23 GHz            | 21.200 to 23.618      | 1008, 1200, 1232             |
| 26 GHz            | 24.549 to 26.453      | 1008                         |
| 38 GHz            | 37.044 to 40,105      | 700, 1260                    |

 Table 6-36 Frequency band (SPA ODU)

| Frequency<br>Band | Frequency Range (GHz)                      | T/R Spacing (MHz)       |
|-------------------|--------------------------------------------|-------------------------|
| 6 GHz             | 5.915 to 6.425 (L6)<br>6.425 to 7.125 (U6) | 252.04 (L6)<br>340 (U6) |
| 7 GHz             | 7.093 to 7.897                             | 154, 161, 168, 196, 245 |
| 8 GHz             | 7.731 to 8.496                             | 119, 126, 266, 311.32   |
| 11 GHz            | 10.675 to 11.745                           | 490, 500, 530           |
| 13 GHz            | 12.751 to 13.248                           | 266                     |
| 15 GHz            | 14.403 to 15.348                           | 420, 490                |
| 18 GHz            | 17.685 to 19.710                           | 1008, 1010              |
| 23 GHz            | 21.200 to 23.618                           | 1008, 1232              |

# Frequency Bands (Low Capacity ODU)

| Frequency<br>Band | Frequency Range (GHz) | T/R Spacing (MHz)       |
|-------------------|-----------------------|-------------------------|
| 7 GHz             | 7.093 to 7.897        | 154, 161, 168, 196, 245 |
| 8 GHz             | 7.718 to 8.496        | 119, 126, 266, 311.32   |
| 11 GHz            | 10.675 to 11.745      | 490, 500, 530           |
| 13 GHz            | 12.751 to 13.248      | 266                     |
| 15 GHz            | 14.403 to 15.348      | 420, 490                |
| 18 GHz            | 17.685 to 19.710      | 1008, 1010              |
| 23 GHz            | 21.200 to 23.618      | 1008, 1232              |

| Table 6-37 Frequency band (LP ODU) |
|------------------------------------|
|------------------------------------|

# 6.1.3 Receiver Sensitivity

The receiver sensitivity reflects the anti-fading capability of the microwave equipment.

#### 

For a guaranteed value, remove 3 dB from the typical value.

### 6.1.3.1 Receiver Sensitivity (IF1 Board)

The IF1 board supports SDH/PDH microwave work modes.

#### 

For an XMC-1 ODU or XMC-2 ODU at the 18 GHz frequency band, remove 2 dB from the sensitivity values specified in the table.

| Table 6-38 Ty | pical receiver sen | sitivity of the | SDH/PDH micro | owave (i, IF1 board) |
|---------------|--------------------|-----------------|---------------|----------------------|
|---------------|--------------------|-----------------|---------------|----------------------|

| Item                       | Performan | Performance |       |       |       |       |  |
|----------------------------|-----------|-------------|-------|-------|-------|-------|--|
|                            | 4xE1      |             | 8xE1  | 8xE1  |       |       |  |
|                            | QPSK      | 16QAM       | QPSK  | 16QAM | QPSK  | 16QAM |  |
| $RSL@ BER = 10^{-6} (dBm)$ |           |             |       |       |       |       |  |
| @6 GHz                     | -91.5     | -87.5       | -88.5 | -84.5 | -85.5 | -81.5 |  |
| @7 GHz                     | -91.5     | -87.5       | -88.5 | -84.5 | -85.5 | -81.5 |  |
| @8 GHz                     | -91.5     | -87.5       | -88.5 | -84.5 | -85.5 | -81.5 |  |
| @10 GHz                    | -91.0     | -87.0       | -88.0 | -84.0 | -85.0 | -81.0 |  |

| Item      | Performar | nce   |       |       |       |       |
|-----------|-----------|-------|-------|-------|-------|-------|
|           | 4xE1      | 4xE1  |       |       | 16xE1 |       |
|           | QPSK      | 16QAM | QPSK  | 16QAM | QPSK  | 16QAM |
| @10.5 GHz | -89.0     | -85.0 | -86.0 | -82.0 | -83.0 | -79.0 |
| @11 GHz   | -91.0     | -87.0 | -88.0 | -84.0 | -85.0 | -81.0 |
| @13 GHz   | -91.0     | -87.0 | -88.0 | -84.0 | -85.0 | -81.0 |
| @15 GHz   | -91.0     | -87.0 | -88.0 | -84.0 | -85.0 | -81.0 |
| @18 GHz   | -91.0     | -87.0 | -88.0 | -84.0 | -85.0 | -81.0 |
| @23 GHz   | -90.5     | -86.5 | -87.5 | -83.5 | -84.5 | -80.5 |
| @26 GHz   | -90.0     | -86.0 | -87.0 | -83.0 | -84.0 | -80.0 |
| @32 GHz   | -89.0     | -85.0 | -86.0 | -82.0 | -83.0 | -79.0 |
| @38 GHz   | -88.5     | -84.5 | -85.5 | -81.5 | -82.5 | -78.5 |

 Table 6-39 Typical receiver sensitivity of the SDH/PDH microwave (ii, IF1 board)

| Item       | Performar                  | nce   |       |       |       |        |  |  |
|------------|----------------------------|-------|-------|-------|-------|--------|--|--|
|            | 22xE1                      | 26xE1 | 35xE1 | 44xE1 | 53xE1 | STM-1  |  |  |
|            | 32QAM                      | 64QAM | 16QAM | 32QAM | 64QAM | 128QAM |  |  |
| RSL@ BER = | $RSL@ BER = 10^{-6} (dBm)$ |       |       |       |       |        |  |  |
| @6 GHz     | -80.5                      | -76.5 | -79.0 | -77.5 | -73.5 | -70.5  |  |  |
| @7 GHz     | -80.5                      | -76.5 | -79.0 | -77.5 | -73.5 | -70.5  |  |  |
| @8 GHz     | -80.5                      | -76.5 | -79.0 | -77.5 | -73.5 | -70.5  |  |  |
| @10 GHz    | -80.0                      | -76.0 | -78.5 | -77.0 | -73.0 | -70.0  |  |  |
| @10.5 GHz  | -78.0                      | -74.0 | -76.5 | -75.0 | -71.0 | -68.0  |  |  |
| @11 GHz    | -80.0                      | -76.0 | -78.5 | -77.0 | -73.0 | -70.0  |  |  |
| @13 GHz    | -80.0                      | -76.0 | -78.5 | -77.0 | -73.0 | -70.0  |  |  |
| @15 GHz    | -80.0                      | -76.0 | -78.5 | -77.0 | -73.0 | -70.0  |  |  |
| @18 GHz    | -80.0                      | -76.0 | -78.5 | -77.0 | -73.0 | -70.0  |  |  |
| @23 GHz    | -79.5                      | -75.5 | -78.0 | -76.5 | -72.5 | -69.5  |  |  |
| @26 GHz    | -79.0                      | -75.0 | -77.5 | -76.0 | -72.0 | -69.0  |  |  |
| @32 GHz    | -78.0                      | -74.0 | -76.5 | -75.0 | -71.0 | -68.0  |  |  |

| Item    | Performan                           | Performance |       |       |       |        |  |
|---------|-------------------------------------|-------------|-------|-------|-------|--------|--|
|         | 22xE1 26xE1 35xE1 44xE1 53xE1 STM-1 |             |       |       |       |        |  |
|         | 32QAM                               | 64QAM       | 16QAM | 32QAM | 64QAM | 128QAM |  |
| @38 GHz | -77.5                               | -73.5       | -76.0 | -74.5 | -70.5 | -67.5  |  |

### 6.1.3.2 Receiver Sensitivity (IFU2 board)

The IFU2 board supports Integrated IP microwave work modes.

#### 

- For an XMC-2 ODU at the 18 GHz frequency band, remove 2 dB from the sensitivity values specified in the table.
- The 10.5 GHz ODU with the T/R spacing of 91 MHz does not support the channel spacing of 56 MHz. The receiver sensitivity is not available (N/A).

Table 6-40 Typical receiver sensitivity of the Integrated IP microwave (i, IFU2 board)

| Item         | Performan                       | ce (Channel | Spacing: 7 | MHz)  |        |        |  |  |  |
|--------------|---------------------------------|-------------|------------|-------|--------|--------|--|--|--|
|              | QPSK                            | 16QAM       | 32QAM      | 64QAM | 128QAM | 256QAM |  |  |  |
| RSL@ BER     | RSL@ BER=10 <sup>-6</sup> (dBm) |             |            |       |        |        |  |  |  |
| @6 GHz       | -92.5                           | -86.5       | -82.5      | -79.5 | -76.5  | -73.5  |  |  |  |
| @7 GHz       | -92.5                           | -86.5       | -82.5      | -79.5 | -76.5  | -73.5  |  |  |  |
| @8 GHz       | -92.5                           | -86.5       | -82.5      | -79.5 | -76.5  | -73.5  |  |  |  |
| @10 GHz      | -92                             | -86         | -82        | -79   | -76    | -73    |  |  |  |
| @10.5<br>GHz | -90                             | -84         | -80        | -77   | -74    | -71    |  |  |  |
| @11 GHz      | -92                             | -86         | -82        | -79   | -76    | -73    |  |  |  |
| @13 GHz      | -92                             | -86         | -82        | -79   | -76    | -73    |  |  |  |
| @15 GHz      | -92                             | -86         | -82        | -79   | -76    | -73    |  |  |  |
| @18 GHz      | -92                             | -86         | -82        | -79   | -76    | -73    |  |  |  |
| @23 GHz      | -91.5                           | -85.5       | -81.5      | -78.5 | -75.5  | -72.5  |  |  |  |
| @26 GHz      | -91                             | -85         | -81        | -78   | -75    | -72    |  |  |  |
| @28 GHz      | -90.5                           | -84.5       | -80.5      | -77.5 | -74.5  | -71.5  |  |  |  |
| @32 GHz      | -90                             | -84         | -80        | -77   | -74    | -71    |  |  |  |
| @38 GHz      | -89.5                           | -83.5       | -79.5      | -76.5 | -73.5  | -70.5  |  |  |  |

| Item    | Performan | Performance (Channel Spacing: 7 MHz) |     |     |     |     |  |  |
|---------|-----------|--------------------------------------|-----|-----|-----|-----|--|--|
|         | QPSK      | QPSK 16QAM 32QAM 64QAM 128QAM 256QAM |     |     |     |     |  |  |
| @42 GHz | -88       | -82                                  | -78 | -75 | -72 | -69 |  |  |

Table 6-41 Typical receiver sensitivity of the Integrated IP microwave (ii, IFU2 board)

| Item                            | Performan | ce (Channel | Spacing: 14 | MHz)  |        |        |  |  |
|---------------------------------|-----------|-------------|-------------|-------|--------|--------|--|--|
|                                 | QPSK      | 16QAM       | 32QAM       | 64QAM | 128QAM | 256QAM |  |  |
| RSL@ BER=10 <sup>-6</sup> (dBm) |           |             |             |       |        |        |  |  |
| @6 GHz                          | -90.5     | -83.5       | -79.5       | -76.5 | -73.5  | -70.5  |  |  |
| @7 GHz                          | -90.5     | -83.5       | -79.5       | -76.5 | -73.5  | -70.5  |  |  |
| @8 GHz                          | -90.5     | -83.5       | -79.5       | -76.5 | -73.5  | -70.5  |  |  |
| @10 GHz                         | -90       | -83         | -79         | -76   | -73    | -70    |  |  |
| @10.5<br>GHz                    | -88       | -81         | -77         | -74   | -71    | -68    |  |  |
| @11 GHz                         | -90       | -83         | -79         | -76   | -73    | -70    |  |  |
| @13 GHz                         | -90       | -83         | -79         | -76   | -73    | -70    |  |  |
| @15 GHz                         | -90       | -83         | -79         | -76   | -73    | -70    |  |  |
| @18 GHz                         | -90       | -83         | -79         | -76   | -73    | -70    |  |  |
| @23 GHz                         | -89.5     | -82.5       | -78.5       | -75.5 | -72.5  | -69.5  |  |  |
| @26 GHz                         | -89       | -82         | -78         | -75   | -72    | -69    |  |  |
| @28 GHz                         | -88.5     | -81.5       | -77.5       | -74.5 | -71.5  | -68.5  |  |  |
| @32 GHz                         | -88       | -81         | -77         | -74   | -71    | -68    |  |  |
| @38 GHz                         | -87.5     | -80.5       | -76.5       | -73.5 | -70.5  | -67.5  |  |  |
| @42 GHz                         | -86       | -79         | -75         | -72   | -69    | -66    |  |  |

Table 6-42 Typical receiver sensitivity of the Integrated IP microwave (iii, IFU2 board)

| Item     | Performance (Channel Spacing: 28 MHz) |                                      |  |  |  |  |  |  |
|----------|---------------------------------------|--------------------------------------|--|--|--|--|--|--|
|          | QPSK                                  | QPSK 16QAM 32QAM 64QAM 128QAM 256QAM |  |  |  |  |  |  |
| RSL@ BER | RSL@ BER=10 <sup>-6</sup> (dBm)       |                                      |  |  |  |  |  |  |
| @6 GHz   | -87.5                                 | -87.5 -80.5 -76.5 -73.5 -70.5 -67.5  |  |  |  |  |  |  |

| Item         | Performan | ce (Channel | Spacing: 28 | MHz)  |        |        |
|--------------|-----------|-------------|-------------|-------|--------|--------|
|              | QPSK      | 16QAM       | 32QAM       | 64QAM | 128QAM | 256QAM |
| @7 GHz       | -87.5     | -80.5       | -76.5       | -73.5 | -70.5  | -67.5  |
| @8 GHz       | -87.5     | -80.5       | -76.5       | -73.5 | -70.5  | -67.5  |
| @10 GHz      | -87       | -80         | -76         | -73   | -70    | -67    |
| @10.5<br>GHz | -85       | -78         | -74         | -71   | -68    | -65    |
| @11 GHz      | -87       | -80         | -76         | -73   | -70    | -67    |
| @13 GHz      | -87       | -80         | -76         | -73   | -70    | -67    |
| @15 GHz      | -87       | -80         | -76         | -73   | -70    | -67    |
| @18 GHz      | -87       | -80         | -76         | -73   | -70    | -67    |
| @23 GHz      | -86.5     | -79.5       | -75.5       | -72.5 | -69.5  | -66.5  |
| @26 GHz      | -86       | -79         | -75         | -72   | -69    | -66    |
| @28 GHz      | -85.5     | -78.5       | -74.5       | -71.5 | -68.5  | -65.5  |
| @32 GHz      | -85       | -78         | -74         | -71   | -68    | -65    |
| @38 GHz      | -84.5     | -77.5       | -73.5       | -70.5 | -67.5  | -64.5  |
| @42 GHz      | -83       | -76         | -72         | -69   | -66    | -63    |

Table 6-43 Typical receiver sensitivity of the Integrated IP microwave (iv, IFU2 board)

| Item         | Performan                       | Performance (Channel Spacing: 56 MHz) |       |       |        |        |  |  |
|--------------|---------------------------------|---------------------------------------|-------|-------|--------|--------|--|--|
|              | QPSK                            | 16QAM                                 | 32QAM | 64QAM | 128QAM | 256QAM |  |  |
| RSL@ BER     | RSL@ BER=10 <sup>-6</sup> (dBm) |                                       |       |       |        |        |  |  |
| @6 GHz       | -84.5                           | -77.5                                 | -73.5 | -70.5 | -67.5  | -64.5  |  |  |
| @7 GHz       | -84.5                           | -77.5                                 | -73.5 | -70.5 | -67.5  | -64.5  |  |  |
| @8 GHz       | -84.5                           | -77.5                                 | -73.5 | -70.5 | -67.5  | -64.5  |  |  |
| @10 GHz      | -84                             | -77                                   | -73   | -70   | -67    | -64    |  |  |
| @10.5<br>GHz | N/A                             | N/A                                   | N/A   | N/A   | N/A    | N/A    |  |  |
| @11 GHz      | -84                             | -77                                   | -73   | -70   | -67    | -64    |  |  |
| @13 GHz      | -84                             | -77                                   | -73   | -70   | -67    | -64    |  |  |
| @15 GHz      | -84                             | -77                                   | -73   | -70   | -67    | -64    |  |  |

| Item    | Performance (Channel Spacing: 56 MHz) |       |       |       |        |        |  |
|---------|---------------------------------------|-------|-------|-------|--------|--------|--|
|         | QPSK                                  | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |  |
| @18 GHz | -84                                   | -77   | -73   | -70   | -67    | -64    |  |
| @23 GHz | -83.5                                 | -76.5 | -72.5 | -69.5 | -66.5  | -63.5  |  |
| @26 GHz | -83                                   | -76   | -72   | -69   | -66    | -63    |  |
| @28 GHz | -82.5                                 | -75.5 | -71.5 | -68.5 | -65.5  | -62.5  |  |
| @32 GHz | -82                                   | -75   | -71   | -68   | -65    | -62    |  |
| @38 GHz | -81.5                                 | -74.5 | -70.5 | -67.5 | -64.5  | -61.5  |  |
| @42 GHz | -80                                   | -73   | -69   | -66   | -63    | -60    |  |

### 6.1.3.3 Receiver Sensitivity (IFX2 board)

The IFX2 board supports Integrated IP microwave work modes.

#### ΠΝΟΤΕ

- For an XMC-2 ODU at the 18 GHz frequency band, remove 2 dB from the sensitivity values specified in the table.
- The IFX2 board does not support the 7MHz/128QAM, 7MHz/256QAM, and 14MHz/256QAM working modes at frequency bands from 6 GHz to 23 GHz. The receiver sensitivity is not available (N/A).
- The IFX2 board does not support the 7MHz/64QAM, 7MHz/128QAM, 7MHz/256QAM, 14MHz/ 128QAM, and 14MHz/256QAM working modes at frequency bands from 26 GHz to 42 GHz. The receiver sensitivity is not available (N/A).
- The 10.5 GHz XMC-2 ODU with the T/R spacing of 91 MHz does not support the channel spacing of 56 MHz. The receiver sensitivity is not available (N/A).

| Item         | Performance (Channel Spacing: 7 MHz) |       |       |       |        |        |  |  |  |  |
|--------------|--------------------------------------|-------|-------|-------|--------|--------|--|--|--|--|
|              | QPSK                                 | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |  |  |  |  |
| RSL@ BER     | RSL@ BER=10 <sup>-6</sup> (dBm)      |       |       |       |        |        |  |  |  |  |
| @6 GHz       | -92.5                                | -86.5 | -82.5 | -79.5 | N/A    | N/A    |  |  |  |  |
| @7 GHz       | -92.5                                | -86.5 | -82.5 | -79.5 | N/A    | N/A    |  |  |  |  |
| @8 GHz       | -92.5                                | -86.5 | -82.5 | -79.5 | N/A    | N/A    |  |  |  |  |
| @10 GHz      | -92                                  | -86   | -82   | -79   | N/A    | N/A    |  |  |  |  |
| @10.5<br>GHz | -90                                  | -84   | -80   | -77   | N/A    | N/A    |  |  |  |  |
| @11 GHz      | -92                                  | -86   | -82   | -79   | N/A    | N/A    |  |  |  |  |

Table 6-44 Typical receiver sensitivity of the Integrated IP microwave (i, IFX2 board)

| Item    | Performance (Channel Spacing: 7 MHz) |       |       |       |        |        |  |  |
|---------|--------------------------------------|-------|-------|-------|--------|--------|--|--|
|         | QPSK                                 | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |  |  |
| @13 GHz | -92                                  | -86   | -82   | -79   | N/A    | N/A    |  |  |
| @15 GHz | -92                                  | -86   | -82   | -79   | N/A    | N/A    |  |  |
| @18 GHz | -92                                  | -86   | -82   | -79   | N/A    | N/A    |  |  |
| @23 GHz | -91.5                                | -85.5 | -81.5 | -78.5 | N/A    | N/A    |  |  |
| @26 GHz | -91                                  | -85   | -81   | N/A   | N/A    | N/A    |  |  |
| @28 GHz | -90.5                                | -84.5 | -80.5 | N/A   | N/A    | N/A    |  |  |
| @32 GHz | -90                                  | -84   | -80   | N/A   | N/A    | N/A    |  |  |
| @38 GHz | -89.5                                | -83.5 | -79.5 | N/A   | N/A    | N/A    |  |  |
| @42 GHz | -88                                  | -82   | -78   | N/A   | N/A    | N/A    |  |  |

Table 6-45 Typical receiver sensitivity of the Integrated IP microwave (ii, IFX2 board)

| Item         | Performance (Channel Spacing: 14 MHz) |       |       |       |        |        |  |  |  |  |  |
|--------------|---------------------------------------|-------|-------|-------|--------|--------|--|--|--|--|--|
|              | QPSK                                  | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |  |  |  |  |  |
| RSL@ BER     | $RSL@ BER=10^{-6} (dBm)$              |       |       |       |        |        |  |  |  |  |  |
| @6 GHz       | -90.5                                 | -83.5 | -79.5 | -76.5 | -73.5  | N/A    |  |  |  |  |  |
| @7 GHz       | -90.5                                 | -83.5 | -79.5 | -76.5 | -73.5  | N/A    |  |  |  |  |  |
| @8 GHz       | -90.5                                 | -83.5 | -79.5 | -76.5 | -73.5  | N/A    |  |  |  |  |  |
| @10 GHz      | -90                                   | -83   | -79   | -76   | -73    | N/A    |  |  |  |  |  |
| @10.5<br>GHz | -88                                   | -81   | -77   | -74   | -71    | N/A    |  |  |  |  |  |
| @11 GHz      | -90                                   | -83   | -79   | -76   | -73    | N/A    |  |  |  |  |  |
| @13 GHz      | -90                                   | -83   | -79   | -76   | -73    | N/A    |  |  |  |  |  |
| @15 GHz      | -90                                   | -83   | -79   | -76   | -73    | N/A    |  |  |  |  |  |
| @18 GHz      | -90                                   | -83   | -79   | -76   | -73    | N/A    |  |  |  |  |  |
| @23 GHz      | -89.5                                 | -82.5 | -78.5 | -75.5 | -72.5  | N/A    |  |  |  |  |  |
| @26 GHz      | -89                                   | -82   | -78   | -75   | N/A    | N/A    |  |  |  |  |  |
| @28 GHz      | -88.5                                 | -81.5 | -77.5 | -74.5 | N/A    | N/A    |  |  |  |  |  |
| @32 GHz      | -88                                   | -81   | -77   | -74   | N/A    | N/A    |  |  |  |  |  |

| Item    | Performance (Channel Spacing: 14 MHz) |       |       |       |        |        |  |  |
|---------|---------------------------------------|-------|-------|-------|--------|--------|--|--|
|         | QPSK                                  | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |  |  |
| @38 GHz | -87.5                                 | -80.5 | -76.5 | -73.5 | N/A    | N/A    |  |  |
| @42 GHz | -86                                   | -79   | -75   | -72   | N/A    | N/A    |  |  |

Table 6-46 Typical receiver sensitivity of the Integrated IP microwave (iii, IFX2 board)

| Item                            | Performance (Channel Spacing: 28 MHz) |       |       |       |        |        |  |  |  |  |
|---------------------------------|---------------------------------------|-------|-------|-------|--------|--------|--|--|--|--|
|                                 | QPSK                                  | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |  |  |  |  |
| RSL@ BER=10 <sup>-6</sup> (dBm) |                                       |       |       |       |        |        |  |  |  |  |
| @6 GHz                          | -87.5                                 | -80.5 | -76.5 | -73.5 | -70.5  | -67.5  |  |  |  |  |
| @7 GHz                          | -87.5                                 | -80.5 | -76.5 | -73.5 | -70.5  | -67.5  |  |  |  |  |
| @8 GHz                          | -87.5                                 | -80.5 | -76.5 | -73.5 | -70.5  | -67.5  |  |  |  |  |
| @10 GHz                         | -87                                   | -80   | -76   | -73   | -70    | -67    |  |  |  |  |
| @10.5<br>GHz                    | -85                                   | -78   | -74   | -71   | -68    | -65    |  |  |  |  |
| @11 GHz                         | -87                                   | -80   | -76   | -73   | -70    | -67    |  |  |  |  |
| @13 GHz                         | -87                                   | -80   | -76   | -73   | -70    | -67    |  |  |  |  |
| @15 GHz                         | -87                                   | -80   | -76   | -73   | -70    | -67    |  |  |  |  |
| @18 GHz                         | -87                                   | -80   | -76   | -73   | -70    | -67    |  |  |  |  |
| @23 GHz                         | -86.5                                 | -79.5 | -75.5 | -72.5 | -69.5  | -66.5  |  |  |  |  |
| @26 GHz                         | -86                                   | -79   | -75   | -72   | -69    | -66    |  |  |  |  |
| @28 GHz                         | -85.5                                 | -78.5 | -74.5 | -71.5 | -68.5  | -65.5  |  |  |  |  |
| @32 GHz                         | -85                                   | -78   | -74   | -71   | -68    | -65    |  |  |  |  |
| @38 GHz                         | -84.5                                 | -77.5 | -73.5 | -70.5 | -67.5  | -64.5  |  |  |  |  |
| @42 GHz                         | -83                                   | -76   | -72   | -69   | -66    | -63    |  |  |  |  |

Table 6-47 Typical receiver sensitivity of the Integrated IP microwave (iv, IFX2 board)

| Item     | Performan        | Performance (Channel Spacing: 56 MHz) |  |  |  |  |  |  |
|----------|------------------|---------------------------------------|--|--|--|--|--|--|
|          | QPSK             | QPSK 16QAM 32QAM 64QAM 128QAM 256QAM  |  |  |  |  |  |  |
| RSL@ BER | $=10^{-6}$ (dBm) | -                                     |  |  |  |  |  |  |

| Item         | Performance (Channel Spacing: 56 MHz) |       |       |       |        |        |  |  |
|--------------|---------------------------------------|-------|-------|-------|--------|--------|--|--|
|              | QPSK                                  | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |  |  |
| @6 GHz       | -84.5                                 | -77.5 | -73.5 | -70.5 | -67.5  | -64.5  |  |  |
| @7 GHz       | -84.5                                 | -77.5 | -73.5 | -70.5 | -67.5  | -64.5  |  |  |
| @8 GHz       | -84.5                                 | -77.5 | -73.5 | -70.5 | -67.5  | -64.5  |  |  |
| @10 GHz      | -84                                   | -77   | -73   | -70   | -67    | -64    |  |  |
| @10.5<br>GHz | N/A                                   | N/A   | N/A   | N/A   | N/A    | N/A    |  |  |
| @11 GHz      | -84                                   | -77   | -73   | -70   | -67    | -64    |  |  |
| @13 GHz      | -84                                   | -77   | -73   | -70   | -67    | -64    |  |  |
| @15 GHz      | -84                                   | -77   | -73   | -70   | -67    | -64    |  |  |
| @18 GHz      | -84                                   | -77   | -73   | -70   | -67    | -64    |  |  |
| @23 GHz      | -83.5                                 | -76.5 | -72.5 | -69.5 | -66.5  | -63.5  |  |  |
| @26 GHz      | -83                                   | -76   | -72   | -69   | -66    | -63    |  |  |
| @28 GHz      | -82.5                                 | -75.5 | -71.5 | -68.5 | -65.5  | -62.5  |  |  |
| @32 GHz      | -82                                   | -75   | -71   | -68   | -65    | -62    |  |  |
| @38 GHz      | -81.5                                 | -74.5 | -70.5 | -67.5 | -64.5  | -61.5  |  |  |
| @42 GHz      | -80                                   | -73   | -69   | -66   | -63    | -60    |  |  |

## 6.1.3.4 Receiver Sensitivity (ISU2 board)

The ISU2 board supports SDH microwave work modes and Integrated IP microwave work modes.

#### 

- For an XMC-2 ODU at the 18 GHz frequency band, remove 2 dB from the values specified in the table to obtain the values of receiver sensitivity.
- The 10.5 GHz ODU with the T/R spacing of 91 MHz does not support the channel spacing of 40/56 MHz. The receiver sensitivity is not available (N/A).
- Currently the 42 GHz ODU does not support the channel spacing of 3.5 MHz. The receiver sensitivity is not available (N/A).

# SDH Microwave (ISU2 Board)

| Item       | Performance                |               |  |  |  |  |  |  |
|------------|----------------------------|---------------|--|--|--|--|--|--|
|            | 1xSTM-1                    | 2xSTM-1       |  |  |  |  |  |  |
|            | 128QAM/28 MHz              | 128QAM/56 MHz |  |  |  |  |  |  |
| RSL@ BER = | RSL@ BER = $10^{-6}$ (dBm) |               |  |  |  |  |  |  |
| @6 GHz     | -71                        | -68           |  |  |  |  |  |  |
| @7 GHz     | -71                        | -68           |  |  |  |  |  |  |
| @8 GHz     | -71                        | -68           |  |  |  |  |  |  |
| @10 GHz    | -70.5                      | -67.5         |  |  |  |  |  |  |
| @10.5 GHz  | -68.5                      | N/A           |  |  |  |  |  |  |
| @11 GHz    | -70.5                      | -67.5         |  |  |  |  |  |  |
| @13 GHz    | -70.5                      | -67.5         |  |  |  |  |  |  |
| @15 GHz    | -70.5                      | -67.5         |  |  |  |  |  |  |
| @18 GHz    | -70.5                      | -67.5         |  |  |  |  |  |  |
| @23 GHz    | -70                        | -67           |  |  |  |  |  |  |
| @26 GHz    | -69.5                      | -66.5         |  |  |  |  |  |  |
| @28 GHz    | -69                        | -66           |  |  |  |  |  |  |
| @32 GHz    | -68.5                      | -65.5         |  |  |  |  |  |  |
| @38 GHz    | -68                        | -65           |  |  |  |  |  |  |
| @42 GHz    | -66.5                      | -63.5         |  |  |  |  |  |  |

 Table 6-48 Typical receiver sensitivity of the SDH microwave (ISU2)

# Integrated IP Microwave (ISU2 Board)

| Item     | Performance (Channel Spacing: 7 MHz) |       |       |       |        |        |  |
|----------|--------------------------------------|-------|-------|-------|--------|--------|--|
|          | QPSK                                 | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |  |
| RSL@ BER | =10 <sup>-6</sup> (dBm)              |       | -     | -     | -      |        |  |
| @6 GHz   | -92.5                                | -86.5 | -82.5 | -80   | -77    | -74    |  |
| @7 GHz   | -92.5                                | -86.5 | -82.5 | -80   | -77    | -74    |  |

| Item         | Performance (Channel Spacing: 7 MHz) |       |       |       |        |        |  |  |
|--------------|--------------------------------------|-------|-------|-------|--------|--------|--|--|
|              | QPSK                                 | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |  |  |
| @8 GHz       | -92.5                                | -86.5 | -82.5 | -80   | -77    | -74    |  |  |
| @10 GHz      | -92                                  | -86   | -82   | -79.5 | -76.5  | -73.5  |  |  |
| @10.5<br>GHz | -90                                  | -84   | -80   | -77.5 | -74.5  | -71.5  |  |  |
| @11 GHz      | -92                                  | -86   | -82   | -79.5 | -76.5  | -73.5  |  |  |
| @13 GHz      | -92                                  | -86   | -82   | -79.5 | -76.5  | -73.5  |  |  |
| @15 GHz      | -92                                  | -86   | -82   | -79.5 | -76.5  | -73.5  |  |  |
| @18 GHz      | -92                                  | -86   | -82   | -79.5 | -76.5  | -73.5  |  |  |
| @23 GHz      | -91.5                                | -85.5 | -81.5 | -79   | -76    | -73    |  |  |
| @26 GHz      | -91                                  | -85   | -81   | -78.5 | -75.5  | -72.5  |  |  |
| @28 GHz      | -90.5                                | -84.5 | -80.5 | -78   | -75    | -72    |  |  |
| @32 GHz      | -90                                  | -84   | -80   | -77.5 | -74.5  | -71.5  |  |  |
| @38 GHz      | -89.5                                | -83.5 | -79.5 | -77   | -74    | -71    |  |  |
| @42 GHz      | -88                                  | -82   | -78   | -75.5 | -72.5  | -69.5  |  |  |

Table 6-50 Typical receiver sensitivity of the Integrated IP microwave II (ISU2)

| Item         | Performance (Channel Spacing: 14 MHz) |       |       |       |        |        |  |  |  |  |  |
|--------------|---------------------------------------|-------|-------|-------|--------|--------|--|--|--|--|--|
|              | QPSK                                  | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |  |  |  |  |  |
| RSL@ BER     | RSL@ BER=10 <sup>-6</sup> (dBm)       |       |       |       |        |        |  |  |  |  |  |
| @6 GHz       | -90.5                                 | -83.5 | -79.5 | -77   | -74    | -71    |  |  |  |  |  |
| @7 GHz       | -90.5                                 | -83.5 | -79.5 | -77   | -74    | -71    |  |  |  |  |  |
| @8 GHz       | -90.5                                 | -83.5 | -79.5 | -77   | -74    | -71    |  |  |  |  |  |
| @10 GHz      | -90                                   | -83   | -79   | -76.5 | -73.5  | -70.5  |  |  |  |  |  |
| @10.5<br>GHz | -88                                   | -81   | -77   | -74.5 | -71.5  | -68.5  |  |  |  |  |  |
| @11 GHz      | -90                                   | -83   | -79   | -76.5 | -73.5  | -70.5  |  |  |  |  |  |
| @13 GHz      | -90                                   | -83   | -79   | -76.5 | -73.5  | -70.5  |  |  |  |  |  |
| @15 GHz      | -90                                   | -83   | -79   | -76.5 | -73.5  | -70.5  |  |  |  |  |  |
| @18 GHz      | -90                                   | -83   | -79   | -76.5 | -73.5  | -70.5  |  |  |  |  |  |

| Item    | Performance (Channel Spacing: 14 MHz) |       |       |       |        |        |  |
|---------|---------------------------------------|-------|-------|-------|--------|--------|--|
|         | QPSK                                  | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |  |
| @23 GHz | -89.5                                 | -82.5 | -78.5 | -76   | -73    | -70    |  |
| @26 GHz | -89                                   | -82   | -78   | -75.5 | -72.5  | -69.5  |  |
| @28 GHz | -88.5                                 | -81.5 | -77.5 | -75   | -72    | -69    |  |
| @32 GHz | -88                                   | -81   | -77   | -74.5 | -71.5  | -68.5  |  |
| @38 GHz | -87.5                                 | -80.5 | -76.5 | -74   | -71    | -68    |  |
| @42 GHz | -86                                   | -79   | -75   | -72.5 | -69.5  | -66.5  |  |

 Table 6-51 Typical receiver sensitivity of the Integrated IP microwave III (ISU2)

| Item         | Performan                       | ce (Channel | Spacing: 28 | 6 MHz) |        |        |  |  |  |
|--------------|---------------------------------|-------------|-------------|--------|--------|--------|--|--|--|
|              | QPSK                            | 16QAM       | 32QAM       | 64QAM  | 128QAM | 256QAM |  |  |  |
| RSL@ BER     | RSL@ BER=10 <sup>-6</sup> (dBm) |             |             |        |        |        |  |  |  |
| @6 GHz       | -87.5                           | -80.5       | -76.5       | -74    | -71    | -68    |  |  |  |
| @7 GHz       | -87.5                           | -80.5       | -76.5       | -74    | -71    | -68    |  |  |  |
| @8 GHz       | -87.5                           | -80.5       | -76.5       | -74    | -71    | -68    |  |  |  |
| @10 GHz      | -87                             | -80         | -76         | -73.5  | -70.5  | -67.5  |  |  |  |
| @10.5<br>GHz | -85                             | -78         | -74         | -71.5  | -68.5  | -65.5  |  |  |  |
| @11 GHz      | -87                             | -80         | -76         | -73.5  | -70.5  | -67.5  |  |  |  |
| @13 GHz      | -87                             | -80         | -76         | -73.5  | -70.5  | -67.5  |  |  |  |
| @15 GHz      | -87                             | -80         | -76         | -73.5  | -70.5  | -67.5  |  |  |  |
| @18 GHz      | -87                             | -80         | -76         | -73.5  | -70.5  | -67.5  |  |  |  |
| @23 GHz      | -86.5                           | -79.5       | -75.5       | -73    | -70    | -67    |  |  |  |
| @26 GHz      | -86                             | -79         | -75         | -72.5  | -69.5  | -66.5  |  |  |  |
| @28 GHz      | -85.5                           | -78.5       | -74.5       | -72    | -69    | -66    |  |  |  |
| @32 GHz      | -85                             | -78         | -74         | -71.5  | -68.5  | -65.5  |  |  |  |
| @38 GHz      | -84.5                           | -77.5       | -73.5       | -71    | -68    | -65    |  |  |  |
| @42 GHz      | -83                             | -76         | -72         | -69.5  | -66.5  | -63.5  |  |  |  |

| Item         | Performan                       | ce (Channel | Spacing: 56 | MHz)  |        |        |  |  |
|--------------|---------------------------------|-------------|-------------|-------|--------|--------|--|--|
|              | QPSK                            | 16QAM       | 32QAM       | 64QAM | 128QAM | 256QAM |  |  |
| RSL@ BER     | RSL@ BER=10 <sup>-6</sup> (dBm) |             |             |       |        |        |  |  |
| @6 GHz       | -84.5                           | -77.5       | -73.5       | -71   | -68    | -65    |  |  |
| @7 GHz       | -84.5                           | -77.5       | -73.5       | -71   | -68    | -65    |  |  |
| @8 GHz       | -84.5                           | -77.5       | -73.5       | -71   | -68    | -65    |  |  |
| @10 GHz      | -84                             | -77         | -73         | -70.5 | -67.5  | -64.5  |  |  |
| @10.5<br>GHz | N/A                             | N/A         | N/A         | N/A   | N/A    | N/A    |  |  |
| @11 GHz      | -84                             | -77         | -73         | -70.5 | -67.5  | -64.5  |  |  |
| @13 GHz      | -84                             | -77         | -73         | -70.5 | -67.5  | -64.5  |  |  |
| @15 GHz      | -84                             | -77         | -73         | -70.5 | -67.5  | -64.5  |  |  |
| @18 GHz      | -84                             | -77         | -73         | -70.5 | -67.5  | -64.5  |  |  |
| @23 GHz      | -83.5                           | -76.5       | -72.5       | -70   | -67    | -64    |  |  |
| @26 GHz      | -83                             | -76         | -72         | -69.5 | -66.5  | -63.5  |  |  |
| @28 GHz      | -82.5                           | -75.5       | -71.5       | -69   | -66    | -63    |  |  |
| @32 GHz      | -82                             | -75         | -71         | -68.5 | -65.5  | -62.5  |  |  |
| @38 GHz      | -81.5                           | -74.5       | -70.5       | -68   | -65    | -62    |  |  |
| @42 GHz      | -80                             | -73         | -69         | -66.5 | -63.5  | -60.5  |  |  |

 Table 6-52 Typical receiver sensitivity of the Integrated IP microwave IV (ISU2)

 Table 6-53 Typical receiver sensitivity of the Integrated IP microwave V (ISU2)

| Item         | Performance (Channel Spacing: 40 MHz) |       |       |       |        |        |  |
|--------------|---------------------------------------|-------|-------|-------|--------|--------|--|
|              | QPSK                                  | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |  |
| RSL@ BER     | RSL@ BER=10 <sup>-6</sup> (dBm)       |       |       |       |        |        |  |
| @6 GHz       | -86                                   | -79   | -75   | -72.5 | -69.5  | -66.5  |  |
| @7 GHz       | -86                                   | -79   | -75   | -72.5 | -69.5  | -66.5  |  |
| @8 GHz       | -86                                   | -79   | -75   | -72.5 | -69.5  | -66.5  |  |
| @10 GHz      | -85.5                                 | -78.5 | -74.5 | -72   | -69    | -66    |  |
| @10.5<br>GHz | N/A                                   | N/A   | N/A   | N/A   | N/A    | N/A    |  |

| Item    | Performance (Channel Spacing: 40 MHz) |       |       |       |        |        |  |
|---------|---------------------------------------|-------|-------|-------|--------|--------|--|
|         | QPSK                                  | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |  |
| @11 GHz | -85.5                                 | -78.5 | -74.5 | -72   | -69    | -66    |  |
| @13 GHz | -85.5                                 | -78.5 | -74.5 | -72   | -69    | -66    |  |
| @15 GHz | -85.5                                 | -78.5 | -74.5 | -72   | -69    | -66    |  |
| @18 GHz | -85.5                                 | -78.5 | -74.5 | -72   | -69    | -66    |  |
| @23 GHz | -85                                   | -78   | -74   | -71.5 | -68.5  | -65.5  |  |
| @26 GHz | -84.5                                 | -77.5 | -73.5 | -71   | -68    | -65    |  |
| @28 GHz | -84                                   | -77   | -73   | -70.5 | -67.5  | -64.5  |  |
| @32 GHz | -83.5                                 | -76.5 | -72.5 | -70   | -67    | -64    |  |
| @38 GHz | -83                                   | -76   | -72   | -69.5 | -66.5  | -63.5  |  |
| @42 GHz | -81.5                                 | -74.5 | -70.5 | -68   | -65    | -62    |  |

Table 6-54 Typical receiver sensitivity of the Integrated IP microwave VI (ISU2)

| Item                            | Performance (Channel Spa        | acing: 3.5 MHz) |  |  |  |  |  |  |
|---------------------------------|---------------------------------|-----------------|--|--|--|--|--|--|
|                                 | QPSK                            | 16QAM           |  |  |  |  |  |  |
| RSL@ BER=10 <sup>-6</sup> (dBm) | RSL@ BER=10 <sup>-6</sup> (dBm) |                 |  |  |  |  |  |  |
| @6 GHz                          | -95.5                           | -89.5           |  |  |  |  |  |  |
| @7 GHz                          | -95.5                           | -89.5           |  |  |  |  |  |  |
| @8 GHz                          | -95.5                           | -89.5           |  |  |  |  |  |  |
| @10.5 GHz                       | -95                             | -89             |  |  |  |  |  |  |
| @11 GHz                         | -93                             | -87             |  |  |  |  |  |  |
| @11 GHz                         | -95                             | -89             |  |  |  |  |  |  |
| @13 GHz                         | -95                             | -89             |  |  |  |  |  |  |
| @15 GHz                         | -95                             | -89             |  |  |  |  |  |  |
| @18 GHz                         | -95                             | -89             |  |  |  |  |  |  |
| @23 GHz                         | -94.5                           | -88.5           |  |  |  |  |  |  |
| @26 GHz                         | -94                             | -88             |  |  |  |  |  |  |
| @28 GHz                         | -93.5                           | -87.5           |  |  |  |  |  |  |
| @32 GHz                         | -91.5                           | -86             |  |  |  |  |  |  |

| Item    | Performance (Channel Spacing: 3.5 MHz) |       |  |
|---------|----------------------------------------|-------|--|
|         | QPSK                                   | 16QAM |  |
| @38 GHz | -91                                    | -85.5 |  |
| @42 GHz | -89.5                                  | -84   |  |

 Table 6-55 Typical receiver sensitivity of the Integrated IP microwave VII (ISU2)

| Item     | Performance (Channel Spacing: 50 MHz) |                                     |       |     |     |     |  |  |
|----------|---------------------------------------|-------------------------------------|-------|-----|-----|-----|--|--|
|          | QPSK                                  | PSK 16QAM 32QAM 64QAM 128QAM 256QAM |       |     |     |     |  |  |
| RSL@ BER | RSL@ BER=10 <sup>-6</sup> (dBm)       |                                     |       |     |     |     |  |  |
| @18 GHz  | -85                                   | -77                                 | -73.5 | -71 | -68 | -65 |  |  |
| @23 GHz  | -86                                   | -78                                 | -74.5 | -72 | -69 | -66 |  |  |

### 6.1.3.5 Receiver Sensitivity (ISX2 board)

The ISX2 board supports SDH microwave work modes and Integrated IP microwave work modes.

#### ΠΝΟΤΕ

- For an XMC-2 ODU at the 18 GHz frequency band, remove 2 dB from the sensitivity values specified in the table.
- The 10.5 GHz ODU with the T/R spacing of 91 MHz does not support the channel spacing of 40/56 MHz. The receiver sensitivity is not available (N/A).
- When the XPIC function is enabled, the ISX2 board does not support the 7MHz/128QAM, 7MHz/256QAM, and 14MHz/256QAM working modes at frequency bands from 7 GHz to 23 GHz. The receiver sensitivity is not available (N/A).
- When the XPIC function is enabled, the ISX2 board does not support the 7MHz/64QAM, 7MHz/ 128QAM, 7MHz/256QAM, 14MHz/128QAM, and 14MHz/256QAM working modes at frequency bands from 26 GHz to 42 GHz. The receiver sensitivity is not available (N/A).
- For an XMC-2 ODU at the 38 GHz frequency band, when the XPIC function is enabled, remove 2 dB from the sensitivity value specified in the table when the ISX2 board is at 28MHz/256QAM working mode.

## SDH Microwave (ISX2 Board)

| Item       | Performance              |               |  |  |  |
|------------|--------------------------|---------------|--|--|--|
|            | 1xSTM-1                  | 2xSTM-1       |  |  |  |
|            | 128QAM/28 MHz            | 128QAM/56 MHz |  |  |  |
| RSL@ BER = | = 10 <sup>-6</sup> (dBm) |               |  |  |  |
| @6 GHz     | -71                      | -68           |  |  |  |
| @7 GHz     | -71                      | -68           |  |  |  |
| @8 GHz     | -71                      | -68           |  |  |  |
| @10 GHz    | -70.5                    | -67.5         |  |  |  |
| @10.5 GHz  | -68.5                    | N/A           |  |  |  |
| @11 GHz    | -70.5                    | -67.5         |  |  |  |
| @13 GHz    | -70.5                    | -67.5         |  |  |  |
| @15 GHz    | -70.5                    | -67.5         |  |  |  |
| @18 GHz    | -70.5                    | -67.5         |  |  |  |
| @23 GHz    | -70                      | -67           |  |  |  |
| @26 GHz    | -69.5                    | -66.5         |  |  |  |
| @28 GHz    | -69                      | -66           |  |  |  |
| @32 GHz    | -68.5                    | -65.5         |  |  |  |
| @38 GHz    | -68                      | -65           |  |  |  |
| @42 GHz    | -66.5                    | -63.5         |  |  |  |

Table 6-56 Typical receiver sensitivity of the SDH microwave (ISX2 Board, XPIC disabled)

 Table 6-57 Typical receiver sensitivity of the SDH microwave (ISX2 Board, XPIC enabled)

| Item       | Performance              |               |  |  |  |
|------------|--------------------------|---------------|--|--|--|
|            | 1xSTM-1 2xSTM-1          |               |  |  |  |
|            | 128QAM/28 MHz            | 128QAM/56 MHz |  |  |  |
| RSL@ BER = | - 10 <sup>-6</sup> (dBm) |               |  |  |  |
| @6 GHz     | -71 -68                  |               |  |  |  |
| @7 GHz     | -71 -68                  |               |  |  |  |

| Item    | Performance   |               |  |  |  |
|---------|---------------|---------------|--|--|--|
|         | 1xSTM-1       | 2xSTM-1       |  |  |  |
|         | 128QAM/28 MHz | 128QAM/56 MHz |  |  |  |
| @8 GHz  | -71           | -68           |  |  |  |
| @11 GHz | -70.5         | -67.5         |  |  |  |
| @13 GHz | -70.5         | -67.5         |  |  |  |
| @15 GHz | -70.5         | -67.5         |  |  |  |
| @18 GHz | -70.5         | -67.5         |  |  |  |
| @23 GHz | -70           | -67           |  |  |  |
| @26 GHz | -69.5         | -66.5         |  |  |  |
| @28 GHz | -69           | -66           |  |  |  |
| @32 GHz | -68.5         | -65.5         |  |  |  |
| @38 GHz | -68           | -65           |  |  |  |
| @42 GHz | -66.5         | -63.5         |  |  |  |

# Integrated IP Microwave (ISX2 Board)

**Table 6-58** Typical receiver sensitivity of the Integrated IP microwave I (ISX2 Board, XPIC disabled)

| Item         | Performance (Channel Spacing: 7 MHz) |       |       |       |        |        |
|--------------|--------------------------------------|-------|-------|-------|--------|--------|
|              | QPSK                                 | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |
| RSL@ BER     | $=10^{-6} (dBm)$                     |       |       |       |        |        |
| @6 GHz       | -92.5                                | -86.5 | -82.5 | -80   | -77    | -74    |
| @7 GHz       | -92.5                                | -86.5 | -82.5 | -80   | -77    | -74    |
| @8 GHz       | -92.5                                | -86.5 | -82.5 | -80   | -77    | -74    |
| @10 GHz      | -92                                  | -86   | -82   | -79.5 | -76.5  | -73.5  |
| @10.5<br>GHz | -90                                  | -84   | -80   | -77.5 | -74.5  | -71.5  |
| @11 GHz      | -92                                  | -86   | -82   | -79.5 | -76.5  | -73.5  |
| @13 GHz      | -92                                  | -86   | -82   | -79.5 | -76.5  | -73.5  |
| @15 GHz      | -92                                  | -86   | -82   | -79.5 | -76.5  | -73.5  |

| Item    | Performance (Channel Spacing: 7 MHz) |       |       |       |        |        |  |  |
|---------|--------------------------------------|-------|-------|-------|--------|--------|--|--|
|         | QPSK                                 | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |  |  |
| @18 GHz | -92                                  | -86   | -82   | -79.5 | -76.5  | -73.5  |  |  |
| @23 GHz | -91.5                                | -85.5 | -81.5 | -79   | -76    | -73    |  |  |
| @26 GHz | -91                                  | -85   | -81   | -78.5 | -75.5  | -72.5  |  |  |
| @28 GHz | -90.5                                | -84.5 | -80.5 | -78   | -75    | -72    |  |  |
| @32 GHz | -90                                  | -84   | -80   | -77.5 | -74.5  | -71.5  |  |  |
| @38 GHz | -89.5                                | -83.5 | -79.5 | -77   | -74    | -71    |  |  |
| @42 GHz | -88                                  | -82   | -78   | -75.5 | -72.5  | -69.5  |  |  |

**Table 6-59** Typical receiver sensitivity of the Integrated IP microwave II (ISX2 Board, XPIC disabled)

| Item         | Performance (Channel Spacing: 14 MHz) |       |       |       |        |        |  |  |  |  |  |
|--------------|---------------------------------------|-------|-------|-------|--------|--------|--|--|--|--|--|
|              | QPSK                                  | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |  |  |  |  |  |
| RSL@ BER     | $RSL@ BER=10^{-6} (dBm)$              |       |       |       |        |        |  |  |  |  |  |
| @6 GHz       | -90.5                                 | -83.5 | -79.5 | -77   | -74    | -71    |  |  |  |  |  |
| @7 GHz       | -90.5                                 | -83.5 | -79.5 | -77   | -74    | -71    |  |  |  |  |  |
| @8 GHz       | -90.5                                 | -83.5 | -79.5 | -77   | -74    | -71    |  |  |  |  |  |
| @10 GHz      | -90                                   | -83   | -79   | -76.5 | -73.5  | -70.5  |  |  |  |  |  |
| @10.5<br>GHz | -88                                   | -81   | -77   | -74.5 | -71.5  | -68.5  |  |  |  |  |  |
| @11 GHz      | -90                                   | -83   | -79   | -76.5 | -73.5  | -70.5  |  |  |  |  |  |
| @13 GHz      | -90                                   | -83   | -79   | -76.5 | -73.5  | -70.5  |  |  |  |  |  |
| @15 GHz      | -90                                   | -83   | -79   | -76.5 | -73.5  | -70.5  |  |  |  |  |  |
| @18 GHz      | -90                                   | -83   | -79   | -76.5 | -73.5  | -70.5  |  |  |  |  |  |
| @23 GHz      | -89.5                                 | -82.5 | -78.5 | -76   | -73    | -70    |  |  |  |  |  |
| @26 GHz      | -89                                   | -82   | -78   | -75.5 | -72.5  | -69.5  |  |  |  |  |  |
| @28 GHz      | -88.5                                 | -81.5 | -77.5 | -75   | -72    | -69    |  |  |  |  |  |
| @32 GHz      | -88                                   | -81   | -77   | -74.5 | -71.5  | -68.5  |  |  |  |  |  |
| @38 GHz      | -87.5                                 | -80.5 | -76.5 | -74   | -71    | -68    |  |  |  |  |  |
| @42 GHz      | -86                                   | -79   | -75   | -72.5 | -69.5  | -66.5  |  |  |  |  |  |

| Item                            | Performar | ice (Channe | l Spacing: 28 | 3 MHz) |        |        |  |  |  |  |
|---------------------------------|-----------|-------------|---------------|--------|--------|--------|--|--|--|--|
|                                 | QPSK      | 16QAM       | 32QAM         | 64QAM  | 128QAM | 256QAM |  |  |  |  |
| RSL@ BER=10 <sup>-6</sup> (dBm) |           |             |               |        |        |        |  |  |  |  |
| @6 GHz                          | -87.5     | -80.5       | -76.5         | -74    | -71    | -68    |  |  |  |  |
| @7 GHz                          | -87.5     | -80.5       | -76.5         | -74    | -71    | -68    |  |  |  |  |
| @8 GHz                          | -87.5     | -80.5       | -76.5         | -74    | -71    | -68    |  |  |  |  |
| @10 GHz                         | -87       | -80         | -76           | -73.5  | -70.5  | -67.5  |  |  |  |  |
| @10.5<br>GHz                    | -85       | -78         | -74           | -71.5  | -68.5  | -65.5  |  |  |  |  |
| @11 GHz                         | -87       | -80         | -76           | -73.5  | -70.5  | -67.5  |  |  |  |  |
| @13 GHz                         | -87       | -80         | -76           | -73.5  | -70.5  | -67.5  |  |  |  |  |
| @15 GHz                         | -87       | -80         | -76           | -73.5  | -70.5  | -67.5  |  |  |  |  |
| @18 GHz                         | -87       | -80         | -76           | -73.5  | -70.5  | -67.5  |  |  |  |  |
| @23 GHz                         | -86.5     | -79.5       | -75.5         | -73    | -70    | -67    |  |  |  |  |
| @26 GHz                         | -86       | -79         | -75           | -72.5  | -69.5  | -66.5  |  |  |  |  |
| @28 GHz                         | -85.5     | -78.5       | -74.5         | -72    | -69    | -66    |  |  |  |  |
| @32 GHz                         | -85       | -78         | -74           | -71.5  | -68.5  | -65.5  |  |  |  |  |
| @38 GHz                         | -84.5     | -77.5       | -73.5         | -71    | -68    | -65    |  |  |  |  |
| @42 GHz                         | -83       | -76         | -72           | -69.5  | -66.5  | -63.5  |  |  |  |  |

**Table 6-60** Typical receiver sensitivity of the Integrated IP microwave III (ISX2 Board, XPIC disabled)

| Table 6-61 Typical receiver sensitivity of the Integrated IP microwave IV (ISX2 Board, XPIC |
|---------------------------------------------------------------------------------------------|
| disabled)                                                                                   |

| Item     | Performance (Channel Spacing: 56 MHz) |       |       |       |        |        |  |
|----------|---------------------------------------|-------|-------|-------|--------|--------|--|
|          | QPSK                                  | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |  |
| RSL@ BER | $=10^{-6} (dBm)$                      |       |       |       | -      |        |  |
| @6 GHz   | -84.5                                 | -77.5 | -73.5 | -71   | -68    | -65    |  |
| @7 GHz   | -84.5                                 | -77.5 | -73.5 | -71   | -68    | -65    |  |
| @8 GHz   | -84.5                                 | -77.5 | -73.5 | -71   | -68    | -65    |  |

| Item         | Performance (Channel Spacing: 56 MHz) |       |       |       |        |        |  |  |
|--------------|---------------------------------------|-------|-------|-------|--------|--------|--|--|
|              | QPSK                                  | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |  |  |
| @10 GHz      | -84                                   | -77   | -73   | -70.5 | -67.5  | -64.5  |  |  |
| @10.5<br>GHz | N/A                                   | N/A   | N/A   | N/A   | N/A    | N/A    |  |  |
| @11 GHz      | -84                                   | -77   | -73   | -70.5 | -67.5  | -64.5  |  |  |
| @13 GHz      | -84                                   | -77   | -73   | -70.5 | -67.5  | -64.5  |  |  |
| @15 GHz      | -84                                   | -77   | -73   | -70.5 | -67.5  | -64.5  |  |  |
| @18 GHz      | -84                                   | -77   | -73   | -70.5 | -67.5  | -64.5  |  |  |
| @23 GHz      | -83.5                                 | -76.5 | -72.5 | -70   | -67    | -64    |  |  |
| @26 GHz      | -83                                   | -76   | -72   | -69.5 | -66.5  | -63.5  |  |  |
| @28 GHz      | -82.5                                 | -75.5 | -71.5 | -69   | -66    | -63    |  |  |
| @32 GHz      | -82                                   | -75   | -71   | -68.5 | -65.5  | -62.5  |  |  |
| @38 GHz      | -81.5                                 | -74.5 | -70.5 | -68   | -65    | -62    |  |  |
| @42 GHz      | -80                                   | -73   | -69   | -66.5 | -63.5  | -60.5  |  |  |

**Table 6-62** Typical receiver sensitivity of the Integrated IP microwave V (ISX2 Board, XPIC disabled)

| Item         | Performance (Channel Spacing: 40 MHz) |       |       |       |        |        |  |  |  |  |  |
|--------------|---------------------------------------|-------|-------|-------|--------|--------|--|--|--|--|--|
|              | QPSK                                  | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |  |  |  |  |  |
| RSL@ BER     | RSL@ BER=10 <sup>-6</sup> (dBm)       |       |       |       |        |        |  |  |  |  |  |
| @6 GHz       | -86                                   | -79   | -75   | -72.5 | -69.5  | -66.5  |  |  |  |  |  |
| @7 GHz       | -86                                   | -79   | -75   | -72.5 | -69.5  | -66.5  |  |  |  |  |  |
| @8 GHz       | -86                                   | -79   | -75   | -72.5 | -69.5  | -66.5  |  |  |  |  |  |
| @10 GHz      | -85.5                                 | -78.5 | -74.5 | -72   | -69    | -66    |  |  |  |  |  |
| @10.5<br>GHz | N/A                                   | N/A   | N/A   | N/A   | N/A    | N/A    |  |  |  |  |  |
| @11 GHz      | -85.5                                 | -78.5 | -74.5 | -72   | -69    | -66    |  |  |  |  |  |
| @13 GHz      | -85.5                                 | -78.5 | -74.5 | -72   | -69    | -66    |  |  |  |  |  |
| @15 GHz      | -85.5                                 | -78.5 | -74.5 | -72   | -69    | -66    |  |  |  |  |  |
| @18 GHz      | -85.5                                 | -78.5 | -74.5 | -72   | -69    | -66    |  |  |  |  |  |

| Item    | Performance (Channel Spacing: 40 MHz) |       |       |       |        |        |  |  |
|---------|---------------------------------------|-------|-------|-------|--------|--------|--|--|
|         | QPSK                                  | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |  |  |
| @23 GHz | -85                                   | -78   | -74   | -71.5 | -68.5  | -65.5  |  |  |
| @26 GHz | -84.5                                 | -77.5 | -73.5 | -71   | -68    | -65    |  |  |
| @28 GHz | -84                                   | -77   | -73   | -70.5 | -67.5  | -64.5  |  |  |
| @32 GHz | -83.5                                 | -76.5 | -72.5 | -70   | -67    | -64    |  |  |
| @38 GHz | -83                                   | -76   | -72   | -69.5 | -66.5  | -63.5  |  |  |
| @42 GHz | -81.5                                 | -74.5 | -70.5 | -68   | -65    | -62    |  |  |

**Table 6-63** Typical receiver sensitivity of the Integrated IP microwave VI (ISX2 Board, XPIC disabled)

| Item     | Performance (Channel Spacing: 50 MHz) |       |       |       |        |        |  |  |
|----------|---------------------------------------|-------|-------|-------|--------|--------|--|--|
|          | QPSK                                  | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |  |  |
| RSL@ BER | $=10^{-6}$ (dBm)                      | -     | -     |       | -      |        |  |  |
| @18 GHz  | -85                                   | -77   | -73.5 | -71   | -68    | -65    |  |  |
| @23 GHz  | -86                                   | -78   | -74.5 | -72   | -69    | -66    |  |  |

| Table 6-64 Typical receiver sensitivity of the Integrated IP microwaveI (ISX2 board, XPIC |
|-------------------------------------------------------------------------------------------|
| enabled)                                                                                  |

| Item         | Performance (Channel Spacing: 7 MHz) |       |       |       |        |        |  |
|--------------|--------------------------------------|-------|-------|-------|--------|--------|--|
|              | QPSK                                 | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |  |
| RSL@ BER     | $=10^{-6}$ (dBm)                     | -     | -     |       |        |        |  |
| @6 GHz       | -92.5                                | -86.5 | -82.5 | -79.5 | N/A    | N/A    |  |
| @7 GHz       | -92.5                                | -86.5 | -82.5 | -79.5 | N/A    | N/A    |  |
| @8 GHz       | -92.5                                | -86.5 | -82.5 | -79.5 | N/A    | N/A    |  |
| @10 GHz      | -92                                  | -86   | -82   | -79   | N/A    | N/A    |  |
| @10.5<br>GHz | -90                                  | -84   | -80   | -77   | N/A    | N/A    |  |
| @11 GHz      | -92                                  | -86   | -82   | -79   | N/A    | N/A    |  |
| @13 GHz      | -92                                  | -86   | -82   | -79   | N/A    | N/A    |  |

| Item    | Performance (Channel Spacing: 7 MHz) |       |       |       |        |        |  |  |
|---------|--------------------------------------|-------|-------|-------|--------|--------|--|--|
|         | QPSK                                 | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |  |  |
| @15 GHz | -92                                  | -86   | -82   | -79   | N/A    | N/A    |  |  |
| @18 GHz | -92                                  | -86   | -82   | -79   | N/A    | N/A    |  |  |
| @23 GHz | -91.5                                | -85.5 | -81.5 | -78.5 | N/A    | N/A    |  |  |
| @26 GHz | -91                                  | -85   | -81   | N/A   | N/A    | N/A    |  |  |
| @28 GHz | -90.5                                | -84.5 | -80.5 | N/A   | N/A    | N/A    |  |  |
| @32 GHz | -90                                  | -84   | -80   | N/A   | N/A    | N/A    |  |  |
| @38 GHz | -89.5                                | -83.5 | -79.5 | N/A   | N/A    | N/A    |  |  |
| @42 GHz | -88                                  | -82   | -78   | N/A   | N/A    | N/A    |  |  |

**Table 6-65** Typical receiver sensitivity of the Integrated IP microwave II (ISX2 board, XPIC enabled)

| Item         | Performan                       | ce (Channel | Spacing: 14 | MHz)  |        |        |  |  |  |
|--------------|---------------------------------|-------------|-------------|-------|--------|--------|--|--|--|
|              | QPSK                            | 16QAM       | 32QAM       | 64QAM | 128QAM | 256QAM |  |  |  |
| RSL@ BER     | RSL@ BER=10 <sup>-6</sup> (dBm) |             |             |       |        |        |  |  |  |
| @6 GHz       | -90.5                           | -83.5       | -79.5       | -76.5 | -73.5  | N/A    |  |  |  |
| @7 GHz       | -90.5                           | -83.5       | -79.5       | -76.5 | -73.5  | N/A    |  |  |  |
| @8 GHz       | -90.5                           | -83.5       | -79.5       | -76.5 | -73.5  | N/A    |  |  |  |
| @10 GHz      | -90                             | -83         | -79         | -76   | -73    | N/A    |  |  |  |
| @10.5<br>GHz | -88                             | -81         | -77         | -74   | -71    | N/A    |  |  |  |
| @11 GHz      | -90                             | -83         | -79         | -76   | -73    | N/A    |  |  |  |
| @13 GHz      | -90                             | -83         | -79         | -76   | -73    | N/A    |  |  |  |
| @15 GHz      | -90                             | -83         | -79         | -76   | -73    | N/A    |  |  |  |
| @18 GHz      | -90                             | -83         | -79         | -76   | -73    | N/A    |  |  |  |
| @23 GHz      | -89.5                           | -82.5       | -78.5       | -75.5 | -72.5  | N/A    |  |  |  |
| @26 GHz      | -89                             | -82         | -78         | -75   | N/A    | N/A    |  |  |  |
| @28 GHz      | -88.5                           | -81.5       | -77.5       | -74.5 | N/A    | N/A    |  |  |  |
| @32 GHz      | -88                             | -81         | -77         | -74   | N/A    | N/A    |  |  |  |
| @38 GHz      | -87.5                           | -80.5       | -76.5       | -73.5 | N/A    | N/A    |  |  |  |

| Item    | Performance (Channel Spacing: 14 MHz) |                                      |  |  |  |  |  |  |  |
|---------|---------------------------------------|--------------------------------------|--|--|--|--|--|--|--|
|         | QPSK                                  | QPSK 16QAM 32QAM 64QAM 128QAM 256QAM |  |  |  |  |  |  |  |
| @42 GHz | -86                                   | 86 -79 -75 -72 N/A N/A               |  |  |  |  |  |  |  |

**Table 6-66** Typical receiver sensitivity of the Integrated IP microwave III (ISX2 board, XPIC enabled)

| Item                            | Performan | ce (Channel | Spacing: 28 | 6 MHz) |        |        |  |  |
|---------------------------------|-----------|-------------|-------------|--------|--------|--------|--|--|
|                                 | QPSK      | 16QAM       | 32QAM       | 64QAM  | 128QAM | 256QAM |  |  |
| RSL@ BER=10 <sup>-6</sup> (dBm) |           |             |             |        |        |        |  |  |
| @6 GHz                          | -87.5     | -80.5       | -76.5       | -74    | -71    | -68    |  |  |
| @7 GHz                          | -87.5     | -80.5       | -76.5       | -74    | -71    | -68    |  |  |
| @8 GHz                          | -87.5     | -80.5       | -76.5       | -74    | -71    | -68    |  |  |
| @10 GHz                         | -87       | -80         | -76         | -73.5  | -70.5  | -67.5  |  |  |
| @10.5<br>GHz                    | -85       | -78         | -74         | -71.5  | -68.5  | -65.5  |  |  |
| @11 GHz                         | -87       | -80         | -76         | -73.5  | -70.5  | -67.5  |  |  |
| @13 GHz                         | -87       | -80         | -76         | -73.5  | -70.5  | -67.5  |  |  |
| @15 GHz                         | -87       | -80         | -76         | -73.5  | -70.5  | -67.5  |  |  |
| @18 GHz                         | -87       | -80         | -76         | -73.5  | -70.5  | -67.5  |  |  |
| @23 GHz                         | -86.5     | -79.5       | -75.5       | -73    | -70    | -67    |  |  |
| @26 GHz                         | -86       | -79         | -75         | -72.5  | -69.5  | -66.5  |  |  |
| @28 GHz                         | -85.5     | -78.5       | -74.5       | -72    | -69    | -66    |  |  |
| @32 GHz                         | -85       | -78         | -74         | -71.5  | -68.5  | -65.5  |  |  |
| @38 GHz                         | -84.5     | -77.5       | -73.5       | -71    | -68    | -65    |  |  |
| @42 GHz                         | -83       | -76         | -72         | -69.5  | -66.5  | -63.5  |  |  |

| Item                            | Performan | ce (Channel | Spacing: 56 | MHz)  |        |        |  |  |
|---------------------------------|-----------|-------------|-------------|-------|--------|--------|--|--|
|                                 | QPSK      | 16QAM       | 32QAM       | 64QAM | 128QAM | 256QAM |  |  |
| RSL@ BER=10 <sup>-6</sup> (dBm) |           |             |             |       |        |        |  |  |
| @6 GHz                          | -84.5     | -77.5       | -73.5       | -71   | -68    | -65    |  |  |
| @7 GHz                          | -84.5     | -77.5       | -73.5       | -71   | -68    | -65    |  |  |
| @8 GHz                          | -84.5     | -77.5       | -73.5       | -71   | -68    | -65    |  |  |
| @10 GHz                         | -84       | -77         | -73         | -70.5 | -67.5  | -64.5  |  |  |
| @10.5<br>GHz                    | N/A       | N/A         | N/A         | N/A   | N/A    | N/A    |  |  |
| @11 GHz                         | -84       | -77         | -73         | -70.5 | -67.5  | -64.5  |  |  |
| @13 GHz                         | -84       | -77         | -73         | -70.5 | -67.5  | -64.5  |  |  |
| @15 GHz                         | -84       | -77         | -73         | -70.5 | -67.5  | -64.5  |  |  |
| @18 GHz                         | -84       | -77         | -73         | -70.5 | -67.5  | -64.5  |  |  |
| @23 GHz                         | -83.5     | -76.5       | -72.5       | -70   | -67    | -64    |  |  |
| @26 GHz                         | -83       | -76         | -72         | -69.5 | -66.5  | -63.5  |  |  |
| @28 GHz                         | -82.5     | -75.5       | -71.5       | -69   | -66    | -63    |  |  |
| @32 GHz                         | -82       | -75         | -71         | -68.5 | -65.5  | -62.5  |  |  |
| @38 GHz                         | -81.5     | -74.5       | -70.5       | -68   | -65    | -62    |  |  |
| @42 GHz                         | -80       | -73         | -69         | -66.5 | -63.5  | -60.5  |  |  |

**Table 6-67** Typical receiver sensitivity of the Integrated IP microwave IV (ISX2 board, XPIC enabled)

**Table 6-68** Typical receiver sensitivity of the Integrated IP microwave V (ISX2 board, XPIC enabled)

| Item     | Performance (Channel Spacing: 40 MHz) |       |                                |       |       |       |  |  |
|----------|---------------------------------------|-------|--------------------------------|-------|-------|-------|--|--|
|          | QPSK                                  | 16QAM | 16QAM 32QAM 64QAM 128QAM 256QA |       |       |       |  |  |
| RSL@ BER | =10 <sup>-6</sup> (dBm)               |       | -                              | -     | -     |       |  |  |
| @6 GHz   | -86                                   | -79   | -75                            | -72.5 | -69.5 | -66.5 |  |  |
| @7 GHz   | -86                                   | -79   | -75                            | -72.5 | -69.5 | -66.5 |  |  |
| @8 GHz   | -86                                   | -79   | -75                            | -72.5 | -69.5 | -66.5 |  |  |
| @10 GHz  | -85.5                                 | -78.5 | -74.5                          | -72   | -69   | -66   |  |  |

| Item         | Performan | Performance (Channel Spacing: 40 MHz) |       |       |        |        |  |  |  |
|--------------|-----------|---------------------------------------|-------|-------|--------|--------|--|--|--|
|              | QPSK      | 16QAM                                 | 32QAM | 64QAM | 128QAM | 256QAM |  |  |  |
| @10.5<br>GHz | N/A       | N/A                                   | N/A   | N/A   | N/A    | N/A    |  |  |  |
| @11 GHz      | -85.5     | -78.5                                 | -74.5 | -72   | -69    | -66    |  |  |  |
| @13 GHz      | -85.5     | -78.5                                 | -74.5 | -72   | -69    | -66    |  |  |  |
| @15 GHz      | -85.5     | -78.5                                 | -74.5 | -72   | -69    | -66    |  |  |  |
| @18 GHz      | -85.5     | -78.5                                 | -74.5 | -72   | -69    | -66    |  |  |  |
| @23 GHz      | -85       | -78                                   | -74   | -71.5 | -68.5  | -65.5  |  |  |  |
| @26 GHz      | -84.5     | -77.5                                 | -73.5 | -71   | -68    | -65    |  |  |  |
| @28 GHz      | -84       | -77                                   | -73   | -70.5 | -67.5  | -64.5  |  |  |  |
| @32 GHz      | -83.5     | -76.5                                 | -72.5 | -70   | -67    | -64    |  |  |  |
| @38 GHz      | -83       | -76                                   | -72   | -69.5 | -66.5  | -63.5  |  |  |  |
| @42 GHz      | -81.5     | -74.5                                 | -70.5 | -68   | -65    | -62    |  |  |  |

**Table 6-69** Typical receiver sensitivity of the Integrated IP microwave VI (ISX2 board, XPIC enabled)

| Item     | Performance (Channel Spacing: 50 MHz) |                                      |   |   |  |  |  |  |  |  |
|----------|---------------------------------------|--------------------------------------|---|---|--|--|--|--|--|--|
|          | QPSK                                  | QPSK 16QAM 32QAM 64QAM 128QAM 256QAM |   |   |  |  |  |  |  |  |
| RSL@ BER | $=10^{-6}$ (dBm)                      |                                      | ~ | ~ |  |  |  |  |  |  |
| @18 GHz  | GHz -85 -77 -73.5 -71 -68 -65         |                                      |   |   |  |  |  |  |  |  |
| @23 GHz  | -86                                   | 6 -78 -74.5 -72 -69 -66              |   |   |  |  |  |  |  |  |

## 6.1.3.6 Receiver Sensitivity (ISV3 board)

The ISV3 board supports SDH microwave work modes and Integrated IP microwave work modes.

The ISV3 board supports two running modes: IS3 and IS2.

- This section provides the receiver sensitivity when the ISV3 runs in the IS3 mode.
- When the ISV3 board runs in the IS2 mode and XPIC is disabled, the radio work mode and receiver sensitivity for the ISV3 board are the same as those for the ISU2 board. For details, see 6.1.3.4 Receiver Sensitivity (ISU2 board).

• When the ISV3 board runs in the IS2 mode and XPIC is enabled, the radio work mode and receiver sensitivity for the ISV3 board are the same as those for the ISX2 board. For details, see 6.1.3.5 Receiver Sensitivity (ISX2 board).

#### ΠΝΟΤΕ

Unless otherwise specified, the receiver sensitivity values in the table are valid when different types of ODUs are used. However, the frequency bands and modulation schemes supported by different types of ODUs are different.

N/A means that microwave working mode is not supported.

### SDH Microwave (IS3-Mode)

| Item          | Performance  |              |
|---------------|--------------|--------------|
|               | 1xSTM-1      | 2xSTM-1      |
|               | 28MHz/128QAM | 56MHz/128QAM |
| RSL@ BER=10-6 | (dBm)        | •            |
| a)6 GHz       | -72.5        | -69.5        |
| @7 GHz        | -72.5        | -69.5        |
| @8 GHz        | -72.5        | -69.5        |
| @10 GHz       | -72          | -69          |
| @10.5 GHz     | -70          | N/A          |
| @11 GHz       | -72          | -69          |
| 0)13 GHz      | -72          | -69          |
| 015 GHz       | -72          | -69          |
| @18 GHz       | -71.5        | -68.5        |
| @23 GHz       | -71.5        | -68.5        |
| @26 GHz       | -71          | -68          |
| @28 GHz       | -70.5        | -67.5        |
| @32 GHz       | -70          | -67          |
| )38 GHz       | -69.5        | -66.5        |
| @42 GHz       | -68          | -65          |

 Table 6-70 Typical receiver sensitivity of the SDH microwave (ISV3 @IS3-mode)

For the ISV3 board in SDH service mode, receiver sensitivities are the same regardless of whether the XPIC function is enabled or disabled.

# Integrated IP Microwave (IS3-mode)

| Item      | Performan              | Performance (Channel Spacing: 7 MHz) |                 |       |       |       |  |  |  |
|-----------|------------------------|--------------------------------------|-----------------|-------|-------|-------|--|--|--|
|           | QPSK<br>Strong         | QPSK                                 | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM |  |  |  |
| RSL@ BER= | 10 <sup>-6</sup> (dBm) |                                      |                 | •     | •     | •     |  |  |  |
| @6 GHz    | -96                    | -94                                  | -89.5           | -87.5 | -84.5 | -81.5 |  |  |  |
| @7 GHz    | -96                    | -94                                  | -89.5           | -87.5 | -84.5 | -81.5 |  |  |  |
| @8 GHz    | -96                    | -94                                  | -89.5           | -87.5 | -84.5 | -81.5 |  |  |  |
| @10 GHz   | -95.5                  | -93.5                                | -89             | -87   | -84   | -81   |  |  |  |
| @10.5 GHz | -93.5                  | -91.5                                | -87             | -85   | -82   | -79   |  |  |  |
| @11 GHz   | -95.5                  | -93.5                                | -89             | -87   | -84   | -81   |  |  |  |
| @13 GHz   | -95.5                  | -93.5                                | -89             | -87   | -84   | -81   |  |  |  |
| @15 GHz   | -95.5                  | -93.5                                | -89             | -87   | -84   | -81   |  |  |  |
| @18 GHz   | -95                    | -93                                  | -88.5           | -86.5 | -83.5 | -80.5 |  |  |  |
| @23 GHz   | -95                    | -93                                  | -88.5           | -86.5 | -83.5 | -80.5 |  |  |  |
| @26 GHz   | -94.5                  | -92.5                                | -88             | -86   | -83   | -80   |  |  |  |
| @28 GHz   | -94                    | -92                                  | -87.5           | -85.5 | -82.5 | -79.5 |  |  |  |
| @32 GHz   | -93.5                  | -91.5                                | -87             | -85   | -82   | -79   |  |  |  |
| @38 GHz   | -93                    | -91                                  | -86.5           | -84.5 | -81.5 | -78.5 |  |  |  |
| @42 GHz   | -91.5                  | -89.5                                | -85             | -83   | -80   | -77   |  |  |  |

Table 6-71 Typical receiver sensitivity of the Integrated IP microwave I (ISV3 @IS3-mode, XPIC disabled)

 Table 6-72 Typical receiver sensitivity of the Integrated IP microwave II (ISV3 @IS3-mode, XPIC disabled)

| Item          | Performance (C | Performance (Channel Spacing: 7 MHz)     |       |     |     |  |  |  |  |  |
|---------------|----------------|------------------------------------------|-------|-----|-----|--|--|--|--|--|
|               | 128QAM         | 28QAM 256QAM 512QAM 512QAM Light 1024QAM |       |     |     |  |  |  |  |  |
| RSL@ BER=10-6 | (dBm)          |                                          |       | -   |     |  |  |  |  |  |
| @6 GHz        | -78.5          | -75.5                                    | -73.5 | -72 | -70 |  |  |  |  |  |
| @7 GHz        | -78.5          | -75.5                                    | -73.5 | -72 | -70 |  |  |  |  |  |
| @8 GHz        | -78.5          | 8.5 -75.5 73.5 -72 -70                   |       |     |     |  |  |  |  |  |

| Item      | Performance ( | Channel Spacing: | 7 MHz) |                 |         |
|-----------|---------------|------------------|--------|-----------------|---------|
|           | 128QAM        | 256QAM           | 512QAM | 512QAM<br>Light | 1024QAM |
| @10 GHz   | -78           | -75              | -73    | -71.5           | -69.5   |
| @10.5 GHz | -76           | -73              | -71    | -69.5           | -67.5   |
| @11 GHz   | -78           | -75              | -73    | -71.5           | -69.5   |
| @13 GHz   | -78           | -75              | -73    | -71.5           | -69.5   |
| @15 GHz   | -78           | -75              | -73    | -71.5           | -69.5   |
| @18 GHz   | -77.5         | -74.5            | -72.5  | -71             | -69     |
| @23 GHz   | -77.5         | -74.5            | -72.5  | -71             | -69     |
| @26 GHz   | -77           | -74              | -72    | -70.5           | -68.5   |
| @28 GHz   | -76.5         | -73.5            | -71.5  | N/A             | N/A     |
| @32 GHz   | -76           | -73              | -71    | -69.5           | N/A     |
| @38 GHz   | -75.5         | -72.5            | -70.5  | -69             | N/A     |
| @42 GHz   | -74           | -71              | -69    | -67.5           | N/A     |

Table 6-73 Typical receiver sensitivity of the Integrated IP microwave III (ISV3 @IS3-mode, XPIC disabled)

| Item      | Performance            | e (Channel Spa | cing: 14 MHz)   |       |       |       |
|-----------|------------------------|----------------|-----------------|-------|-------|-------|
|           | QPSK<br>Strong         | QPSK           | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM |
| RSL@ BER= | 10 <sup>-6</sup> (dBm) | •              |                 | •     |       |       |
| @6 GHz    | -94                    | -92            | -86.5           | -84.5 | -81.5 | -78.5 |
| @7 GHz    | -94                    | -92            | -86.5           | -84.5 | -81.5 | -78.5 |
| @8 GHz    | -94                    | -92            | -86.5           | -84.5 | -81.5 | -78.5 |
| @10 GHz   | -93.5                  | -91.5          | -86             | -84   | -81   | -78   |
| @10.5 GHz | -91.5                  | -89.5          | -84             | -82   | -79   | -76   |
| @11 GHz   | -93.5                  | -91.5          | -86             | -84   | -81   | -78   |
| @13 GHz   | -93.5                  | -91.5          | -86             | -84   | -81   | -78   |
| @15 GHz   | -93.5                  | -91.5          | -86             | -84   | -81   | -78   |
| @18 GHz   | -93                    | -91            | -85.5           | -83.5 | -80.5 | -77.5 |
| @23 GHz   | -93                    | -91            | -85.5           | -83.5 | -80.5 | -77.5 |

| Item    | Performance    | Performance (Channel Spacing: 14 MHz) |                 |       |       |       |  |  |  |  |
|---------|----------------|---------------------------------------|-----------------|-------|-------|-------|--|--|--|--|
|         | QPSK<br>Strong | QPSK                                  | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM |  |  |  |  |
| @26 GHz | -92.5          | -90.5                                 | -85             | -83   | -80   | -77   |  |  |  |  |
| @28 GHz | -92            | -90                                   | -84.5           | -82.5 | -79.5 | -76.5 |  |  |  |  |
| @32 GHz | -91.5          | -89.5                                 | -84             | -82   | -79   | -76   |  |  |  |  |
| @38 GHz | -91            | -89                                   | -83.5           | -81.5 | -78.5 | -75.5 |  |  |  |  |
| @42 GHz | -89.5          | -87.5                                 | -82             | -80   | -77   | -74   |  |  |  |  |

Table 6-74 Typical receiver sensitivity of the Integrated IP microwave IV (ISV3 @IS3-mode, XPIC disabled)

| Item      | Performance            | e (Channel Spa | acing: 14 MHz) |                 |         |                  |
|-----------|------------------------|----------------|----------------|-----------------|---------|------------------|
|           | 128QAM                 | 256QAM         | 512QAM         | 512QAM<br>Light | 1024QAM | 1024QAM<br>Light |
| RSL@ BER= | 10 <sup>-6</sup> (dBm) |                |                |                 |         |                  |
| @6 GHz    | -75.5                  | -72.5          | -70.5          | -69             | -67     | -65.5            |
| @7 GHz    | -75.5                  | -72.5          | -70.5          | -69             | -67     | -65.5            |
| @8 GHz    | -75.5                  | -72.5          | -70.5          | -69             | -67     | -65.5            |
| @10 GHz   | -75                    | -72            | -70            | -68.5           | -66.5   | -65              |
| @10.5 GHz | -73                    | -70            | -68            | -66.5           | -64.5   | -63              |
| @11 GHz   | -75                    | -72            | -70            | -68.5           | -66.5   | -65              |
| @13 GHz   | -75                    | -72            | -70            | -68.5           | -66.5   | -65              |
| @15 GHz   | -75                    | -72            | -70            | -68.5           | -66.5   | -65              |
| @18 GHz   | -74.5                  | -71.5          | -69.5          | -68             | -66     | -64.5            |
| @23 GHz   | -74.5                  | -71.5          | -69.5          | -68             | -66     | -64.5            |
| @26 GHz   | -74                    | -71            | -69            | -67.5           | -65.5   | -64              |
| @28 GHz   | -73.5                  | -70.5          | -68.5          | -67             | -65     | N/A              |
| @32 GHz   | -73                    | -70            | -68            | -66.5           | -64.5   | N/A              |
| @38 GHz   | -72.5                  | -69.5          | -67.5          | -66             | -64     | N/A              |
| @42 GHz   | -71                    | -68            | -66            | -64.5           | -62.5   | N/A              |

| Item      | Performan              | ce (Channel S | pacing: 28 MHz  | z)    |       |       |
|-----------|------------------------|---------------|-----------------|-------|-------|-------|
|           | QPSK<br>Strong         | QPSK          | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM |
| RSL@ BER= | 10 <sup>-6</sup> (dBm) | ·             | ·               | ·     | ·     | ·     |
| @6 GHz    | -90.5                  | -89           | -83.5           | -82   | -79   | -75.5 |
| @7 GHz    | -90.5                  | -89           | -83.5           | -82   | -79   | -75.5 |
| @8 GHz    | -90.5                  | -89           | -83.5           | -82   | -79   | -75.5 |
| @10 GHz   | -90                    | -88.5         | -83             | -81.5 | -78.5 | -75   |
| @10.5 GHz | -88                    | -86.5         | -81             | -79.5 | -76.5 | -73   |
| @11 GHz   | -90                    | -88.5         | -83             | -81.5 | -78.5 | -75   |
| @13 GHz   | -90                    | -88.5         | -83             | -81.5 | -78.5 | -75   |
| @15 GHz   | -90                    | -88.5         | -83             | -81.5 | -78.5 | -75   |
| @18 GHz   | -89.5                  | -88           | -82.5           | -81   | -78   | -74.5 |
| @23 GHz   | -89.5                  | -88           | -82.5           | -81   | -78   | -74.5 |
| @26 GHz   | -89                    | -87.5         | -82             | -80.5 | -77.5 | -74   |
| @28 GHz   | -88.5                  | -87           | -81.5           | -80   | -77   | -73.5 |
| @32 GHz   | -88                    | -86.5         | -81             | -79.5 | -76.5 | -73   |
| @38 GHz   | -87.5                  | -86           | -80.5           | -79   | -76   | -72.5 |
| @42 GHz   | -86                    | -84.5         | -79             | -77.5 | -74.5 | -71   |

Table 6-75 Typical receiver sensitivity of the Integrated IP microwave V (ISV3 @IS3-mode, XPIC disabled)

Table 6-76 Typical receiver sensitivity of the Integrated IP microwave VI (ISV3 @IS3-mode, XPIC disabled)

| Item      | Performanc                      | Performance (Channel Spacing: 28 MHz) |        |                 |         |                  |         |  |  |  |
|-----------|---------------------------------|---------------------------------------|--------|-----------------|---------|------------------|---------|--|--|--|
|           | 128QAM                          | 256QAM                                | 512QAM | 512QAM<br>Light | 1024QAM | 1024QAM<br>Light | 2048QAM |  |  |  |
| RSL@ BER= | RSL@ BER=10 <sup>-6</sup> (dBm) |                                       |        |                 |         |                  |         |  |  |  |
| @6 GHz    | -72.5                           | -69.5                                 | -67.5  | -66             | -64     | -62.5            | -61     |  |  |  |
| @7 GHz    | -72.5                           | -69.5                                 | -67.5  | -66             | -64     | -62.5            | -61     |  |  |  |
| @8 GHz    | -72.5                           | -69.5                                 | -67.5  | -66             | -64     | -62.5            | -61     |  |  |  |
| @10 GHz   | -72                             | -69                                   | -67    | -65.5           | -63.5   | -62              | N/A     |  |  |  |
| @10.5 GHz | -70                             | -67                                   | -65    | -63.5           | -61.5   | -60              | N/A     |  |  |  |

| Item    | Performanc | e (Channel S | Spacing: 28 N | 1Hz)            |         |                  |         |
|---------|------------|--------------|---------------|-----------------|---------|------------------|---------|
|         | 128QAM     | 256QAM       | 512QAM        | 512QAM<br>Light | 1024QAM | 1024QAM<br>Light | 2048QAM |
| @11 GHz | -72        | -69          | -67           | -65.5           | -63.5   | -62              | -60.5   |
| @13 GHz | -72        | -69          | -67           | -65.5           | -63.5   | -62              | -60.5   |
| @15 GHz | -72        | -69          | -67           | -65.5           | -63.5   | -62              | -60.5   |
| @18 GHz | -71.5      | -68.5        | -66.5         | -65             | -63     | -61.5            | -60     |
| @23 GHz | -71.5      | -68.5        | -66.5         | -65             | -63     | -61.5            | -60     |
| @26 GHz | -71        | -68          | -66           | -64.5           | -62.5   | -61              | -59.5   |
| @28 GHz | -70.5      | -67.5        | -65.5         | -64             | -62     | -60.5            | -59     |
| @32 GHz | -70        | -67          | -65           | -63.5           | -61.5   | -60              | -58.5   |
| @38 GHz | -69.5      | -66.5        | -64.5         | -63             | -61     | -59.5            | -58     |
| @42 GHz | -68        | -65          | -63           | -61.5           | -59.5   | -58              | N/A     |

Table 6-77 Typical receiver sensitivity of the Integrated IP microwave VII (ISV3 @IS3-mode, XPIC disabled)

| Item       | Performance             | (Channel Spa | cing: 56 MHz)   |       |       |       |
|------------|-------------------------|--------------|-----------------|-------|-------|-------|
|            | QPSK<br>Strong          | QPSK         | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM |
| RSL@ BER=1 | l 0 <sup>-6</sup> (dBm) |              |                 |       |       |       |
| @6 GHz     | -87.5                   | -86          | -80.5           | -79   | -76   | -72.5 |
| @7 GHz     | -87.5                   | -86          | -80.5           | -79   | -76   | -72.5 |
| @8 GHz     | -87.5                   | -86          | -80.5           | -79   | -76   | -72.5 |
| @10 GHz    | -87                     | -85.5        | -80             | -78.5 | -75.5 | -72   |
| @10.5 GHz  | N/A                     | N/A          | N/A             | N/A   | N/A   | N/A   |
| @11 GHz    | -87                     | -85.5        | -80             | -78.5 | -75.5 | -72   |
| @13 GHz    | -87                     | -85.5        | -80             | -78.5 | -75.5 | -72   |
| @15 GHz    | -87                     | -85.5        | -80             | -78.5 | -75.5 | -72   |
| @18 GHz    | -86.5                   | -85          | -79.5           | -78   | -75   | -71.5 |
| @23 GHz    | -86.5                   | -85          | -79.5           | -78   | -75   | -71.5 |
| @26 GHz    | -86                     | -84.5        | -79             | -77.5 | -74.5 | -71   |
| @28 GHz    | -85.5                   | -84          | -78.5           | -77   | -74   | -70.5 |

| Item    | Performance    | Performance (Channel Spacing: 56 MHz) |                 |       |       |       |  |  |  |  |
|---------|----------------|---------------------------------------|-----------------|-------|-------|-------|--|--|--|--|
|         | QPSK<br>Strong | QPSK                                  | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM |  |  |  |  |
| @32 GHz | -85            | -83.5                                 | -78             | -76.5 | -73.5 | -70   |  |  |  |  |
| @38 GHz | -84.5          | -83                                   | -77.5           | -76   | -73   | -69.5 |  |  |  |  |
| @42 GHz | -83            | -81.5                                 | -76             | -74.5 | -71.5 | -68   |  |  |  |  |

Table 6-78 Typical receiver sensitivity of the Integrated IP microwave VIII (ISV3 @IS3-mode, XPIC disabled)

| Item      | Performanc               | e (Channel S | Spacing: 56 N | /Hz)            |         |                  |         |  |  |  |  |
|-----------|--------------------------|--------------|---------------|-----------------|---------|------------------|---------|--|--|--|--|
|           | 128QAM                   | 256QAM       | 512QAM        | 512QAM<br>Light | 1024QAM | 1024QAM<br>Light | 2048QAM |  |  |  |  |
| RSL@ BER= | $RSL@ BER=10^{-6} (dBm)$ |              |               |                 |         |                  |         |  |  |  |  |
| @6 GHz    | -69.5                    | -66.5        | -64.5         | -63             | -61     | -59.5            | -58     |  |  |  |  |
| @7 GHz    | -69.5                    | -66.5        | -64.5         | -63             | -61     | -59.5            | -58     |  |  |  |  |
| @8 GHz    | -69.5                    | -66.5        | -64.5         | -63             | -61     | -59.5            | -58     |  |  |  |  |
| @10 GHz   | -69                      | -66          | -64           | -62.5           | -60.5   | -59              | N/A     |  |  |  |  |
| @10.5 GHz | N/A                      | N/A          | N/A           | N/A             | N/A     | N/A              | N/A     |  |  |  |  |
| @11 GHz   | -69                      | -66          | -64           | -62.5           | -60.5   | -59              | -57.5   |  |  |  |  |
| @13 GHz   | -69                      | -66          | -64           | -62.5           | -60.5   | -59              | -57.5   |  |  |  |  |
| @15 GHz   | -69                      | -66          | -64           | -62.5           | -60.5   | -59              | -57.5   |  |  |  |  |
| @18 GHz   | -68.5                    | -65.5        | -63.5         | -62             | -60     | -58.5            | -57     |  |  |  |  |
| @23 GHz   | -68.5                    | -65.5        | -63.5         | -62             | -60     | -58.5            | -57     |  |  |  |  |
| @26 GHz   | -68                      | -65          | -63           | -61.5           | -59.5   | -58              | -56.5   |  |  |  |  |
| @28 GHz   | -67.5                    | -64.5        | -62.5         | -61             | -59     | -57.5            | -56     |  |  |  |  |
| @32 GHz   | -67                      | -64          | -62           | -60.5           | -58.5   | -57              | -55.5   |  |  |  |  |
| @38 GHz   | -66.5                    | -63.5        | -61.5         | -60             | -58     | -56.5            | -55     |  |  |  |  |
| @42 GHz   | -65                      | -62          | -60           | -58.5           | -56.5   | -55              | N/A     |  |  |  |  |

| Item      | Performan              | ce (Channel S | pacing: 40 MHz  | z)    |       |       |
|-----------|------------------------|---------------|-----------------|-------|-------|-------|
|           | QPSK<br>Strong         | QPSK          | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM |
| RSL@ BER= | 10 <sup>-6</sup> (dBm) |               |                 |       |       |       |
| @6 GHz    | -89                    | -87.5         | -82             | -80.5 | -77.5 | -74   |
| @7 GHz    | -89                    | -87.5         | -82             | -80.5 | -77.5 | -74   |
| @8 GHz    | -89                    | -87.5         | -82             | -80.5 | -77.5 | -74   |
| @10 GHz   | -88.5                  | -87           | -81.5           | -80   | -77   | -73.5 |
| @10.5 GHz | N/A                    | N/A           | N/A             | N/A   | N/A   | N/A   |
| @11 GHz   | -88.5                  | -87           | -81.5           | -80   | -77   | -73.5 |
| @13 GHz   | -88.5                  | -87           | -81.5           | -80   | -77   | -73.5 |
| @15 GHz   | -88.5                  | -87           | -81.5           | -80   | -77   | -73.5 |
| @18 GHz   | -88                    | -86.5         | -81             | -79.5 | -76.5 | -73   |
| @23 GHz   | -88                    | -86.5         | -81             | -79.5 | -76.5 | -73   |
| @26 GHz   | -87.5                  | -86           | -80.5           | -79   | -76   | -72.5 |
| @28 GHz   | -87                    | -85.5         | -80             | -78.5 | -75.5 | -72   |
| @32 GHz   | -86.5                  | -85           | -79.5           | -78   | -75   | -71.5 |
| @38 GHz   | -86                    | -84.5         | -79             | -77.5 | -74.5 | -71   |
| @42 GHz   | -84.5                  | -83           | -77.5           | -76   | -73   | -69.5 |

Table 6-79 Typical receiver sensitivity of the Integrated IP microwave IX (ISV3 @IS3-mode, XPIC disabled)

Table 6-80 Typical receiver sensitivity of the Integrated IP microwave X (ISV3 @IS3-mode, XPIC disabled)

| Item      | Performanc                      | Performance (Channel Spacing: 40 MHz) |        |                 |         |                  |         |  |  |  |
|-----------|---------------------------------|---------------------------------------|--------|-----------------|---------|------------------|---------|--|--|--|
|           | 128QAM                          | 256QAM                                | 512QAM | 512QAM<br>Light | 1024QAM | 1024QAM<br>Light | 2048QAM |  |  |  |
| RSL@ BER= | RSL@ BER=10 <sup>-6</sup> (dBm) |                                       |        |                 |         |                  |         |  |  |  |
| @6 GHz    | -71                             | -68                                   | -66    | -64.5           | -62.5   | -61              | -59.5   |  |  |  |
| @7 GHz    | -71                             | -68                                   | -66    | -64.5           | -62.5   | -61              | -59.5   |  |  |  |
| @8 GHz    | -71                             | -68                                   | -66    | -64.5           | -62.5   | -61              | -59.5   |  |  |  |
| @10 GHz   | -70.5                           | -67.5                                 | -65.5  | -64             | -62     | -60.5            | N/A     |  |  |  |
| @10.5 GHz | N/A                             | N/A                                   | N/A    | N/A             | N/A     | N/A              | N/A     |  |  |  |

| Item    | Performanc | e (Channel S | Spacing: 40 N | 1Hz)            |         |                  |         |
|---------|------------|--------------|---------------|-----------------|---------|------------------|---------|
|         | 128QAM     | 256QAM       | 512QAM        | 512QAM<br>Light | 1024QAM | 1024QAM<br>Light | 2048QAM |
| @11 GHz | -70.5      | -67.5        | -65.5         | -64             | -62     | -60.5            | -59     |
| @13 GHz | -70.5      | -67.5        | -65.5         | -64             | -62     | -60.5            | -59     |
| @15 GHz | -70.5      | -67.5        | -65.5         | -64             | -62     | -60.5            | -59     |
| @18 GHz | -70        | -67          | -65           | -63.5           | -61.5   | -60              | -58.5   |
| @23 GHz | -70        | -67          | -65           | -63.5           | -61.5   | -60              | -58.5   |
| @26 GHz | -69.5      | -66.5        | -64.5         | -63             | -61     | -59.5            | -58     |
| @28 GHz | -69        | -66          | -64           | -62.5           | -60.5   | -59              | -57.5   |
| @32 GHz | -68.5      | -65.5        | -63.5         | -62             | -60     | -58.5            | -57     |
| @38 GHz | -68        | -65          | -63           | -61.5           | -59.5   | -58              | -56.5   |
| @42 GHz | -66.5      | -63.5        | -61.5         | -60             | -58     | -56.5            | N/A     |

 Table 6-81 Typical receiver sensitivity of the Integrated IP microwave XI (ISV3 @IS3-mode, XPIC enabled)

| Item      | Performanc              | e (Channel S | Spacing: 7 M    | Hz)   |       |       |        |
|-----------|-------------------------|--------------|-----------------|-------|-------|-------|--------|
|           | QPSK<br>Strong          | QPSK         | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM | 128QAM |
| RSL@ BER= | =10 <sup>-6</sup> (dBm) |              |                 |       |       |       |        |
| @6 GHz    | -96                     | -94          | -89.5           | -87.5 | -84.5 | -81.5 | -78.5  |
| @7 GHz    | -96                     | -94          | -89.5           | -87.5 | -84.5 | -81.5 | -78.5  |
| @8 GHz    | -96                     | -94          | -89.5           | -87.5 | -84.5 | -81.5 | -78.5  |
| @10 GHz   | -95.5                   | -93.5        | -89             | -87   | -84   | -81   | -78    |
| @10.5 GHz | -93.5                   | -91.5        | -87             | -85   | -82   | -79   | -76    |
| @11 GHz   | -95.5                   | -93.5        | -89             | -87   | -84   | -81   | -78    |
| @13 GHz   | -95.5                   | -93.5        | -89             | -87   | -84   | -81   | -78    |
| @15 GHz   | -95.5                   | -93.5        | -89             | -87   | -84   | -81   | -78    |
| @18 GHz   | -95                     | -93          | -88.5           | -86.5 | -83.5 | -80.5 | -77.5  |
| @23 GHz   | -95                     | -93          | -88.5           | -86.5 | -83.5 | -80.5 | -77.5  |
| @26 GHz   | -94.5                   | -92.5        | -88             | -86   | -83   | -80   | -77    |
| @28 GHz   | -94                     | -92          | -87.5           | -85.5 | -82.5 | -79.5 | -76.5  |

| Item    | Performanc     | Performance (Channel Spacing: 7 MHz) |                 |       |       |       |        |
|---------|----------------|--------------------------------------|-----------------|-------|-------|-------|--------|
|         | QPSK<br>Strong | QPSK                                 | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM | 128QAM |
| @32 GHz | -93.5          | -91.5                                | -87             | -85   | -82   | -79   | -76    |
| @38 GHz | -93            | -91                                  | -86.5           | -84.5 | -81.5 | -78.5 | -75.5  |
| @42 GHz | -91.5          | -89.5                                | -85             | -83   | -80   | -77   | -74    |

Table 6-82 Typical receiver sensitivity of the Integrated IP microwave XII (ISV3 @IS3-mode, XPIC enabled)

| Item         | Performa                | Performance (Channel Spacing: 14 MHz) |                 |       |       |       |            |            |
|--------------|-------------------------|---------------------------------------|-----------------|-------|-------|-------|------------|------------|
|              | QPSK<br>Strong          | QPSK                                  | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM | 128QA<br>M | 256QA<br>M |
| RSL@ BEI     | R=10 <sup>-6</sup> (dBm | i)                                    | •               | •     | •     |       |            |            |
| @6 GHz       | -94                     | -92                                   | -86.5           | -84.5 | -81.5 | -78.5 | -75.5      | -72.5      |
| @7 GHz       | -94                     | -92                                   | -86.5           | -84.5 | -81.5 | -78.5 | -75.5      | -72.5      |
| @8 GHz       | -94                     | -92                                   | -86.5           | -84.5 | -81.5 | -78.5 | -75.5      | -72.5      |
| @10 GHz      | -93.5                   | -91.5                                 | -86             | -84   | -81   | -78   | -75        | -72        |
| @10.5<br>GHz | -91.5                   | -89.5                                 | -84             | -82   | -79   | -76   | -73        | -70        |
| @11 GHz      | -93.5                   | -91.5                                 | -86             | -84   | -81   | -78   | -75        | -72        |
| @13 GHz      | -93.5                   | -91.5                                 | -86             | -84   | -81   | -78   | -75        | -72        |
| @15 GHz      | -93.5                   | -91.5                                 | -86             | -84   | -81   | -78   | -75        | -72        |
| @18 GHz      | -93                     | -91                                   | -85.5           | -83.5 | -80.5 | -77.5 | -74.5      | -71.5      |
| @23 GHz      | -93                     | -91                                   | -85.5           | -83.5 | -80.5 | -77.5 | -74.5      | -71.5      |
| @26 GHz      | -92.5                   | -90.5                                 | -85             | -83   | -80   | -77   | -74        | -71        |
| @28 GHz      | -92                     | -90                                   | -84.5           | -82.5 | -79.5 | -76.5 | -73.5      | -70.5      |
| @32 GHz      | -91.5                   | -89.5                                 | -84             | -82   | -79   | -76   | -73        | -70        |
| @38 GHz      | -91                     | -89                                   | -83.5           | -81.5 | -78.5 | -75.5 | -72.5      | -69.5      |
| @42 GHz      | -89.5                   | -87.5                                 | -82             | -80   | -77   | -74   | -71        | -68        |

| Item      | Performance (Channel Spacing: 28 MHz) |       |                 |       |       |       |  |
|-----------|---------------------------------------|-------|-----------------|-------|-------|-------|--|
|           | QPSK<br>Strong                        | QPSK  | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM |  |
| RSL@ BER= | 10 <sup>-6</sup> (dBm)                | ·     | ·               | ·     | ·     | ·     |  |
| @6 GHz    | -90.5                                 | -89   | -83.5           | -82   | -79   | -75.5 |  |
| @7 GHz    | -90.5                                 | -89   | -83.5           | -82   | -79   | -75.5 |  |
| @8 GHz    | -90.5                                 | -89   | -83.5           | -82   | -79   | -75.5 |  |
| @10 GHz   | -90                                   | -88.5 | -83             | -81.5 | -78.5 | -75   |  |
| @10.5 GHz | -88                                   | -86.5 | -81             | -79.5 | -76.5 | -73   |  |
| @11 GHz   | -90                                   | -88.5 | -83             | -81.5 | -78.5 | -75   |  |
| @13 GHz   | -90                                   | -88.5 | -83             | -81.5 | -78.5 | -75   |  |
| @15 GHz   | -90                                   | -88.5 | -83             | -81.5 | -78.5 | -75   |  |
| @18 GHz   | -89.5                                 | -88   | -82.5           | -81   | -78   | -74.5 |  |
| @23 GHz   | -89.5                                 | -88   | -82.5           | -81   | -78   | -74.5 |  |
| @26 GHz   | -89                                   | -87.5 | -82             | -80.5 | -77.5 | -74   |  |
| @28 GHz   | -88.5                                 | -87   | -81.5           | -80   | -77   | -73.5 |  |
| @32 GHz   | -88                                   | -86.5 | -81             | -79.5 | -76.5 | -73   |  |
| @38 GHz   | -87.5                                 | -86   | -80.5           | -79   | -76   | -72.5 |  |
| @42 GHz   | -86                                   | -84.5 | -79             | -77.5 | -74.5 | -71   |  |

Table 6-83 Typical receiver sensitivity of the Integrated IP microwave XIII (ISV3 @IS3-mode, XPIC enabled)

Table 6-84 Typical receiver sensitivity of the Integrated IP microwave XIV (ISV3 @IS3-mode, XPIC enabled)

| Item          | Performance (C     | Performance (Channel Spacing: 28 MHz) |        |                 |         |  |
|---------------|--------------------|---------------------------------------|--------|-----------------|---------|--|
|               | 128QAM             | 256QAM                                | 512QAM | 512QAM<br>Light | 1024QAM |  |
| RSL@ BER=10-6 | <sup>6</sup> (dBm) |                                       |        | -               |         |  |
| @6 GHz        | -72.5              | -69.5                                 | -67.5  | -66             | -64     |  |
| @7 GHz        | -72.5              | -69.5                                 | -67.5  | -66             | -64     |  |
| @8 GHz        | -72.5              | -69.5                                 | -67.5  | -66             | -64     |  |
| @10 GHz       | -72                | -69                                   | -67    | -65.5           | N/A     |  |
| @10.5 GHz     | -70                | -67                                   | -65    | -63.5           | N/A     |  |

| Item    | Performance (C | hannel Spacing: | 28 MHz) |                 |         |
|---------|----------------|-----------------|---------|-----------------|---------|
|         | 128QAM         | 256QAM          | 512QAM  | 512QAM<br>Light | 1024QAM |
| @11 GHz | -72            | -69             | -67     | -65.5           | -63.5   |
| @13 GHz | -72            | -69             | -67     | -65.5           | -63.5   |
| @15 GHz | -72            | -69             | -67     | -65.5           | -63.5   |
| @18 GHz | -71.5          | -68.5           | -66.5   | -65             | -63     |
| @23 GHz | -71.5          | -68.5           | -66.5   | -65             | -63     |
| @26 GHz | -71            | -68             | -66     | -64.5           | N/A     |
| @28 GHz | -70.5          | -67.5           | N/A     | N/A             | N/A     |
| @32 GHz | -70            | -67             | N/A     | N/A             | N/A     |
| @38 GHz | -69.5          | -66.5           | -64.5   | N/A             | N/A     |
| @42 GHz | -68            | -65             | -63     | N/A             | N/A     |

Table 6-85 Typical receiver sensitivity of the Integrated IP microwave XV (ISV3 @IS3-mode, XPIC enabled)

| Item       | Performance                     | (Channel Space | cing: 56 MHz)   |       |       |       |  |
|------------|---------------------------------|----------------|-----------------|-------|-------|-------|--|
|            | QPSK<br>Strong                  | QPSK           | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM |  |
| RSL@ BER=1 | RSL@ BER=10 <sup>-6</sup> (dBm) |                |                 |       |       |       |  |
| @6 GHz     | -87.5                           | -86            | -80.5           | -79   | -76   | -72.5 |  |
| @7 GHz     | -87.5                           | -86            | -80.5           | -79   | -76   | -72.5 |  |
| @8 GHz     | -87.5                           | -86            | -80.5           | -79   | -76   | -72.5 |  |
| @10 GHz    | -87                             | -85.5          | -80             | -78.5 | -75.5 | -72   |  |
| @10.5 GHz  | N/A                             | N/A            | N/A             | N/A   | N/A   | N/A   |  |
| @11 GHz    | -87                             | -85.5          | -80             | -78.5 | -75.5 | -72   |  |
| @13 GHz    | -87                             | -85.5          | -80             | -78.5 | -75.5 | -72   |  |
| @15 GHz    | -87                             | -85.5          | -80             | -78.5 | -75.5 | -72   |  |
| @18 GHz    | -86.5                           | -85            | -79.5           | -78   | -75   | -71.5 |  |
| @23 GHz    | -86.5                           | -85            | -79.5           | -78   | -75   | -71.5 |  |
| @26 GHz    | -86                             | -84.5          | -79             | -77.5 | -74.5 | -71   |  |
| @28 GHz    | -85.5                           | -84            | -78.5           | -77   | -74   | -70.5 |  |

| Item    | Performance    | Performance (Channel Spacing: 56 MHz) |                 |       |       |       |  |
|---------|----------------|---------------------------------------|-----------------|-------|-------|-------|--|
|         | QPSK<br>Strong | QPSK                                  | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM |  |
| @32 GHz | -85            | -83.5                                 | -78             | -76.5 | -73.5 | -70   |  |
| @38 GHz | -84.5          | -83                                   | -77.5           | -76   | -73   | -69.5 |  |
| @42 GHz | -83            | -81.5                                 | -76             | -74.5 | -71.5 | -68   |  |

Table 6-86 Typical receiver sensitivity of the Integrated IP microwave XVI (ISV3 @IS3-mode, XPIC enabled)

| Item       | Performance           | Performance (Channel Spacing: 56 MHz) |        |                 |         |                  |
|------------|-----------------------|---------------------------------------|--------|-----------------|---------|------------------|
|            | 128QAM                | 256QAM                                | 512QAM | 512QAM<br>Light | 1024QAM | 1024QAM<br>Light |
| RSL@ BER=1 | 0 <sup>-6</sup> (dBm) | •                                     | •      | •               | •       |                  |
| @6 GHz     | -69.5                 | -66.5                                 | -64.5  | -63             | -61     | -59.5            |
| @7 GHz     | -69.5                 | -66.5                                 | -64.5  | -63             | -61     | -59.5            |
| @8 GHz     | -69.5                 | -66.5                                 | -64.5  | -63             | -61     | -59.5            |
| @10 GHz    | -69                   | -66                                   | -64    | -62.5           | -60.5   | -59              |
| @10.5 GHz  | N/A                   | N/A                                   | N/A    | N/A             | N/A     | N/A              |
| @11 GHz    | -69                   | -66                                   | -64    | -62.5           | -60.5   | -59              |
| @13 GHz    | -69                   | -66                                   | -64    | -62.5           | -60.5   | -59              |
| @15 GHz    | -69                   | -66                                   | -64    | -62.5           | -60.5   | -59              |
| @18 GHz    | -68.5                 | -65.5                                 | -63.5  | -62             | -60     | -58.5            |
| @23 GHz    | -68.5                 | -65.5                                 | -63.5  | -62             | -60     | -58.5            |
| @26 GHz    | -68                   | -65                                   | -63    | -61.5           | -59.5   | -58              |
| @28 GHz    | -67.5                 | -64.5                                 | -62.5  | N/A             | N/A     | N/A              |
| @32 GHz    | -67                   | -64                                   | -62    | N/A             | N/A     | N/A              |
| @38 GHz    | -66.5                 | -63.5                                 | -61.5  | -60             | N/A     | N/A              |
| @42 GHz    | -65                   | -62                                   | -60    | -58.5           | N/A     | N/A              |

| Item      | Performance            | ce (Channel S | pacing: 40 MHz  | z)    |       |       |
|-----------|------------------------|---------------|-----------------|-------|-------|-------|
|           | QPSK<br>Strong         | QPSK          | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM |
| RSL@ BER= | 10 <sup>-6</sup> (dBm) | ·             | ·               | ·     | ·     | ·     |
| @6 GHz    | -89                    | -87.5         | -82             | -80.5 | -77.5 | -74   |
| @7 GHz    | -89                    | -87.5         | -82             | -80.5 | -77.5 | -74   |
| @8 GHz    | -89                    | -87.5         | -82             | -80.5 | -77.5 | -74   |
| @10 GHz   | -88.5                  | -87           | -81.5           | -80   | -77   | -73.5 |
| @10.5 GHz | N/A                    | N/A           | N/A             | N/A   | N/A   | N/A   |
| @11 GHz   | -88.5                  | -87           | -81.5           | -80   | -77   | -73.5 |
| @13 GHz   | -88.5                  | -87           | -81.5           | -80   | -77   | -73.5 |
| @15 GHz   | -88.5                  | -87           | -81.5           | -80   | -77   | -73.5 |
| @18 GHz   | -88                    | -86.5         | -81             | -79.5 | -76.5 | -73   |
| @23 GHz   | -88                    | -86.5         | -81             | -79.5 | -76.5 | -73   |
| @26 GHz   | -87.5                  | -86           | -80.5           | -79   | -76   | -72.5 |
| @28 GHz   | -87                    | -85.5         | -80             | -78.5 | -75.5 | -72   |
| @32 GHz   | -86.5                  | -85           | -79.5           | -78   | -75   | -71.5 |
| @38 GHz   | -86                    | -84.5         | -79             | -77.5 | -74.5 | -71   |
| @42 GHz   | -84.5                  | -83           | -77.5           | -76   | -73   | -69.5 |

 Table 6-87 Typical receiver sensitivity of the Integrated IP microwave XVII (ISV3 @IS3-mode, XPIC enabled)

 Table 6-88 Typical receiver sensitivity of the Integrated IP microwave XVIII (ISV3 @IS3-mode, XPIC enabled)

| Item          | Performance (C | Performance (Channel Spacing: 40 MHz) |        |                 |         |  |
|---------------|----------------|---------------------------------------|--------|-----------------|---------|--|
|               | 128QAM         | 256QAM                                | 512QAM | 512QAM<br>Light | 1024QAM |  |
| RSL@ BER=10-6 | (dBm)          |                                       | ·      |                 |         |  |
| @6 GHz        | -71            | -68                                   | -66    | -64.5           | -62.5   |  |
| @7 GHz        | -71            | -68                                   | -66    | -64.5           | -62.5   |  |
| @8 GHz        | -71            | -68                                   | -66    | -64.5           | -62.5   |  |
| @10 GHz       | -70.5          | -67.5                                 | -65.5  | -64             | -62     |  |
| @10.5 GHz     | N/A            | N/A                                   | N/A    | N/A             | N/A     |  |

| Item    | Performance (C | hannel Spacing: | 40 MHz) |                 |         |
|---------|----------------|-----------------|---------|-----------------|---------|
|         | 128QAM         | 256QAM          | 512QAM  | 512QAM<br>Light | 1024QAM |
| @11 GHz | -70.5          | -67.5           | -65.5   | -64             | -62     |
| @13 GHz | -70.5          | -67.5           | -65.5   | -64             | -62     |
| @15 GHz | -70.5          | -67.5           | -65.5   | -64             | -62     |
| @18 GHz | -70            | -67             | -65     | -63.5           | -61.5   |
| @23 GHz | -70            | -67             | -65     | -63.5           | -61.5   |
| @26 GHz | -69.5          | -66.5           | -64.5   | -63             | -61     |
| @28 GHz | -69            | -66             | -64     | -62.5           | N/A     |
| @32 GHz | -68.5          | -65.5           | -63.5   | -62             | N/A     |
| @38 GHz | -68            | -65             | -63     | -61.5           | N/A     |
| @42 GHz | -66.5          | -63.5           | -61.5   | -60             | N/A     |

### 6.1.3.7 Receiver Sensitivity (ISM6 board)

The ISM6 board supports the SDH microwave work mode and the Integrated IP microwave work mode.

The ISM6 board supports three IF running modes: IS6, IS3 and IS2

- This section provides the receiver sensitivity when the ISM6 runs in the IS6 mode.
- When the ISM6 board runs in the IS3 mode, it supports a channel spacing from 7 MHz to 56 MHz. The radio work mode and receiver sensitivity for the ISM6 board are the same as those for the ISV3 board. For details, see **6.1.3.6 Receiver Sensitivity (ISV3 board)**.
- When the ISM6 board runs in the IS2 mode and XPIC is disabled, the radio work mode and receiver sensitivity for the ISM6 board are the same as those for the ISU2 board. For details, see **6.1.3.4 Receiver Sensitivity (ISU2 board)**.
- When the ISM6 board runs in the IS2 mode and XPIC is enabled, the radio work mode and receiver sensitivity for the ISM6 board are the same as those for the ISX2 board. For details, see **6.1.3.5 Receiver Sensitivity (ISX2 board)**.

#### 

N/A means that microwave working mode is not supported.

## SDH Microwave (IS6-Mode)

| Item                 | Performance        |               |
|----------------------|--------------------|---------------|
|                      | 1×STM-1            | 2×STM-1       |
|                      | 28 MHz/128QAM      | 56 MHz/128QAM |
| $RSL@ BER = 10^{-6}$ | <sup>6</sup> (dBm) | •             |
| @13 GHz              | -72                | -69           |
| @15 GHz              | -72                | -69           |
| @18 GHz              | -71.5              | -68.5         |
| @23 GHz              | -71.5              | -68.5         |
| @26 GHz              | -71                | -68           |
| @28 GHz              | -70.5              | -67.5         |
| @32 GHz              | -70                | -67           |
| @38 GHz              | -69.5              | -66.5         |
| NOTE                 |                    |               |

 Table 6-89 Typical receiver sensitivity of the SDH microwave (IS6-mode)

NOTE

For the ISM6 board in SDH service mode, receiver sensitivities are the same regardless of whether the XPIC function is enabled or disabled.

### **Integrated IP Microwave**

Table 6-90 Typical receiver sensitivity of the Integrated IP microwave I (IS6-mode, XPIC disabled)

| Item       | Performance (Channel Spacing: 7 MHz) |       |                 |       |       |       |
|------------|--------------------------------------|-------|-----------------|-------|-------|-------|
|            | QPSK<br>Strong                       | QPSK  | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM |
| RSL@ BER = | 10 <sup>-6</sup> (dBm)               |       |                 |       |       |       |
| @13 GHz    | -95.5                                | -93.5 | -89             | -87   | -84   | -81   |
| @15 GHz    | -95.5                                | -93.5 | -89             | -87   | -84   | -81   |
| @18 GHz    | -95                                  | -93   | -88.5           | -86.5 | -83.5 | -80.5 |
| @23 GHz    | -95                                  | -93   | -88.5           | -86.5 | -83.5 | -80.5 |
| @26 GHz    | -94.5                                | -92.5 | -88             | -86   | -83   | -80   |
| @28 GHz    | -94                                  | -92   | -87.5           | -85.5 | -82.5 | -79.5 |

| Item    | Performance (Channel Spacing: 7 MHz) |                                     |       |       |       |       |  |  |
|---------|--------------------------------------|-------------------------------------|-------|-------|-------|-------|--|--|
|         | QPSK<br>Strong                       | QPSK 16QAM 16QAM 32QAM 64QAM Strong |       |       |       |       |  |  |
| @32 GHz | -93.5                                | -91.5                               | -87   | -85   | -82   | -79   |  |  |
| @38 GHz | -93                                  | -91                                 | -86.5 | -84.5 | -81.5 | -78.5 |  |  |

Table 6-91 Typical receiver sensitivity of the Integrated IP microwave II (IS6-mode, XPIC disabled)

| Item                     | Performance (Channel Spacing: 7 MHz) |        |        |         |  |  |  |  |
|--------------------------|--------------------------------------|--------|--------|---------|--|--|--|--|
|                          | 128QAM                               | 256QAM | 512QAM | 1024QAM |  |  |  |  |
| RSL@ BER = $10^{-6}$ (a) | RSL@ BER = $10^{-6}$ (dBm)           |        |        |         |  |  |  |  |
| @13 GHz                  | -78                                  | -75    | -72    | -69     |  |  |  |  |
| @15 GHz                  | -78                                  | -75    | -72    | -69     |  |  |  |  |
| @18 GHz                  | -77.5                                | -74.5  | -71.5  | -68.5   |  |  |  |  |
| @23 GHz                  | -77.5                                | -74.5  | -71.5  | -68.5   |  |  |  |  |
| @26 GHz                  | -77                                  | -74    | -71    | -68     |  |  |  |  |
| @28 GHz                  | -76.5                                | -73.5  | -70.5  | -67.5   |  |  |  |  |
| @32 GHz                  | -76                                  | -73    | -70    | -67     |  |  |  |  |
| @38 GHz                  | -75.5                                | -72.5  | -69.5  | -66.5   |  |  |  |  |

Table 6-92 Typical receiver sensitivity of the Integrated IP microwave III (IS6-mode, XPIC disabled)

| Item       | Performance            | Performance (Channel Spacing: 14 MHz) |                 |       |       |       |  |  |
|------------|------------------------|---------------------------------------|-----------------|-------|-------|-------|--|--|
|            | QPSK<br>Strong         | QPSK                                  | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM |  |  |
| RSL@ BER = | 10 <sup>-6</sup> (dBm) |                                       |                 |       |       |       |  |  |
| @13 GHz    | -93.5                  | -91.5                                 | -86             | -84   | -81   | -78   |  |  |
| @15 GHz    | -93.5                  | -91.5                                 | -86             | -84   | -81   | -78   |  |  |
| @18 GHz    | -93                    | -91                                   | -85.5           | -83.5 | -80.5 | -77.5 |  |  |
| @23 GHz    | -93                    | -91                                   | -85.5           | -83.5 | -80.5 | -77.5 |  |  |
| @26 GHz    | -92.5                  | -90.5                                 | -85             | -83   | -80   | -77   |  |  |
| @28 GHz    | -92                    | -90                                   | -84.5           | -82.5 | -79.5 | -76.5 |  |  |

| Item    | Performance (Channel Spacing: 14 MHz) |       |       |       |       |       |  |  |
|---------|---------------------------------------|-------|-------|-------|-------|-------|--|--|
|         | QPSK<br>Strong                        |       |       |       |       |       |  |  |
| @32 GHz | -91.5                                 | -89.5 | -84   | -82   | -79   | -76   |  |  |
| @38 GHz | -91                                   | -89   | -83.5 | -81.5 | -78.5 | -75.5 |  |  |

Table 6-93 Typical receiver sensitivity of the Integrated IP microwave IV (IS6-mode, XPIC disabled)

| Item            | Performance (C      | Performance (Channel Spacing: 14 MHz) |        |         |         |  |  |  |
|-----------------|---------------------|---------------------------------------|--------|---------|---------|--|--|--|
|                 | 128QAM              | 256QAM                                | 512QAM | 1024QAM | 2048QAM |  |  |  |
| RSL@ BER = $10$ | <sup>-6</sup> (dBm) |                                       |        |         |         |  |  |  |
| @13 GHz         | -75                 | -72                                   | -69    | -66     | -63     |  |  |  |
| @15 GHz         | -75                 | -72                                   | -69    | -66     | -63     |  |  |  |
| @18 GHz         | -74.5               | -71.5                                 | -68.5  | -65.5   | -62.5   |  |  |  |
| @23 GHz         | -74.5               | -71.5                                 | -68.5  | -65.5   | -62.5   |  |  |  |
| @26 GHz         | -74                 | -71                                   | -68    | -65     | -62     |  |  |  |
| @28 GHz         | -73.5               | -70.5                                 | -67.5  | -64.5   | -61.5   |  |  |  |
| @32 GHz         | -73                 | -70                                   | -67    | -64     | -61     |  |  |  |
| @38 GHz         | -72.5               | -69.5                                 | -66.5  | -63.5   | -60.5   |  |  |  |

Table 6-94 Typical receiver sensitivity of the Integrated IP microwave V (IS6-mode, XPIC disabled)

| Item       | Performance            | Performance (Channel Spacing: 28 MHz) |                 |       |       |       |  |
|------------|------------------------|---------------------------------------|-----------------|-------|-------|-------|--|
|            | QPSK<br>Strong         | QPSK                                  | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM |  |
| RSL@ BER = | 10 <sup>-6</sup> (dBm) |                                       |                 |       |       |       |  |
| @13 GHz    | -90                    | -88.5                                 | -83             | -81.5 | -78.5 | -75   |  |
| @15 GHz    | -90                    | -88.5                                 | -83             | -81.5 | -78.5 | -75   |  |
| @18 GHz    | -89.5                  | -88                                   | -82.5           | -81   | -78   | -74.5 |  |
| @23 GHz    | -89.5                  | -88                                   | -82.5           | -81   | -78   | -74.5 |  |
| @26 GHz    | -89                    | -87.5                                 | -82             | -80.5 | -77.5 | -74   |  |
| @28 GHz    | -88.5                  | -87                                   | -81.5           | -80   | -77   | -73.5 |  |

| Item    | Performance (Channel Spacing: 28 MHz) |       |       |       |       |       |  |  |
|---------|---------------------------------------|-------|-------|-------|-------|-------|--|--|
|         | QPSK<br>Strong                        |       |       |       |       |       |  |  |
| @32 GHz | -88                                   | -86.5 | -81   | -79.5 | -76.5 | -73   |  |  |
| @38 GHz | -87.5                                 | -86   | -80.5 | -79   | -76   | -72.5 |  |  |

Table 6-95 Typical receiver sensitivity of the Integrated IP microwave VI (IS6-mode, XPIC disabled)

| Item       | Performance (Channel Spacing: 28 MHz) |        |        |         |         |         |  |
|------------|---------------------------------------|--------|--------|---------|---------|---------|--|
|            | 128QAM                                | 256QAM | 512QAM | 1024QAM | 2048QAM | 4096QAM |  |
| RSL@ BER = | 10 <sup>-6</sup> (dBm)                |        |        |         |         |         |  |
| @13 GHz    | -72                                   | -69    | -66    | -63     | -60     | -57     |  |
| @15 GHz    | -72                                   | -69    | -66    | -63     | -60     | -57     |  |
| @18 GHz    | -71.5                                 | -68.5  | -65.5  | -62.5   | -59.5   | -56.5   |  |
| @23 GHz    | -71.5                                 | -68.5  | -65.5  | -62.5   | -59.5   | -56.5   |  |
| @26 GHz    | -71                                   | -68    | -65    | -62     | -59     | -56     |  |
| @28 GHz    | -70.5                                 | -67.5  | -64.5  | -61.5   | -58.5   | N/A     |  |
| @32 GHz    | -70                                   | -67    | -64    | -61     | -58     | N/A     |  |
| @38 GHz    | -69.5                                 | -66.5  | -63.5  | -60.5   | -57.5   | N/A     |  |

Table 6-96 Typical receiver sensitivity of the Integrated IP microwave VII (IS6-mode, XPIC disabled)

| Item       | Performance            | Performance (Channel Spacing: 56 MHz) |                 |       |       |       |  |
|------------|------------------------|---------------------------------------|-----------------|-------|-------|-------|--|
|            | QPSK<br>Strong         | QPSK                                  | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM |  |
| RSL@ BER = | 10 <sup>-6</sup> (dBm) |                                       |                 |       |       |       |  |
| @13 GHz    | -87                    | -85.5                                 | -80             | -78.5 | -75.5 | -72   |  |
| @15 GHz    | -87                    | -85.5                                 | -80             | -78.5 | -75.5 | -72   |  |
| @18 GHz    | -86.5                  | -85                                   | -79.5           | -78   | -75   | -71.5 |  |
| @23 GHz    | -86.5                  | -85                                   | -79.5           | -78   | -75   | -71.5 |  |
| @26 GHz    | -86                    | -84.5                                 | -79             | -77.5 | -74.5 | -71   |  |
| @28 GHz    | -85.5                  | -84                                   | -78.5           | -77   | -74   | -70.5 |  |

| Item    | Performance (Channel Spacing: 56 MHz) |                                    |       |       |       |       |  |  |
|---------|---------------------------------------|------------------------------------|-------|-------|-------|-------|--|--|
|         | QPSK<br>Strong                        | QPSK16QAM<br>Strong16QAM32QAM64QAM |       |       |       |       |  |  |
| @32 GHz | -85                                   | -83.5                              | -78   | -76.5 | -73.5 | -70   |  |  |
| @38 GHz | -84.5                                 | -83                                | -77.5 | -76   | -73   | -69.5 |  |  |

Table 6-97 Typical receiver sensitivity of the Integrated IP microwave VIII (IS6-mode, XPIC disabled)

| Item       | Performance            | Performance (Channel Spacing: 56 MHz) |        |         |         |         |  |  |
|------------|------------------------|---------------------------------------|--------|---------|---------|---------|--|--|
|            | 128QAM                 | 256QAM                                | 512QAM | 1024QAM | 2048QAM | 4096QAM |  |  |
| RSL@ BER = | 10 <sup>-6</sup> (dBm) |                                       |        |         |         |         |  |  |
| @13 GHz    | -69                    | -66                                   | -63    | -60     | -57     | -54     |  |  |
| @15 GHz    | -69                    | -66                                   | -63    | -60     | -57     | -54     |  |  |
| @18 GHz    | -68.5                  | -65.5                                 | -62.5  | -59.5   | -56.5   | -53.5   |  |  |
| @23 GHz    | -68.5                  | -65.5                                 | -62.5  | -59.5   | -56.5   | -53.5   |  |  |
| @26 GHz    | -68                    | -65                                   | -62    | -59     | -56     | -53     |  |  |
| @28 GHz    | -67.5                  | -64.5                                 | -61.5  | -58.5   | -55.5   | N/A     |  |  |
| @32 GHz    | -67                    | -64                                   | -61    | -58     | -55     | N/A     |  |  |
| @38 GHz    | -66.5                  | -63.5                                 | -60.5  | -57.5   | -54.5   | N/A     |  |  |

Table 6-98 Typical receiver sensitivity of the Integrated IP microwave IX (IS6-mode, XPIC disabled)

| Item       | Performance (Channel Spacing: 40 MHz) |       |                 |       |       |       |
|------------|---------------------------------------|-------|-----------------|-------|-------|-------|
|            | QPSK<br>Strong                        | QPSK  | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM |
| RSL@ BER = | $RSL@ BER = 10^{-6} (dBm)$            |       |                 |       |       |       |
| @13 GHz    | -88.5                                 | -87   | -81.5           | -80   | -77   | -73.5 |
| @15 GHz    | -88.5                                 | -87   | -81.5           | -80   | -77   | -73.5 |
| @18 GHz    | -88                                   | -86.5 | -81             | -79.5 | -76.5 | -73   |
| @23 GHz    | -88                                   | -86.5 | -81             | -79.5 | -76.5 | -73   |
| @26 GHz    | -87.5                                 | -86   | -80.5           | -79   | -76   | -72.5 |
| @28 GHz    | -87                                   | -85.5 | -80             | -78.5 | -75.5 | -72   |

| Item    | Performance (Channel Spacing: 40 MHz) |       |       |       |       |       |
|---------|---------------------------------------|-------|-------|-------|-------|-------|
|         | QPSK<br>Strong                        |       |       |       |       |       |
| @32 GHz | -86.5                                 | -85   | -79.5 | -78   | -75   | -71.5 |
| @38 GHz | -86                                   | -84.5 | -79   | -77.5 | -74.5 | -71   |

Table 6-99 Typical receiver sensitivity of the Integrated IP microwave X (IS6-mode, XPIC disabled)

| Item       | Performance (Channel Spacing: 40 MHz) |        |        |         |         |         |
|------------|---------------------------------------|--------|--------|---------|---------|---------|
|            | 128QAM                                | 256QAM | 512QAM | 1024QAM | 2048QAM | 4096QAM |
| RSL@ BER = | 10 <sup>-6</sup> (dBm)                |        |        |         |         |         |
| @13 GHz    | -70.5                                 | -67.5  | -64.5  | -61.5   | -58.5   | -55.5   |
| @15 GHz    | -70.5                                 | -67.5  | -64.5  | -61.5   | -58.5   | -55.5   |
| @18 GHz    | -70                                   | -67    | -64    | -61     | -58     | -55     |
| @23 GHz    | -70                                   | -67    | -64    | -61     | -58     | -55     |
| @26 GHz    | -69.5                                 | -66.5  | -63.5  | -60.5   | -57.5   | -54.5   |
| @28 GHz    | -69                                   | -66    | -63    | -60     | -57     | N/A     |
| @32 GHz    | -68.5                                 | -65.5  | -62.5  | -59.5   | -56.5   | N/A     |
| @38 GHz    | -68                                   | -65    | -62    | -59     | -56     | N/A     |

Table 6-100 Typical receiver sensitivity of the Integrated IP microwave XI (IS6-mode, XPIC disabled)

| Item                       | Performance (Channel Spacing: 112 MHz) |     |       |     |     |       |  |
|----------------------------|----------------------------------------|-----|-------|-----|-----|-------|--|
|                            | QPSK<br>Strong                         |     |       |     |     |       |  |
| $RSL@ BER = 10^{-6} (dBm)$ |                                        |     |       |     |     |       |  |
| @32 GHz                    | -81.5                                  | -80 | -74.5 | -73 | -70 | -66.5 |  |

| Item                       | Performance (Channel Spacing: 112 MHz) |  |  |  |  |  |  |
|----------------------------|----------------------------------------|--|--|--|--|--|--|
|                            | 128QAM 256QAM 512QAM                   |  |  |  |  |  |  |
| RSL@ BER = $10^{-6}$ (dBm) | RSL@ BER = $10^{-6}$ (dBm)             |  |  |  |  |  |  |

| Item    | Performance (Channel Spacing: 112 MHz) |       |       |  |  |  |
|---------|----------------------------------------|-------|-------|--|--|--|
|         | 128QAM 256QAM 512QAM                   |       |       |  |  |  |
| @32 GHz | -63.5                                  | -60.5 | -57.5 |  |  |  |

Table 6-102 Typical receiver sensitivity of the Integrated IP microwave XIII (IS6-mode, XPIC enabled)

| Item       | Performance (Channel Spacing: 7 MHz) |       |                 |       |       |       |
|------------|--------------------------------------|-------|-----------------|-------|-------|-------|
|            | QPSK<br>Strong                       | QPSK  | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM |
| RSL@ BER = | 10 <sup>-6</sup> (dBm)               |       |                 |       |       |       |
| @13 GHz    | -95.5                                | -93.5 | -89             | -87   | -84   | -81   |
| @15 GHz    | -95.5                                | -93.5 | -89             | -87   | -84   | -81   |
| @18 GHz    | -95                                  | -93   | -88.5           | -86.5 | -83.5 | -80.5 |
| @23 GHz    | -95                                  | -93   | -88.5           | -86.5 | -83.5 | -80.5 |
| @26 GHz    | -94.5                                | -92.5 | -88             | -86   | -83   | -80   |
| @28 GHz    | -94                                  | -92   | -87.5           | -85.5 | -82.5 | -79.5 |
| @32 GHz    | -93.5                                | -91.5 | -87             | -85   | -82   | -79   |
| @38 GHz    | -93                                  | -91   | -86.5           | -84.5 | -81.5 | -78.5 |

Table 6-103 Typical receiver sensitivity of the Integrated IP microwave XIV (IS6-mode, XPIC enabled)

| Item                       | Performance (Channel S | Performance (Channel Spacing: 7 MHz) |        |  |  |  |
|----------------------------|------------------------|--------------------------------------|--------|--|--|--|
|                            | 128QAM                 | 256QAM                               | 512QAM |  |  |  |
| RSL@ BER = $10^{-6}$ (dBm) |                        |                                      |        |  |  |  |
| @13 GHz                    | -78                    | -75                                  | -72    |  |  |  |
| @15 GHz                    | -78                    | -75                                  | -72    |  |  |  |
| @18 GHz                    | -77.5                  | -74.5                                | -71.5  |  |  |  |
| @23 GHz                    | -77.5                  | -74.5                                | -71.5  |  |  |  |
| @26 GHz                    | -77                    | -74                                  | -71    |  |  |  |
| @28 GHz                    | -76.5                  | -73.5                                | -70.5  |  |  |  |
| @32 GHz                    | -76                    | -73                                  | -70    |  |  |  |
| @38 GHz                    | -75.5                  | -72.5                                | -69.5  |  |  |  |

| Item       | Performance (Channel Spacing: 14 MHz) |       |                 |       |       |       |  |
|------------|---------------------------------------|-------|-----------------|-------|-------|-------|--|
|            | QPSK<br>Strong                        | QPSK  | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM |  |
| RSL@ BER = | 10 <sup>-6</sup> (dBm)                |       | -               | -     |       |       |  |
| @13 GHz    | -93.5                                 | -91.5 | -86             | -84   | -81   | -78   |  |
| @15 GHz    | -93.5                                 | -91.5 | -86             | -84   | -81   | -78   |  |
| @18 GHz    | -93                                   | -91   | -85.5           | -83.5 | -80.5 | -77.5 |  |
| @23 GHz    | -93                                   | -91   | -85.5           | -83.5 | -80.5 | -77.5 |  |
| @26 GHz    | -92.5                                 | -90.5 | -85             | -83   | -80   | -77   |  |
| @28 GHz    | -92                                   | -90   | -84.5           | -82.5 | -79.5 | -76.5 |  |
| @32 GHz    | -91.5                                 | -89.5 | -84             | -82   | -79   | -76   |  |
| @38 GHz    | -91                                   | -89   | -83.5           | -81.5 | -78.5 | -75.5 |  |

Table 6-104 Typical receiver sensitivity of the Integrated IP microwave XV (IS6-mode, XPIC enabled)

 Table 6-105 Typical receiver sensitivity of the Integrated IP microwave XVI (IS6-mode, XPIC enabled)

| Item                    | Performance (Channel Spacing: 14 MHz) |        |        |         |  |  |  |  |  |
|-------------------------|---------------------------------------|--------|--------|---------|--|--|--|--|--|
|                         | 128QAM                                | 256QAM | 512QAM | 1024QAM |  |  |  |  |  |
| RSL@ BER = $10^{-6}$ (c | RSL@ BER = $10^{-6}$ (dBm)            |        |        |         |  |  |  |  |  |
| @13 GHz                 | -75                                   | -72    | -69    | -66     |  |  |  |  |  |
| @15 GHz                 | -75                                   | -72    | -69    | -66     |  |  |  |  |  |
| @18 GHz                 | -74.5                                 | -71.5  | -68.5  | -65.5   |  |  |  |  |  |
| @23 GHz                 | -74.5                                 | -71.5  | -68.5  | -65.5   |  |  |  |  |  |
| @26 GHz                 | -74                                   | -71    | -68    | -65     |  |  |  |  |  |
| @28 GHz                 | -73.5                                 | -70.5  | -67.5  | -64.5   |  |  |  |  |  |
| @32 GHz                 | -73                                   | -70    | -67    | -64     |  |  |  |  |  |
| @38 GHz                 | -72.5                                 | -69.5  | -66.5  | -63.5   |  |  |  |  |  |

| Item       | Performance (Channel Spacing: 28 MHz) |       |                 |       |       |       |  |
|------------|---------------------------------------|-------|-----------------|-------|-------|-------|--|
|            | QPSK<br>Strong                        | QPSK  | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM |  |
| RSL@ BER = | 10 <sup>-6</sup> (dBm)                |       |                 |       |       |       |  |
| @13 GHz    | -90                                   | -88.5 | -83             | -81.5 | -78.5 | -75   |  |
| @15 GHz    | -90                                   | -88.5 | -83             | -81.5 | -78.5 | -75   |  |
| @18 GHz    | -89.5                                 | -88   | -82.5           | -81   | -78   | -74.5 |  |
| @23 GHz    | -89.5                                 | -88   | -82.5           | -81   | -78   | -74.5 |  |
| @26 GHz    | -89                                   | -87.5 | -82             | -80.5 | -77.5 | -74   |  |
| @28 GHz    | -88.5                                 | -87   | -81.5           | -80   | -77   | -73.5 |  |
| @32 GHz    | -88                                   | -86.5 | -81             | -79.5 | -76.5 | -73   |  |
| @38 GHz    | -87.5                                 | -86   | -80.5           | -79   | -76   | -72.5 |  |

Table 6-106 Typical receiver sensitivity of the Integrated IP microwave XVII (IS6-mode, XPIC enabled)

Table 6-107 Typical receiver sensitivity of the Integrated IP microwave XVIII (IS6-mode, XPIC enabled)

| Item            | Performance (Channel Spacing: 28 MHz) |        |        |         |         |  |  |  |  |
|-----------------|---------------------------------------|--------|--------|---------|---------|--|--|--|--|
|                 | 128QAM                                | 256QAM | 512QAM | 1024QAM | 2048QAM |  |  |  |  |
| RSL@ BER = $10$ | $RSL@ BER = 10^{-6} (dBm)$            |        |        |         |         |  |  |  |  |
| @13 GHz         | -72                                   | -69    | -66    | -63     | -60     |  |  |  |  |
| @15 GHz         | -72                                   | -69    | -66    | -63     | -60     |  |  |  |  |
| @18 GHz         | -71.5                                 | -68.5  | -65.5  | -62.5   | -59.5   |  |  |  |  |
| @23 GHz         | -71.5                                 | -68.5  | -65.5  | -62.5   | -59.5   |  |  |  |  |
| @26 GHz         | -71                                   | -68    | -65    | -62     | -59     |  |  |  |  |
| @28 GHz         | -70.5                                 | -67.5  | -64.5  | -61.5   | N/A     |  |  |  |  |
| @32 GHz         | -70                                   | -67    | -64    | -61     | N/A     |  |  |  |  |
| @38 GHz         | -69.5                                 | -66.5  | -63.5  | -60.5   | N/A     |  |  |  |  |

| Item       | Performance (Channel Spacing: 56 MHz) |       |                 |       |       |       |  |
|------------|---------------------------------------|-------|-----------------|-------|-------|-------|--|
|            | QPSK<br>Strong                        | QPSK  | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM |  |
| RSL@ BER = | 10 <sup>-6</sup> (dBm)                |       |                 |       |       |       |  |
| @13 GHz    | -87                                   | -85.5 | -80             | -78.5 | -75.5 | -72   |  |
| @15 GHz    | -87                                   | -85.5 | -80             | -78.5 | -75.5 | -72   |  |
| @18 GHz    | -86.5                                 | -85   | -79.5           | -78   | -75   | -71.5 |  |
| @23 GHz    | -86.5                                 | -85   | -79.5           | -78   | -75   | -71.5 |  |
| @26 GHz    | -86                                   | -84.5 | -79             | -77.5 | -74.5 | -71   |  |
| @28 GHz    | -85.5                                 | -84   | -78.5           | -77   | -74   | -70.5 |  |
| @32 GHz    | -85                                   | -83.5 | -78             | -76.5 | -73.5 | -70   |  |
| @38 GHz    | -84.5                                 | -83   | -77.5           | -76   | -73   | -69.5 |  |

 Table 6-108 Typical receiver sensitivity of the Integrated IP microwave XIX (IS6-mode, XPIC enabled)

Table 6-109 Typical receiver sensitivity of the Integrated IP microwave XX (IS6-mode, XPIC enabled)

| Item          | Performance (Channel Spacing: 56 MHz) |        |        |         |         |  |  |  |
|---------------|---------------------------------------|--------|--------|---------|---------|--|--|--|
|               | 128QAM                                | 256QAM | 512QAM | 1024QAM | 2048QAM |  |  |  |
| RSL@ BER = 10 | $RSL@ BER = 10^{-6} (dBm)$            |        |        |         |         |  |  |  |
| @13 GHz       | -69                                   | -66    | -63    | -60     | -57     |  |  |  |
| @15 GHz       | -69                                   | -66    | -63    | -60     | -57     |  |  |  |
| @18 GHz       | -68.5                                 | -65.5  | -62.5  | -59.5   | -56.5   |  |  |  |
| @23 GHz       | -68.5                                 | -65.5  | -62.5  | -59.5   | -56.5   |  |  |  |
| @26 GHz       | -68                                   | -65    | -62    | -59     | -56     |  |  |  |
| @28 GHz       | -67.5                                 | -64.5  | -61.5  | -58.5   | N/A     |  |  |  |
| @32 GHz       | -67                                   | -64    | -61    | -58     | N/A     |  |  |  |
| @38 GHz       | -66.5                                 | -63.5  | -60.5  | -57.5   | N/A     |  |  |  |

| Item       | Performance (Channel Spacing: 40 MHz) |       |                 |       |       |       |  |
|------------|---------------------------------------|-------|-----------------|-------|-------|-------|--|
|            | QPSK<br>Strong                        | QPSK  | 16QAM<br>Strong | 16QAM | 32QAM | 64QAM |  |
| RSL@ BER = | 10 <sup>-6</sup> (dBm)                |       | -               |       | -     |       |  |
| @13 GHz    | -88.5                                 | -87   | -81.5           | -80   | -77   | -73.5 |  |
| @15 GHz    | -88.5                                 | -87   | -81.5           | -80   | -77   | -73.5 |  |
| @18 GHz    | -88                                   | -86.5 | -81             | -79.5 | -76.5 | -73   |  |
| @23 GHz    | -88                                   | -86.5 | -81             | -79.5 | -76.5 | -73   |  |
| @26 GHz    | -87.5                                 | -86   | -80.5           | -79   | -76   | -72.5 |  |
| @28 GHz    | -87                                   | -85.5 | -80             | -78.5 | -75.5 | -72   |  |
| @32 GHz    | -86.5                                 | -85   | -79.5           | -78   | -75   | -71.5 |  |
| @38 GHz    | -86                                   | -84.5 | -79             | -77.5 | -74.5 | -71   |  |

 Table 6-110 Typical receiver sensitivity of the Integrated IP microwave XXI (IS6-mode, XPIC enabled)

Table 6-111 Typical receiver sensitivity of the Integrated IP microwave XXII (IS6-mode, XPIC enabled)

| Item            | Performance (Channel Spacing: 40 MHz) |        |        |         |         |  |  |  |  |
|-----------------|---------------------------------------|--------|--------|---------|---------|--|--|--|--|
|                 | 128QAM                                | 256QAM | 512QAM | 1024QAM | 2048QAM |  |  |  |  |
| RSL@ BER = $10$ | RSL@ BER = $10^{-6}$ (dBm)            |        |        |         |         |  |  |  |  |
| @13 GHz         | -70.5                                 | -67.5  | -64.5  | -61.5   | -58.5   |  |  |  |  |
| @15 GHz         | -70.5                                 | -67.5  | -64.5  | -61.5   | -58.5   |  |  |  |  |
| @18 GHz         | -70                                   | -67    | -64    | -61     | -58     |  |  |  |  |
| @23 GHz         | -70                                   | -67    | -64    | -61     | -58     |  |  |  |  |
| @26 GHz         | -69.5                                 | -66.5  | -63.5  | -60.5   | -57.5   |  |  |  |  |
| @28 GHz         | -69                                   | -66    | -63    | -60     | N/A     |  |  |  |  |
| @32 GHz         | -68.5                                 | -65.5  | -62.5  | -59.5   | N/A     |  |  |  |  |
| @38 GHz         | -68                                   | -65    | -62    | -59     | N/A     |  |  |  |  |

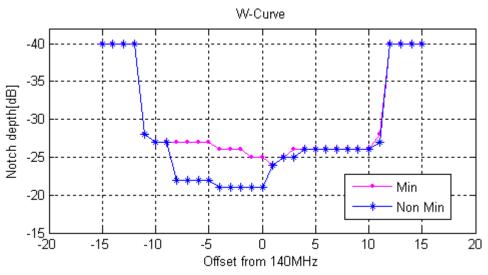
| Item       | tem Performance (Channel Spacing: 112 MHz) |     |       |     |     |       |  |  |  |
|------------|--------------------------------------------|-----|-------|-----|-----|-------|--|--|--|
|            | QPSK<br>Strong                             |     |       |     |     |       |  |  |  |
| RSL@ BER = | $RSL@ BER = 10^{-6} (dBm)$                 |     |       |     |     |       |  |  |  |
| @32 GHz    | -81.5                                      | -80 | -74.5 | -73 | -70 | -66.5 |  |  |  |

Table 6-112 Typical receiver sensitivity of the Integrated IP microwave XXIII (IS6-mode, XPIC enabled)

Table 6-113 Typical receiver sensitivity of the Integrated IP microwave XXIV (IS6-mode, XPIC enabled)

| Item                       | Performance (Channel Spacing: 112 MHz) |       |       |  |  |
|----------------------------|----------------------------------------|-------|-------|--|--|
|                            | 128QAM 256QAM 512QAM                   |       |       |  |  |
| RSL@ BER = $10^{-6}$ (dBm) |                                        |       |       |  |  |
| @32 GHz                    | -63.5                                  | -60.5 | -57.5 |  |  |

## 6.1.4 Distortion Sensitivity


The distortion sensitivity reflects the anti-multipath fading capability of the OptiX RTN 980.

The notch depth of the OptiX RTN 980 meets the requirements described in ETSI EN 302217-2-1. **Table 6-114** describes the anti-multipath fading capability of the OptiX RTN 980 in STM-1/128QAM microwave working modes.

**Table 6-114** Anti-multipath fading capability

| Item                                  | Performance    |
|---------------------------------------|----------------|
| STM-1/128QAM W-curve                  | See Figure 6-2 |
| STM-1/128QAM dispersion fading margin | 51 dB          |

#### Figure 6-2 W-curve



## 6.1.5 Transceiver Performance

The performance of the transceiver includes the nominal maximum/minimum transmit power, nominal maximum receive power, and frequency stability.

#### ΠΝΟΤΕ

When cooperated with ISV3/ISM6 boards, ODUs may support QPSK Strong, 16QAM Strong, 512QAM Light, and 1024QAM Light working modes. Strong and light indicate FEC coding strength. Strong FEC improves receiver sensitivity by increasing error-correcting codes. Light FEC expands service capacity by reducing error-correcting codes. For detail, refer to **6.1.1.6 Microwave Work Modes (ISV3 board)**.

## **Transceiver Performance (High Power ODU)**

#### 

- In normal mode, XMC ODUs work with IF1, IFU2, IFX2, ISU2, or ISX2 boards, or ISV3 boards that work in IS2 mode.
- In IS3 mode, XMC ODUs work with ISV3/ISM6 boards that work in IS3 mode.
- In IS6 mode, XMC ODUs work with ISM6 boards that work in IS6 mode.

#### Table 6-115 Transceiver performance (XMC-2 ODU in normal mode)

| Item                                                                                                                                                                                                                                                                                                                                                                                  | Performance |       |       |       |        |        |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|-------|-------|--------|--------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                       | QPSK        | 16QAM | 32QAM | 64QAM | 128QAM | 256QAM |  |  |
| Nominal maximum transmit power (dBm)<br>NOTE<br>For 7/8 GHz XMC-2 ODUs, when the channel spacing is 40 MHz or 56 MHz and the same modulation scheme is applied, the<br>nominal maximum transmit power of an XMC-2 ODU of the normal version is less than the value in the table by 3 dB, whereas<br>that of an XMC-2 ODU of the XMC-2E version is the same as the value in the table. |             |       |       |       |        |        |  |  |
| 6 GHz                                                                                                                                                                                                                                                                                                                                                                                 | 30          | 28    | 26.5  | 25    | 25     | 23     |  |  |
| 7 GHz<br>(Normal)                                                                                                                                                                                                                                                                                                                                                                     | 26.5        | 25.5  | 25.5  | 25    | 25     | 23     |  |  |
| 8 GHz<br>(Normal)                                                                                                                                                                                                                                                                                                                                                                     | 26.5        | 25.5  | 25.5  | 25    | 25     | 23     |  |  |
| 7 GHz<br>(XMC-2E)                                                                                                                                                                                                                                                                                                                                                                     | 30          | 26    | 26    | 25    | 25     | 23     |  |  |
| 8 GHz<br>(XMC-2E)                                                                                                                                                                                                                                                                                                                                                                     | 30          | 26    | 26    | 25    | 25     | 23     |  |  |
| 10 GHz                                                                                                                                                                                                                                                                                                                                                                                | 26.5        | 23.5  | 23.5  | 21.5  | 21.5   | 19.5   |  |  |
| 10.5 GHz                                                                                                                                                                                                                                                                                                                                                                              | 24.5        | 22.5  | 22.5  | 20.5  | 20.5   | 18.5   |  |  |
| 11 GHz                                                                                                                                                                                                                                                                                                                                                                                | 26          | 24    | 24    | 22    | 22     | 20     |  |  |
| 13 GHz                                                                                                                                                                                                                                                                                                                                                                                | 25          | 22    | 22    | 20.5  | 20.5   | 17.5   |  |  |

| Item              |              |             | Perfo | rmance |        |        |
|-------------------|--------------|-------------|-------|--------|--------|--------|
|                   | QPSK         | 16QAM       | 32QAM | 64QAM  | 128QAM | 256QAM |
| 15 GHz            | 25           | 22          | 22    | 20.5   | 20.5   | 18.5   |
| 18 GHz            | 24           | 21          | 21    | 19.5   | 19.5   | 16.5   |
| 23 GHz            | 24           | 21          | 21    | 19.5   | 19.5   | 17.5   |
| 26 GHz            | 22           | 20          | 20    | 18     | 18     | 16     |
| 28 GHz            | 25           | 22          | 21.5  | 19     | 19     | 17     |
| 32 GHz            | 23           | 21          | 19.5  | 17     | 17     | 15     |
| 38 GHz            | 20           | 17          | 17    | 16     | 16     | 14     |
| 42 GHz            | 16           | 12          | 12    | 11     | 11     | 9      |
| Nominal mini      | mum transmit | power (dBm) | ·     | ·      | ·      | ·      |
| 6 GHz             | 0            |             |       |        |        |        |
| 7 GHz<br>(Normal) | 6.5          |             |       |        |        |        |
| 8 GHz<br>(Normal) | 6.5          |             |       |        |        |        |
| 7 GHz<br>(XMC-2E) | 6.5          |             |       |        |        |        |
| 8 GHz<br>(XMC-2E) | 6.5          |             |       |        |        |        |
| 10 GHz            | 0            |             |       |        |        |        |
| 10.5 GHz          | 0            |             |       |        |        |        |
| 11 GHz            | 0            |             |       |        |        |        |
| 13 GHz            | 5            |             |       |        |        |        |
| 15 GHz            | 5            |             |       |        |        |        |
| 18 GHz            | 4            |             |       |        |        |        |
| 23 GHz            | 4            |             |       |        |        |        |
| 26 GHz            | 0            |             |       |        |        |        |
| 28 GHz            | -5           |             |       |        |        |        |
| 32 GHz            | -5           |             |       |        |        |        |
| 38 GHz            | 0            |             |       |        |        |        |

| Item                                            |        | Performance |       |       |                                          |                                          |  |  |  |  |  |
|-------------------------------------------------|--------|-------------|-------|-------|------------------------------------------|------------------------------------------|--|--|--|--|--|
|                                                 | QPSK   | 16QAM       | 32QAM | 64QAM | 128QAM                                   | 256QAM                                   |  |  |  |  |  |
| 42 GHz                                          | -5     |             |       |       |                                          |                                          |  |  |  |  |  |
| Nominal<br>maximum<br>receive<br>power<br>(dBm) | -20    |             |       |       | -20 (6 GHz to<br>38 GHz)<br>-23 (42 GHz) | -20 (6 GHz to<br>38 GHz)<br>-25 (42 GHz) |  |  |  |  |  |
| Frequency<br>stability<br>(ppm)                 | ±5 ppm |             |       |       |                                          |                                          |  |  |  |  |  |

#### Table 6-116 Transceiver performance (XMC-2 ODU in IS3 mode)

| Item                                                                                                                                                                                                                                                                                                                                                                                  |      |                            |           | P    | erformanc | ce         |            |             |             |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------|-----------|------|-----------|------------|------------|-------------|-------------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                       | QPSK | 16QA<br>M                  | 32QA<br>M |      |           | 256QA<br>M | 512QA<br>M | 1024Q<br>AM | 2048Q<br>AM |  |  |  |
| Nominal maximum transmit power (dBm)<br>NOTE<br>For 7/8 GHz XMC-2 ODUs, when the channel spacing is 40 MHz or 56 MHz and the same modulation scheme is applied, the<br>nominal maximum transmit power of an XMC-2 ODU of the normal version is less than the value in the table by 3 dB, whereas<br>that of an XMC-2 ODU of the XMC-2E version is the same as the value in the table. |      |                            |           |      |           |            |            |             |             |  |  |  |
| 6 GHz                                                                                                                                                                                                                                                                                                                                                                                 | 30   | 0 28 26.5 25 25 23 21 19 - |           |      |           |            |            |             |             |  |  |  |
| 7 GHz<br>(Normal<br>)                                                                                                                                                                                                                                                                                                                                                                 | 26.5 | 25.5                       | 25.5      | 25   | 25        | 23         | -          | -           | -           |  |  |  |
| 8 GHz<br>(Normal<br>)                                                                                                                                                                                                                                                                                                                                                                 | 26.5 | 25.5                       | 25.5      | 25   | 25        | 23         | -          | -           | -           |  |  |  |
| 7 GHz<br>(XMC-2<br>E)                                                                                                                                                                                                                                                                                                                                                                 | 30   | 28                         | 28        | 26   | 26        | 24         | 24         | 23          | 21          |  |  |  |
| 8 GHz<br>(XMC-2<br>E)                                                                                                                                                                                                                                                                                                                                                                 | 30   | 28                         | 28        | 26   | 26        | 24         | 24         | 23          | 21          |  |  |  |
| 10 GHz                                                                                                                                                                                                                                                                                                                                                                                | 26.5 | 24.5                       | 24.5      | 23.5 | 23.5      | 21.5       | 21.5       | 19.5        | -           |  |  |  |
| 10.5<br>GHz                                                                                                                                                                                                                                                                                                                                                                           | 24.5 | 23.5                       | 23.5      | 22.5 | 22.5      | 20.5       | 20.5       | 18.5        | -           |  |  |  |

| Item                  |           |                                                                                   |           | F         | erforman   | ce         |            |             |             |  |  |  |
|-----------------------|-----------|-----------------------------------------------------------------------------------|-----------|-----------|------------|------------|------------|-------------|-------------|--|--|--|
|                       | QPSK      | 16QA<br>M                                                                         | 32QA<br>M | 64QA<br>M | 128QA<br>M | 256QA<br>M | 512QA<br>M | 1024Q<br>AM | 2048Q<br>AM |  |  |  |
| 11 GHz                | 26        | 25                                                                                | 25        | 24        | 24         | 22         | 22         | 20          | -           |  |  |  |
| 13 GHz                | 25        | 24                                                                                | 24        | 23        | 23         | 21         | 20         | 18          | 16          |  |  |  |
| 15 GHz                | 25        | 24                                                                                | 24        | 23        | 23         | 21         | 21         | 19          | 17          |  |  |  |
| 18 GHz                | 24        | 24         23         23         22         22         20         19         17   |           |           |            |            |            |             |             |  |  |  |
| 23 GHz                | 24        | 23                                                                                | 23        | 22        | 22         | 19.5       | 19.5       | 18          | 16          |  |  |  |
| 26 GHz                | 22        | 21                                                                                | 21        | 20        | 20         | 17         | 17         | 15          | -           |  |  |  |
| 28 GHz                | 25        | 25         22         21.5         19         19         17         15         13 |           |           |            |            |            |             |             |  |  |  |
| 32 GHz                | 23        | 21                                                                                | 19.5      | 17        | 17         | 15         | 13         | 11          | -           |  |  |  |
| 38 GHz                | 20        | 18                                                                                | 18        | 17        | 17         | 16         | 15         | 13          | 11          |  |  |  |
| 42 GHz                | 16        | 14                                                                                | 14        | 13        | 13         | 11         | 10         | 8           | -           |  |  |  |
| Nominal               | minimum 1 | ninimum transmit power (dBm)                                                      |           |           |            |            |            |             |             |  |  |  |
| 6 GHz                 | 0         |                                                                                   |           |           |            |            |            |             | -           |  |  |  |
| 7 GHz                 | 6.5       |                                                                                   |           |           |            |            | -          |             |             |  |  |  |
| (Normal<br>)          |           |                                                                                   |           |           |            |            |            |             |             |  |  |  |
| 8 GHz<br>(Normal<br>) | 6.5       |                                                                                   |           |           |            |            | -          |             |             |  |  |  |
| 7 GHz<br>(XMC-2<br>E) | 6.5       |                                                                                   |           |           |            |            |            |             |             |  |  |  |
| 8 GHz<br>(XMC-2<br>E) | 6.5       |                                                                                   |           |           |            |            |            |             |             |  |  |  |
| 10 GHz                | 0         |                                                                                   |           |           |            |            |            |             | -           |  |  |  |
| 10.5<br>GHz           | 0         | ) -                                                                               |           |           |            |            |            |             |             |  |  |  |
| 11 GHz                | 0         |                                                                                   |           |           |            |            |            |             | -           |  |  |  |
| 13 GHz                | 5         |                                                                                   |           |           |            |            |            |             |             |  |  |  |
| 15 GHz                | 5         |                                                                                   |           |           |            |            |            |             |             |  |  |  |
| 18 GHz                | 4         |                                                                                   |           |           |            |            |            |             |             |  |  |  |

| Item                                                    |        |           |           | Р                               | erformand  | ce                                             |            |             |             |  |  |
|---------------------------------------------------------|--------|-----------|-----------|---------------------------------|------------|------------------------------------------------|------------|-------------|-------------|--|--|
|                                                         | QPSK   | 16QA<br>M | 32QA<br>M | 64QA<br>M                       | 128QA<br>M | 256QA<br>M                                     | 512QA<br>M | 1024Q<br>AM | 2048Q<br>AM |  |  |
| 23 GHz                                                  | 4      |           |           |                                 |            | •                                              |            |             |             |  |  |
| 26 GHz                                                  | 0      |           |           |                                 |            |                                                |            |             | -           |  |  |
| 28 GHz                                                  | -5     |           |           |                                 |            |                                                |            |             |             |  |  |
| 32 GHz                                                  | -5     |           |           |                                 |            |                                                |            |             | -           |  |  |
| 38 GHz                                                  | 0      |           |           |                                 |            |                                                |            |             |             |  |  |
| 42 GHz                                                  | -5     |           |           |                                 |            |                                                |            |             | -           |  |  |
| Nomina<br>l<br>maximu<br>m<br>receive<br>power<br>(dBm) | -20    |           |           | -20 (6 GH<br>GHz)<br>-23 (42 GI |            | -20 (6<br>GHz to<br>38 GHz)<br>-25 (42<br>GHz) | -25        |             | -28         |  |  |
| Freque<br>ncy<br>stability<br>(ppm)                     | ±5 ppm |           |           |                                 |            |                                                |            |             |             |  |  |

For 13/15/18/23/38 GHz XMC-2 ODUs, only those manufactured since November 2014 support 2048QAM. A 38 GHz XMC-2 ODU supports 2048QAM only when it operates at the normal temperature and when the matching IF cable is longer than 60 m.

Table 6-117 Transceiver performance (XMC-2H ODU in IS3 mode)

| Item    | Performance                                                         |                                                                                                 |      |      |      |      |      |      |      |  |  |  |
|---------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|--|--|--|
|         | QPSK                                                                | 16QA<br>M                                                                                       |      |      |      |      |      |      |      |  |  |  |
| Nominal | lominal maximum transmit power (dBm)                                |                                                                                                 |      |      |      |      |      |      |      |  |  |  |
| 6 GHz   | 30.5                                                                | 30.5         30.5         30.5         30.5         28.5         28.5         27.5         25.5 |      |      |      |      |      |      |      |  |  |  |
| 7 GHz   | 30.5                                                                | 30.5                                                                                            | 30.5 | 30.5 | 30.5 | 28.5 | 28.5 | 27.5 | 25.5 |  |  |  |
| 8 GHz   | 30.5                                                                | 30.5                                                                                            | 30.5 | 30.5 | 30.5 | 28.5 | 28.5 | 27.5 | 25.5 |  |  |  |
| 11 GHz  | 28.5     28.5     28.5     28.5     26.5     26.5     25.5     23.5 |                                                                                                 |      |      |      |      |      |      |      |  |  |  |
| Nominal | Nominal minimum transmit power (dBm)                                |                                                                                                 |      |      |      |      |      |      |      |  |  |  |

| Item                                                    |       |           |           | Р         | erformanc  | e          |            |             |             |
|---------------------------------------------------------|-------|-----------|-----------|-----------|------------|------------|------------|-------------|-------------|
|                                                         | QPSK  | 16QA<br>M | 32QA<br>M | 64QA<br>M | 128QA<br>M | 256QA<br>M | 512QA<br>M | 1024Q<br>AM | 2048Q<br>AM |
| 6 GHz                                                   | 5     |           |           |           |            |            |            |             |             |
| 7 GHz                                                   | 5     |           |           |           |            |            |            |             |             |
| 8 GHz                                                   | 5     |           |           |           |            |            |            |             |             |
| 11 GHz                                                  | 5     |           |           |           |            |            |            |             |             |
| Nomina<br>l<br>maximu<br>m<br>receive<br>power<br>(dBm) | -20   |           |           |           |            |            | -25        |             | -28         |
| Freque<br>ncy<br>stability<br>(ppm)                     | ±5ppm |           |           |           |            |            |            |             |             |

| Table 6-118 Transceiver performance | (XMC-3 ODU in IS3 mode) |
|-------------------------------------|-------------------------|
|-------------------------------------|-------------------------|

| Item                                 |                                      |           |           | F         | erformanc  | e          |            |             |             |  |  |  |  |
|--------------------------------------|--------------------------------------|-----------|-----------|-----------|------------|------------|------------|-------------|-------------|--|--|--|--|
|                                      | QPSK                                 | 16QA<br>M | 32QA<br>M | 64QA<br>M | 128QA<br>M | 256QA<br>M | 512QA<br>M | 1024Q<br>AM | 2048Q<br>AM |  |  |  |  |
| Nominal maximum transmit power (dBm) |                                      |           |           |           |            |            |            |             |             |  |  |  |  |
| 13GHz 25 24 24 23 23 21 20 18 18     |                                      |           |           |           |            |            |            |             |             |  |  |  |  |
| 15GHz                                | 25                                   | 24        | 24        | 23        | 23         | 21         | 21         | 19          | 19          |  |  |  |  |
| 18GHz                                | 24                                   | 23        | 23        | 22        | 22         | 20         | 19         | 17          | 17          |  |  |  |  |
| 23GHz                                | 24                                   | 23        | 23        | 22        | 22         | 19.5       | 19.5       | 18          | 18          |  |  |  |  |
| 26GHz                                | 22                                   | 21        | 21        | 19        | 19         | 17         | 17         | 15          | 15          |  |  |  |  |
| 28GHz                                | 22                                   | 20        | 20        | 19        | 19         | 17         | 16         | 15          | 15          |  |  |  |  |
| 32GHz                                | 22                                   | 20        | 20        | 19        | 19         | 17         | 16         | 15          | 15          |  |  |  |  |
| 38GHz                                | 20                                   | 18        | 18        | 17        | 17         | 16         | 15         | 13          | 13          |  |  |  |  |
| Nominal                              | Nominal minimum transmit power (dBm) |           |           |           |            |            |            |             |             |  |  |  |  |
| 13GHz                                | -5                                   |           |           |           |            |            |            |             |             |  |  |  |  |

| Item                                                    |       |           |           | Р         | erformanc  | e          |            |             |             |
|---------------------------------------------------------|-------|-----------|-----------|-----------|------------|------------|------------|-------------|-------------|
|                                                         | QPSK  | 16QA<br>M | 32QA<br>M | 64QA<br>M | 128QA<br>M | 256QA<br>M | 512QA<br>M | 1024Q<br>AM | 2048Q<br>AM |
| 15GHz                                                   | -5    |           |           |           |            |            |            |             |             |
| 18GHz                                                   | -7    |           |           |           |            |            |            |             |             |
| 23GHz                                                   | -7    |           |           |           |            |            |            |             |             |
| 26GHz                                                   | -10   |           |           |           |            |            |            |             |             |
| 28GHz                                                   | -6    |           |           |           |            |            |            |             |             |
| 32GHz                                                   | -10   |           |           |           |            |            |            |             | 3           |
| 38GHz                                                   | -6    |           |           |           |            |            |            |             | 0           |
| Nomina<br>l<br>maximu<br>m<br>receive<br>power<br>(dBm) | -20   |           |           |           |            |            | -25        |             | -30         |
| Freque<br>ncy<br>stability<br>(ppm)                     | ±5ppm |           |           |           |            |            |            |             |             |

#### Table 6-119 Transceiver performance (XMC-3 ODU in IS6 mode)

| Item    |         | Performance |            |           |            |            |            |             |             |             |  |  |
|---------|---------|-------------|------------|-----------|------------|------------|------------|-------------|-------------|-------------|--|--|
|         | QPSK    | 16QA<br>M   | 32QA<br>M  | 64QA<br>M | 128QA<br>M | 256QA<br>M | 512QA<br>M | 1024Q<br>AM | 2048Q<br>AM | 4096Q<br>AM |  |  |
| Nominal | maximun | n transmi   | t power (d | Bm)       | 2          | 2          | -          |             |             |             |  |  |
| 13GHz   | 25      | 24          | 24         | 23        | 23         | 21         | 20         | 18          | 18          | 17          |  |  |
| 15GHz   | 25      | 24          | 24         | 23        | 23         | 21         | 21         | 19          | 19          | 18          |  |  |
| 18GHz   | 24      | 23          | 23         | 22        | 22         | 20         | 19         | 17          | 17          | 16          |  |  |
| 23GHz   | 24      | 23          | 23         | 22        | 22         | 19.5       | 19.5       | 18          | 18          | 17          |  |  |
| 26GHz   | 22      | 21          | 21         | 19        | 19         | 17         | 17         | 15          | 15          | 14          |  |  |
| 28GHz   | 22      | 20          | 20         | 19        | 19         | 17         | 16         | 15          | 15          | -           |  |  |
| 32GHz   | 22      | 20          | 20         | 19        | 19         | 17         | 16         | 15          | 15          | -           |  |  |

| Item                                                    |         |            |           |           | Perfor     | mance      |            |             |             |                                    |
|---------------------------------------------------------|---------|------------|-----------|-----------|------------|------------|------------|-------------|-------------|------------------------------------|
|                                                         | QPSK    | 16QA<br>M  | 32QA<br>M | 64QA<br>M | 128QA<br>M | 256QA<br>M | 512QA<br>M | 1024Q<br>AM | 2048Q<br>AM | 4096Q<br>AM                        |
| 32GHz<br>(112M<br>Hz)                                   | 22      | 18         | 18        | 17        | 17         | 16         | 14         | -           | -           | -                                  |
| 38GHz                                                   | 20      | 18         | 18        | 17        | 17         | 16         | 15         | 13          | 13          | -                                  |
| Nominal                                                 | minimun | n transmit | power (d  | Bm)       | •          | 2          | •          | 2           |             |                                    |
| 13GHz                                                   | -5      |            |           |           |            |            |            |             |             |                                    |
| 15GHz                                                   | -5      |            |           |           |            |            |            |             |             |                                    |
| 18GHz                                                   | -7      |            |           |           |            |            |            |             |             |                                    |
| 23GHz                                                   | -7      |            |           |           |            |            |            |             |             |                                    |
| 26GHz                                                   | -10     |            |           |           |            |            |            |             |             |                                    |
| 28GHz                                                   | -6      |            |           |           |            |            |            |             | 1           | -                                  |
| 32GHz                                                   | -10     |            |           |           |            |            |            |             | 3           | -                                  |
| 32GHz<br>(112M<br>Hz)                                   | -2      |            |           |           |            |            |            | -           |             |                                    |
| 38GHz                                                   | -6      |            |           |           |            |            |            |             | 0           | -                                  |
| Nomin<br>al<br>maxim<br>um<br>receive<br>power<br>(dBm) | -20     |            |           |           |            |            | -25        |             | -30         | -35<br>(13GH<br>z to<br>26GHz<br>) |
| Freque<br>ncy<br>stabilit<br>y<br>(ppm)                 | ±5ppm   |            |           |           |            |            |            |             |             |                                    |

| Item          | Performanc       | Performance     |                  |        |  |  |
|---------------|------------------|-----------------|------------------|--------|--|--|
|               | QPSK             | 16QAM/<br>32QAM | 64QAM/<br>128QAM | 256QAM |  |  |
| Nominal maxim | num transmit pov | wer (dBm)       |                  |        |  |  |
| @6 GHz        | 30               | 26              | 24               | 22     |  |  |
| @7 GHz        | 30               | 28              | 25               | 23     |  |  |
| @8 GHz        | 30               | 28              | 25               | 23     |  |  |
| @10 GHz       | 26.5             | 22.5            | 20.5             | 18.5   |  |  |
| @10.5 GHz     | 24               | 20.5            | 18               | 16     |  |  |
| @11 GHz       | 28               | 26              | 22               | 20     |  |  |
| @13 GHz       | 26               | 24              | 20               | 18     |  |  |
| @15 GHz       | 26               | 24              | 20               | 18     |  |  |
| @18 GHz       | 25.5             | 23              | 19               | 17     |  |  |
| @23 GHz       | 25               | 23              | 19               | 17     |  |  |
| @26 GHz       | 25               | 22              | 19               | 17     |  |  |
| @28GHz        | 25               | 22              | 17               | 15     |  |  |
| @32 GHz       | 23               | 21              | 17               | 15     |  |  |
| @38 GHz       | 23               | 20              | 17               | 15     |  |  |
| Nominal minim | um transmit pov  | ver (dBm)       | ·                |        |  |  |
| @6 GHz        | 9                |                 |                  |        |  |  |
| @7 GHz        | 9                |                 |                  |        |  |  |
| @8 GHz        | 9                |                 |                  |        |  |  |
| @10 GHz       | 2                |                 |                  |        |  |  |
| @10.5 GHz     | 0                |                 |                  |        |  |  |
| @11 GHz       | 6                | 6               |                  |        |  |  |
| @13 GHz       | 3                | 3               |                  |        |  |  |
| @15 GHz       | 3                | 3               |                  |        |  |  |
| @18 GHz       | 2                | 2               |                  |        |  |  |
| @23 GHz       | 2                | 2               |                  |        |  |  |
| @26 GHz       | 2                |                 |                  |        |  |  |

| Item                                         | Performance |                 |                  |        |
|----------------------------------------------|-------------|-----------------|------------------|--------|
|                                              | QPSK        | 16QAM/<br>32QAM | 64QAM/<br>128QAM | 256QAM |
| @28GHz                                       | 2           |                 |                  |        |
| @32 GHz                                      | 1           |                 |                  |        |
| @38 GHz                                      | 1           |                 |                  |        |
| Nominal<br>maximum<br>receive power<br>(dBm) | -20         |                 |                  | -25    |
| Frequency<br>stability (ppm)                 | ±5          |                 |                  |        |

#### Table 6-121 Transceiver Performance (HPA ODU)

| Item           | Performance                  |                            |                  |        |  |
|----------------|------------------------------|----------------------------|------------------|--------|--|
|                | QPSK                         | 16QAM/<br>32QAM            | 64QAM/<br>128QAM | 256QAM |  |
| Nominal maximu | m transmit power (           | (dBm)                      |                  |        |  |
| @6 GHz         | 30                           | 28 (16QAM)<br>26.5 (32QAM) | 25               | 23     |  |
| @7 GHz         | 30                           | 28                         | 25               | 23     |  |
| @8 GHz         | 30                           | 28                         | 25               | 23     |  |
| @11 GHz        | 28                           | 26                         | 22               | 20     |  |
| @13 GHz        | 26                           | 24                         | 20               | 18     |  |
| @15 GHz        | 26                           | 24                         | 20               | 18     |  |
| @18 GHz        | 25.5                         | 23                         | 19               | 17     |  |
| @23 GHz        | 25                           | 23                         | 19               | 17     |  |
| Nominal minimu | minimum transmit power (dBm) |                            |                  |        |  |
| @6 GHz         | 9                            |                            |                  |        |  |
| @7 GHz         | 9                            |                            |                  |        |  |
| @8 GHz         | 9                            |                            |                  |        |  |
| @11 GHz        | 6                            | 6                          |                  |        |  |

| Item                                         | Performance |                 |                  |        |
|----------------------------------------------|-------------|-----------------|------------------|--------|
|                                              | QPSK        | 16QAM/<br>32QAM | 64QAM/<br>128QAM | 256QAM |
| @13 GHz                                      | 3           |                 |                  |        |
| @15 GHz                                      | 3           |                 |                  |        |
| @18 GHz                                      | 2           |                 |                  |        |
| @23 GHz                                      | 2           |                 |                  |        |
| Nominal<br>maximum<br>receive power<br>(dBm) | -20         |                 |                  | -25    |
| Frequency<br>stability (ppm)                 | ±5          |                 |                  | •      |

## Transceiver Performance (Standard Power ODU)

| Table 6-122 Transceiver Performance (SP ODU) |
|----------------------------------------------|
|----------------------------------------------|

| Item                                          | Performance        |                 |                  |        |
|-----------------------------------------------|--------------------|-----------------|------------------|--------|
|                                               | QPSK               | 16QAM/<br>32QAM | 64QAM/<br>128QAM | 256QAM |
| Nominal maximu                                | m transmit power ( | (dBm)           |                  |        |
| @7 GHz                                        | 27                 | 22.5            | 18.5             | 16.5   |
| @8 GHz                                        | 27                 | 22.5            | 18.5             | 16.5   |
| @11 GHz                                       | 26                 | 21.5            | 17.5             | 15.5   |
| @13 GHz                                       | 26                 | 21.5            | 17.5             | 15.5   |
| @15 GHz                                       | 26                 | 21.5            | 17.5             | 15.5   |
| @18 GHz                                       | 25.5               | 21.5            | 17.5             | 15.5   |
| @23 GHz                                       | 24                 | 20.5            | 16.5             | 14.5   |
| @26 GHz                                       | 23.5               | 19.5            | 15.5             | 13.5   |
| @38 GHz                                       | 22                 | 17.5            | 13.5             | 11.5   |
| Nominal<br>minimum<br>transmit power<br>(dBm) | -6                 |                 |                  |        |

| Item                                         | Performance |                 |                  |        |
|----------------------------------------------|-------------|-----------------|------------------|--------|
|                                              | QPSK        | 16QAM/<br>32QAM | 64QAM/<br>128QAM | 256QAM |
| Nominal<br>maximum<br>receive power<br>(dBm) | -20         |                 |                  | -25    |
| Frequency<br>stability (ppm)                 | ±5          |                 |                  |        |

#### Table 6-123 Transceiver performance (SPA ODU)

| Item                                          | Performance                          |                 |                  |        |  |  |
|-----------------------------------------------|--------------------------------------|-----------------|------------------|--------|--|--|
|                                               | QPSK                                 | 16QAM/<br>32QAM | 64QAM/<br>128QAM | 256QAM |  |  |
| Nominal maximu                                | Nominal maximum transmit power (dBm) |                 |                  |        |  |  |
| @6 GHz                                        | 26.5                                 | 24              | 23               | 21     |  |  |
| @7 GHz                                        | 25.5                                 | 21.5            | 20               | 18     |  |  |
| @8 GHz                                        | 25.5                                 | 21.5            | 20               | 18     |  |  |
| @11 GHz                                       | 24.5                                 | 20.5            | 18               | 16     |  |  |
| @13 GHz                                       | 24.5                                 | 20              | 18               | 16     |  |  |
| @15 GHz                                       | 24.5                                 | 20              | 18               | 16     |  |  |
| @18 GHz                                       | 22.5                                 | 19              | 17               | 15     |  |  |
| @23 GHz                                       | 22.5                                 | 19              | 16               | 14     |  |  |
| Nominal<br>minimum<br>transmit power<br>(dBm) | 0                                    |                 |                  |        |  |  |
| Nominal<br>maximum<br>receive power<br>(dBm)  | -20                                  |                 |                  | -25    |  |  |
| Frequency<br>stability (ppm)                  | ±5                                   |                 |                  |        |  |  |

## Transceiver Performance (Low Capacity ODU)

| Item                                    | Performance                          |       |  |  |  |
|-----------------------------------------|--------------------------------------|-------|--|--|--|
|                                         | QPSK                                 | 16QAM |  |  |  |
| Nominal maximum transmit p              | Nominal maximum transmit power (dBm) |       |  |  |  |
| @7 GHz                                  | 27                                   | 21    |  |  |  |
| @8 GHz                                  | 27                                   | 21    |  |  |  |
| @11 GHz                                 | 25                                   | 19    |  |  |  |
| @13 GHz                                 | 25                                   | 19    |  |  |  |
| @15 GHz                                 | 23.5                                 | 17.5  |  |  |  |
| @18 GHz                                 | 23                                   | 17    |  |  |  |
| @23 GHz                                 | 23                                   | 17    |  |  |  |
| Nominal minimum transmit<br>power (dBm) | 0                                    |       |  |  |  |
| Nominal maximum receive<br>power (dBm)  | -20                                  |       |  |  |  |
| Frequency stability (ppm)               | ±5                                   |       |  |  |  |

 Table 6-124 Transceiver performance (LP ODU)

#### 

For ODUs operating at a T/R spacing that is not an integer, for example, 311.32 MHz, 151.614 MHz, or 252.04 MHz, the frequency stability is not  $\pm 5$  ppm but still meets requirements specified by the ETSI.

# 6.1.6 IF Performance

The IF performance includes the performance of the IF signal and the performance of the ODU O&M signal.

| Item           |                                          | Performance |
|----------------|------------------------------------------|-------------|
| IF signal      | Transmit frequency of the IF board (MHz) | 350         |
|                | Receive frequency of the IF board (MHz)  | 140         |
| ODU O&M signal | Modulation scheme                        | ASK         |
|                | Transmit frequency of the IF board (MHz) | 5.5         |
|                | Receive frequency of the IF board (MHz)  | 10          |

 Table 6-125 IF performance

| Item                      | Performance |
|---------------------------|-------------|
| Interface impedance (ohm) | 50          |

## 6.1.7 Baseband Signal Processing Performance of the Modem

The baseband signal processing performance of the modem indicates the FEC coding scheme and the performance of the baseband time domain adaptive equalizer.

| Item                                                       | Performance                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Encoding mode                                              | <ul> <li>IF1 <ul> <li>Reed-Solomon (RS) encoding for PDH signals</li> <li>Trellis-coded modulation (TCM) and RS two-level encoding for SDH signals</li> </ul> </li> <li>IFU2/IFX2/ISU2/ISX2/ISV3/ISM6 <ul> <li>Low-density parity check code (LDPC) encoding.</li> </ul> </li> </ul> |
| Adaptive time-<br>domain equalizer for<br>baseband signals | Supported.                                                                                                                                                                                                                                                                           |

Table 6-126 Baseband signal processing performance of the modem

# 6.2 Predicted Equipment Reliability

Equipment reliability is measured by mean time between failures (MTBF), and predicated equipment reliability complies with the Telcordia SR-332 standard.

## 6.2.1 Predicted Component Reliability

The component reliability reflects the reliability of a single component.

**Table 6-127** provides the predicted component reliability for the Integrated IP radio equipment with typical configuration.

| Item        | Performance                         |                                 |                              |
|-------------|-------------------------------------|---------------------------------|------------------------------|
|             | IDU                                 | ODU                             |                              |
|             | 1+0 Non-Protection<br>Configuration | 1+1 Protection<br>Configuration |                              |
| MTBF (hour) | 43.83x10 <sup>4</sup>               | 69.21x10 <sup>4</sup>           | $\geq$ 48.18x10 <sup>4</sup> |

Table 6-127 Predicted component reliability

| Item         | Performance                                                |           |            |
|--------------|------------------------------------------------------------|-----------|------------|
|              | IDU                                                        | ODU       |            |
|              | 1+0 Non-Protection1+1 ProtectionConfigurationConfiguration |           |            |
| MTBF (year)  | 50.04                                                      | 79.01     | ≥55        |
| MTTR (hour)  | 1                                                          | 1         | 1          |
| Availability | 99.99977%                                                  | 99.99986% | ≥99.99979% |

## 6.2.2 Predicted Link Reliability

The link reliability reflects the equipment reliability of a microwave hop and reflects the reliability of all the involved components.

 Table 6-128 provides the predicted equipment reliability for a single Integrated IP radio hop with typical configuration.

| Item         | Performance                         |                              |  |
|--------------|-------------------------------------|------------------------------|--|
|              | 1+0 Non-Protection<br>Configuration | 1+1 Protection Configuration |  |
| MTBF (hour)  | 14.61x10 <sup>4</sup>               | 32.07x10 <sup>4</sup>        |  |
| MTBF (year)  | 16.67                               | 36.61                        |  |
| MTTR (hour)  | 1                                   | 1                            |  |
| Availability | 99.99932%                           | 99.99969%                    |  |

 Table 6-128 Predicted equipment reliability for a single hop of link

# 6.3 Interface Performance

This section describes the technical specifications of services and auxiliary interfaces.

## 6.3.1 SDH Interface Performance

The performance of the SDH optical interface is compliant with ITU-T G.957/G.825, and the performance of the electrical interface is compliant with ITU-T G.703.

## **STM-4** Optical Interface Performance

The performance of the STM-4 optical interface is compliant with ITU-T G.957. The following table provides the typical performance of the interface.

| Item                                  | Performance          |                      |                      |  |
|---------------------------------------|----------------------|----------------------|----------------------|--|
| Nominal bit rate (kbit/s)             | 622080               | 622080               |                      |  |
| Classification code                   | S-4.1                | L-4.1                | L-4.2                |  |
| Fiber type                            | Single-mode<br>fiber | Single-mode<br>fiber | Single-mode<br>fiber |  |
| Transmission distance (km)            | 15                   | 40                   | 80                   |  |
| Operating wavelength (nm)             | 1274 to 1356         | 1280 to 1335         | 1480 to 1580         |  |
| Mean launched power (dBm)             | -15 to -8            | -3 to +2             | -3 to +2             |  |
| Minimum receiver sensitivity<br>(dBm) | -28                  | -28                  | -28                  |  |
| Minimum overload (dBm)                | -8                   | -8                   | -8                   |  |
| Minimum extinction ratio (dB)         | 8.2                  | 10                   | 10                   |  |

 Table 6-129 STM-4 optical interface performance

The OptiX RTN 980 uses SFP optical modules for providing optical interfaces. You can use different types of SFP optical modules to provide optical interfaces with different classification codes and transmission distances.

#### **STM-1** Optical Interface Performance

The performance of the STM-1 optical interface is compliant with ITU-T G.957/G.825. The following table provides the typical performance of the interface.

| Item                          | Performance         |                      |                      |                      |
|-------------------------------|---------------------|----------------------|----------------------|----------------------|
| Nominal bit rate (kbit/s)     | 155520              |                      |                      |                      |
| Classification code           | Ie-1                | S-1.1                | L-1.1                | L-1.2                |
| Fiber type                    | Multi-mode<br>fiber | Single-mode<br>fiber | Single-mode<br>fiber | Single-mode<br>fiber |
| Transmission distance<br>(km) | 2                   | 15                   | 40                   | 80                   |
| Operating wavelength<br>(nm)  | 1270 to 1380        | 1261 to 1360         | 1263 to 1360         | 1480 to 1580         |
| Mean launched power<br>(dBm)  | -19 to -14          | -15 to -8            | -5 to 0              | -5 to 0              |

Table 6-130 STM-1 optical interface performance (two-fiber bidirectional)

| Item                                  | Performance |     |     |     |
|---------------------------------------|-------------|-----|-----|-----|
| Receiver minimum<br>sensitivity (dBm) | -30         | -28 | -34 | -34 |
| Minimum overload (dBm)                | -14         | -8  | -10 | -10 |
| Minimum extinction ratio (dB)         | 10          | 8.2 | 10  | 10  |

The OptiX RTN 980 uses SFP optical modules for providing optical interfaces. You can use different types of SFP optical modules to provide optical interfaces with different classification codes and transmission distances.

Table 6-131 STM-1 optical interface performance (single-fiber bidirectional)

| Item                                  | Performance                                |                                            |                                            |                                            |
|---------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|
| Nominal bit rate (kbit/s)             | 155520                                     |                                            |                                            |                                            |
| Classification code                   | S-1.1-BX-D                                 | S-1.1-BX-U                                 | L-1.1-BX-D                                 | L-1.1-BX-U                                 |
| Fiber type                            | Single-mode<br>fiber                       | Single-mode<br>fiber                       | Single-mode<br>fiber                       | Single-mode<br>fiber                       |
| Transmission distance (km)            | 15                                         | 15                                         | 40                                         | 40                                         |
| Nominal wavelength (nm)               | Tx: 1550<br>Rx: 1310                       | Tx: 1310<br>Rx: 1550                       | Tx: 1550<br>Rx: 1310                       | Tx: 1310<br>Rx: 1550                       |
| Operating wavelength<br>(nm)          | Tx: 1480 to<br>1580<br>Rx: 1260 to<br>1360 | Tx: 1260 to<br>1360<br>Rx: 1480 to<br>1580 | Tx: 1480 to<br>1580<br>Rx: 1260 to<br>1360 | Tx: 1260 to<br>1360<br>Rx: 1480 to<br>1580 |
| Mean launched power<br>(dBm)          | -15 to -8                                  | -15 to -8                                  | -5 to 0                                    | -5 to 0                                    |
| Receiver minimum<br>sensitivity (dBm) | -32                                        | -32                                        | -32                                        | -32                                        |
| Minimum overload (dBm)                | -8                                         | -8                                         | -10                                        | -10                                        |
| Minimum extinction ratio (dB)         | 8.5                                        | 8.5                                        | 10                                         | 10                                         |

#### 

The OptiX RTN 980 uses SFP optical modules for providing optical interfaces. You can use different types of SFP optical modules to provide optical interfaces with different classification codes and transmission distances.

#### **STM-1** Electrical Interface Performance

The performance of the STM-1 electrical interface is compliant with ITU-T G.703. The following table provides the typical performance of the interface.

| Item                                     | Performance           |
|------------------------------------------|-----------------------|
| Nominal bit rate (kbit/s)                | 155520                |
| Code type                                | СМІ                   |
| Wire pair in each transmission direction | One coaxial wire pair |
| Impedance (ohm)                          | 75                    |

Table 6-132 STM-1 electrical interface performance

#### ΠΝΟΤΕ

The OptiX RTN 980 uses SFP electrical modules to provide electrical interfaces.

## 6.3.2 E1 Interface Performance

The performance of the E1 interface is compliant with ITU-T G.703/G.823.

#### **E1 Interface Performance**

| Item                                        | Performance           |                           |  |
|---------------------------------------------|-----------------------|---------------------------|--|
| Nominal bit rate (kbit/s)                   | 2048                  |                           |  |
| Code pattern                                | HDB3                  |                           |  |
| Impedance (ohm)                             | 75                    | 120                       |  |
| Wire pair in each<br>transmission direction | One coaxial wire pair | One symmetrical wire pair |  |

## **6.3.3 Ethernet Interface Performance**

Ethernet interface performance complies with IEEE 802.3.

#### **GE Optical Interface Performance**

The characteristics of GE optical interfaces comply with IEEE 802.3. **Table 6-134** to **Table 6-136** provide GE optical interface performance.

Issue 02 (2015-04-30)

| Item                                  | Performance          |                     |  |
|---------------------------------------|----------------------|---------------------|--|
| Classification code                   | 1000BASE-SX (0.5 km) | 1000BASE-LX (10 km) |  |
| Nominal wavelength (nm)               | 850                  | 1310                |  |
| Nominal bit rate (Mbit/s)             | 1000                 |                     |  |
| Fiber type                            | Multi-mode           | Single-mode         |  |
| Transmission distance (km)            | 0.5                  | 10                  |  |
| Operating wavelength (nm)             | 770 to 860           | 1270 to 1355        |  |
| Average optical output<br>power (dBm) | -9 to -3             | -9 to -3            |  |
| Receiver sensitivity (dBm)            | -17                  | -20                 |  |
| Overload (dBm)                        | 0                    | -3                  |  |
| Extinction ratio (dB)                 | 9.5                  | 9.5                 |  |

**Table 6-134** GE optical interface performance(two-fiber bidirectional, short-distance transmission)

 Table 6-135 GE optical interface performance (two-fiber bidirectional, long-haul transmission)

| Item                                  | Performance            |                        |                        |  |
|---------------------------------------|------------------------|------------------------|------------------------|--|
| Classification code                   | 1000BASE-VX (40<br>km) | 1000BASE-VX (40<br>km) | 1000BASE-ZX (80<br>km) |  |
| Nominal wavelength (nm)               | 1310                   | 1550                   | 1550                   |  |
| Nominal bit rate (Mbit/s)             | 1000                   | 1000                   | 1000                   |  |
| Fiber type                            | Single-mode            | Single-mode            | Single-mode            |  |
| Transmission distance (km)            | 40                     | 40                     | 80                     |  |
| Operating wavelength (nm)             | 1270 to 1350           | 1480 to 1580           | 1500 to 1580           |  |
| Average optical output power<br>(dBm) | -5 to 0                | -5 to 0                | -2 to +5               |  |
| Receiver sensitivity (dBm)            | -23                    | -22                    | -22                    |  |
| Overload (dBm)                        | -3                     | -3                     | -3                     |  |
| Extinction ratio (dB)                 | 9                      | 9                      | 9                      |  |

| Item                                  | Performance                             | Performance                                |                                         |                                         |  |  |
|---------------------------------------|-----------------------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------------|--|--|
|                                       | 1000BASE-<br>BX-D (10 km)               | 1000BASE-<br>BX-U (10km)                   | 1000BASE-<br>BX-D (40 km)               | 1000BASE-<br>BX-U (40km)                |  |  |
| Nominal wavelength (nm)               | Tx: 1490<br>Rx: 1310                    | Tx: 1310<br>Rx: 1490                       | Tx: 1490<br>Rx: 1310                    | Tx: 1310<br>Rx: 1490                    |  |  |
| Nominal bit rate (Mbit/s)             | 1000                                    | 1000                                       | 1000                                    | 1000                                    |  |  |
| Fiber type                            | Single-mode                             | Single-mode                                | Single-mode                             | Single-mode                             |  |  |
| Transmission distance (km)            | 10                                      | 10                                         | 40                                      | 40                                      |  |  |
| Operating wavelength (nm)             | Tx: 1480 to 1500<br>Rx: 1260 to<br>1360 | Tx: 1260 to<br>1360<br>Rx: 1480 to<br>1500 | Tx: 1260 to 1360<br>Rx: 1480 to<br>1500 | Tx: 1480 to 1500<br>Rx: 1260 to<br>1360 |  |  |
| Average optical output power<br>(dBm) | -9 to -3                                | -9 to -3                                   | -3 to +3                                | -3 to +3                                |  |  |
| Receiver sensitivity (dBm)            | -19.5                                   | -19.5                                      | -23                                     | -23                                     |  |  |
| Overload (dBm)                        | -3                                      | -3                                         | -3                                      | -3                                      |  |  |
| Extinction ratio (dB)                 | 6                                       | 6                                          | 6                                       | 6                                       |  |  |

| Table 6-136 GE optical interface performance (single-fiber bidirectional) | <b>Table 6-136</b> | GE optical | interface | performance | (single-fiber bidirectional) | ) |
|---------------------------------------------------------------------------|--------------------|------------|-----------|-------------|------------------------------|---|
|---------------------------------------------------------------------------|--------------------|------------|-----------|-------------|------------------------------|---|

The OptiX RTN 980 uses SFP modules to provide GE optical interfaces. Users can use different types of SFP modules to provide GE optical interfaces with different classification codes and transmission distances.

#### **GE Electrical Interface Performance**

The characteristics of GE electrical interfaces comply with IEEE 802.3. The following table provides GE electrical interface performance.

| Table 6-137 GE electrical interf | ace performance |
|----------------------------------|-----------------|
|----------------------------------|-----------------|

| Item                      | Performance                                                                                                         |
|---------------------------|---------------------------------------------------------------------------------------------------------------------|
| Nominal bit rate (Mbit/s) | 10 (10BASE-T)<br>100 (100BASE-TX)<br>1000 (1000BASE-T)                                                              |
| Code pattern              | Manchester encoding signal (10BASE-T)<br>MLT-3 encoding signal (100BASE-TX)<br>4D-PAM5 encoding signal (1000BASE-T) |

| Item           | Performance |
|----------------|-------------|
| Interface type | RJ45        |

## 10GE optical interface performance

The characteristics of 10GE optical interfaces comply with IEEE 802.3. **Table 6-138** to **Table 6-139** provide 10GE optical interface performance.

| Item                                     | Performance              |                          |                          |                          |  |
|------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--|
| Classification code                      | 10GBASE-SW<br>10GBASE-SR | 10GBASE-LW<br>10GBASE-LR | 10GBASE-EW<br>10GBASE-ER | 10GBASE-ZW<br>10GBASE-ZR |  |
| Nominal<br>wavelength<br>(nm)            | 850                      | 1310                     | 1550                     | 1550                     |  |
| Fiber type                               | Multi-mode               | Single-mode              | Single-mode              | Single-mode              |  |
| Transmission<br>distance (km)            | 0.3                      | 10                       | 40                       | 80                       |  |
| Operating<br>wavelength<br>(nm)          | 840 to 860               | 1260 to 1355             | 1530 to 1565             | 1530 to 1565             |  |
| Average optical<br>output power<br>(dBm) | -1.3 to -7.3             | -8.2 to 0.5              | -4.7 to 4                | 0 to 4                   |  |
| Receiver<br>sensitivity<br>(dBm)         | -7.5                     | -12.6                    | -14.1                    | -21                      |  |
| Overload (dBm)                           | -1                       | 0.5                      | -1                       | -7                       |  |
| Extinction ratio (dB)                    | 3                        | 3.5                      | 3                        | 3                        |  |

 Table 6-138 10GE optical interface performance(two-fiber bidirectional)

| Item                                  | Performance                          | Performance                          |                                      |                                      |  |  |
|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|
| Classification code                   | 10GBASE-LW-D<br>10GBASE-LR-D         | 10GBASE-LW-U<br>10GBASE-LR-U         | 10GBASE-EW-D<br>10GBASE-ER-D         | 10GBASE-EW-U<br>10GBASE-ER-U         |  |  |
| Nominal<br>wavelength (nm)            | Tx: 1330<br>Rx: 1270                 | Tx: 1270<br>Rx: 1330                 | Tx: 1330<br>Rx: 1270                 | Tx: 1270<br>Rx: 1330                 |  |  |
| Fiber type                            | Single-mode                          | Single-mode                          | Single-mode                          | Single-mode                          |  |  |
| Transmission<br>distance (km)         | 10                                   | 10                                   | 40                                   | 40                                   |  |  |
| Operating<br>wavelength (nm)          | Tx: 1320 to 1340<br>Rx: 1260 to 1280 | Tx: 1260 to 1360<br>Rx: 1480 to 1500 | Tx: 1320 to 1340<br>Rx: 1260 to 1280 | Tx: 1260 to 1360<br>Rx: 1480 to 1500 |  |  |
| Average optical<br>output power (dBm) | -5 to 0                              | -5 to 0                              | 1 to 5                               | 1 to 5                               |  |  |
| Receiver sensitivity<br>(dBm)         | -14                                  | -14                                  | -15                                  | -15                                  |  |  |
| Overload (dBm)                        | 0.5                                  | 0.5                                  | -3                                   | -3                                   |  |  |
| Extinction ratio (dB)                 | 3.5                                  | 3.5                                  | 3.5                                  | 3.5                                  |  |  |

 Table 6-139 10GE optical interface performance (single-fiber bidirectional)

The OptiX RTN 980 uses XFP modules to provide 10GE optical interfaces. Users can use different types of XFP modules to provide 10GE optical interfaces with different classification codes and transmission distances.

## FE Optical Interface Performance

The characteristics of FE optical interfaces comply with IEEE 802.3. **Table 6-140** to **Table 6-141** provide FE optical interface performance.

Table 6-140 FE optical interface performance (two-fiber bidirectional)

| Item                       | Performance          | Performance           |                       |                       |
|----------------------------|----------------------|-----------------------|-----------------------|-----------------------|
|                            | 100BASE-FX<br>(2 km) | 100BASE-LX<br>(15 km) | 100BASE-VX<br>(40 km) | 100BASE-ZX<br>(80 km) |
| Nominal wavelength (nm)    | 1310                 | 1310                  | 1310                  | 1550                  |
| Nominal bit rate (Mbit/s)  | 100                  | 100                   | 100                   | 100                   |
| Fiber type                 | Multi-mode           | Single-mode           | Single-mode           | Single-mode           |
| Transmission distance (km) | 2                    | 15                    | 40                    | 80                    |
| Operating wavelength (nm)  | 1270 to 1380         | 1261 to 1360          | 1263 to 1360          | 1480 to 1580          |

| Item                                  | Performance          | Performance           |                       |                       |  |
|---------------------------------------|----------------------|-----------------------|-----------------------|-----------------------|--|
|                                       | 100BASE-FX<br>(2 km) | 100BASE-LX<br>(15 km) | 100BASE-VX<br>(40 km) | 100BASE-ZX<br>(80 km) |  |
| Average optical output power<br>(dBm) | -19 to -14           | -15 to -8             | -5 to 0               | -5 to 0               |  |
| Receiver sensitivity (dBm)            | -30                  | -28                   | -34                   | -34                   |  |
| Overload (dBm)                        | -14                  | -8                    | -10                   | -10                   |  |
| Extinction ratio (dB)                 | 10                   | 8.2                   | 10                    | 10.5                  |  |

 Table 6-141 FE optical interface performance (single-fiber bidirectional)

| Item                                  | Performance                             | Performance                             |                                         |                                         |  |
|---------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--|
| Classification code                   | 100BASE-BX-<br>D (15 km)                | 100BASE-BX-<br>U (15 km)                | 100BASE-BX-<br>D (40 km)                | 100BASE-BX-<br>U (40 km)                |  |
| Nominal wavelength (nm)               | Tx: 1550                                | Tx: 1310                                | Tx: 1550                                | Tx: 1310                                |  |
|                                       | Rx: 1310                                | Rx: 1550                                | Rx: 1310                                | Rx: 1550                                |  |
| Nominal bit rate (Mbit/s)             | 100                                     | 100                                     | 100                                     | 100                                     |  |
| Fiber type                            | Single-mode                             | Single-mode                             | Single-mode                             | Single-mode                             |  |
| Transmission distance (km)            | 15                                      | 15                                      | 40                                      | 40                                      |  |
| Operating wavelength (nm)             | Tx: 1480 to 1580<br>Rx: 1260 to<br>1360 | Tx: 1260 to 1360<br>Rx: 1480 to<br>1580 | Tx: 1480 to 1580<br>Rx: 1260 to<br>1360 | Tx: 1260 to 1360<br>Rx: 1480 to<br>1580 |  |
| Average optical output power<br>(dBm) | -15 to -8                               | -15 to -8                               | -5 to 0                                 | -5 to 0                                 |  |
| Receiver sensitivity (dBm)            | -32                                     | -32                                     | -32                                     | -32                                     |  |
| Overload (dBm)                        | -8                                      | -8                                      | -10                                     | -10                                     |  |
| Extinction ratio (dB)                 | 8.5                                     | 8.5                                     | 10                                      | 10                                      |  |

The OptiX RTN 980 uses SFP modules to provide FE optical interfaces. Users can use different types of SFP modules to provide FE optical interfaces with different classification codes and transmission distances.

#### **FE Electrical Interface Performance**

The characteristics of FE interfaces comply with IEEE 802.3. The following table provides FE electrical interface performance.

| Item                      | Performance                                                                 |
|---------------------------|-----------------------------------------------------------------------------|
| Nominal bit rate (Mbit/s) | 10 (10BASE-T)<br>100 (100BASE-TX)                                           |
| Code pattern              | Manchester encoding signal (10BASE-T)<br>MLT-3 encoding signal (100BASE-TX) |
| Interface type            | RJ45                                                                        |

 Table 6-142 FE electrical interface performance

## **6.3.4 Auxiliary Interface Performance**

The auxiliary interface performance includes the performance of the orderwire interface, synchronous data interface, asynchronous data interface, and wayside service interface.

#### **Orderwire Interface Performance**

| Table 6  | 5-143 | Orderwire | interface | performance |
|----------|-------|-----------|-----------|-------------|
| I HOIC O |       | 01401010  | meeriaee  | periormanee |

| Item                                        | Performance                                                                                                         |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Transmission path                           | Uses the E1 and E2 bytes in the SDH overhead or the Huawei-<br>defined byte in the overhead of the microwave frame. |
| Orderwire type                              | Addressing call                                                                                                     |
| Wire pair in each<br>transmission direction | One symmetrical wire pair                                                                                           |
| Impedance (ohm)                             | 600                                                                                                                 |

#### 

The OptiX RTN equipment also supports the orderwire group call function. For example, when OptiX RTN equipment calls 888, the orderwire group call number, all the OptiX RTN equipment orderwire phones in the orderwire subnet ring until a phone is answered. Then, a point-to-point orderwire phone call is established.

#### Synchronous Data Interface Performance

| Table 6-144 Synchronous | s data interface | performance |
|-------------------------|------------------|-------------|
|-------------------------|------------------|-------------|

| Item                      | Performance                                                                                             |
|---------------------------|---------------------------------------------------------------------------------------------------------|
| Transmission path         | Uses the F1 byte in the SDH overhead or the Huawei-defined byte in the overhead of the microwave frame. |
| Nominal bit rate (kbit/s) | 64                                                                                                      |

| Item                      | Performance                     |
|---------------------------|---------------------------------|
| Interface type            | Codirectional                   |
| Interface characteristics | Meets the ITU-T G.703 standard. |

#### Asynchronous Data Interface

 Table 6-145 Asynchronous data interface performance

| Item                      | Performance                                                                                                          |
|---------------------------|----------------------------------------------------------------------------------------------------------------------|
| Transmission path         | Uses the user-defined byte of the SDH overhead or the<br>Huawei-defined byte in the overhead of the microwave frame. |
| Nominal bit rate (kbit/s) | ≤ 19.2                                                                                                               |
| Interface characteristics | Meets the RS-232 standard.                                                                                           |

#### Wayside Service Interface Performance

| Item                      | Performance                                                           |
|---------------------------|-----------------------------------------------------------------------|
| Transmission path         | Uses the Huawei-defined bytes in the overhead of the microwave frame. |
| Nominal bit rate (kbit/s) | 2048                                                                  |
| Impedance (ohm)           | 120                                                                   |
| Interface characteristics | Meets the ITU-T G.703 standard.                                       |

# 6.4 Clock Timing and Synchronization Performance

The clock timing performance and synchronization performance of the product meet relevant ITU-T recommendations.

| Item                            | Performance                                                                               |
|---------------------------------|-------------------------------------------------------------------------------------------|
| External synchronization source | 2048 kbit/s (compliant with ITU-T G.703 §9), or 2048 kHz (compliant with ITU-T G.703 §13) |
| Frequency accuracy              | Compliant with ITU-T G.813                                                                |

Table 6-147 Clock timing and synchronization performance

| Item                                        | Performance |
|---------------------------------------------|-------------|
| Pull-in and pull-out ranges                 |             |
| Noise generation                            |             |
| Noise tolerance                             |             |
| Noise transfer                              |             |
| Transient response and holdover performance |             |

# 6.5 Integrated System Performance

Integrated system performance includes the dimensions, weight, power consumption, power supply, EMC, surge protection, safety, and environment.

#### Dimensions

#### Table 6-148 Dimensions

| Component | Dimensions (W x H x D)    |
|-----------|---------------------------|
| IDU       | 442 mm x 225 mm x 220 mm  |
| ODU       | < 280 mm x 280 mm x 92 mm |

#### Weight

#### Table 6-149 Typical weight

| Component | Typical Weight                  |
|-----------|---------------------------------|
| IDU       | 19.7 kg (8×[1+0] configuration) |
| ODU       | < 4.6 kg                        |

#### **Power Consumption**

| Radio Link<br>Form          | Service Interface and RF Configuration                               | Typical Power<br>Consumption<br>(IDU+ODU) |
|-----------------------------|----------------------------------------------------------------------|-------------------------------------------|
| Intergrade IP<br>radio link | $4xSTM-1/4 + 6xGE + 4xFE + 32xE1, 8 \times [1+0]$<br>configuration   | 470 W                                     |
|                             | (2xCSHN + 8xISU2 + 1xEM6T + 1xSP3D +<br>1xFAN + 2xPIU + 8xXMC-2 ODU) |                                           |

## **Power Supply**

| Component | Performance                                                                                         |  |
|-----------|-----------------------------------------------------------------------------------------------------|--|
| IDU       | • Compliant with ETSI EN300 132-2                                                                   |  |
|           | <ul> <li>Supports two -48 V/-60 V (-38.4 V to -72 V) DC power inputs<br/>(mutual backup)</li> </ul> |  |
|           | • Supports the 1+1 backup of the 3.3 V power units.                                                 |  |
| ODU       | • Compliant with ETSI EN300 132-2                                                                   |  |
|           | • Supports one -48 V DC power input that is provided by the IDU                                     |  |

#### **Electromagnetic Compatibility**

- Passes CE authentication.
- Compliant with ETSI EN 301 489-1.
- Compliant with ETSI EN 301 489-4.
- Compliant with CISPR 22.
- Compliant with EN 55022.

#### **Lightning Protection**

- Compliant with ITU-T K.27.
- Compliant with ETSI EN 300 253.

#### Safety

- Passes CE authentication.
- Compliant with ETSI EN 60215.
- Compliant with ETSI EN 60950.

• Compliant with IEC 60825.

#### Environment

The IDU is used in a place that has weather protection and where the temperature can be controlled. The ODU is an outdoor unit.

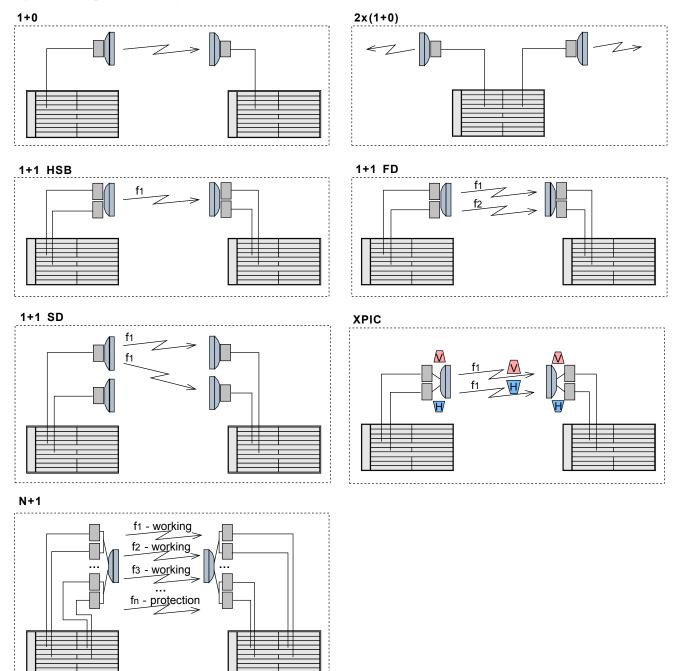
| Table 6-152 Environment performance |
|-------------------------------------|
|-------------------------------------|

| Item                            |                            | Component                                                          |                                              |  |
|---------------------------------|----------------------------|--------------------------------------------------------------------|----------------------------------------------|--|
|                                 |                            | IDU                                                                | ODU                                          |  |
| Major<br>reference<br>standards | Operation                  | Compliant with ETSI EN 300 019-1-3 class 3.2                       | Compliant with ETSI EN 300 019-1-4 class 4.1 |  |
|                                 | Transportation             | Compliant with ETSI EN 300 019-1-2 class 2.3                       |                                              |  |
|                                 | Storage                    | Compliant with ETSI EN 300 019-1-1 class 1.2                       |                                              |  |
| Air<br>temperature              | Operation                  | Long-term: -5°C to +60°C<br>Short-term: -20°C to +65°C             | -35°C to +55°C                               |  |
|                                 | Transportation and storage | -40°C to +70°C                                                     |                                              |  |
| Relative humidity               |                            | 5% to 95%                                                          | 5% to 100%                                   |  |
| Noise                           |                            | < 7.2 bel, compliant with<br>ETSI EN 300 753 class 3.2<br>attended | -                                            |  |
| Earthquake                      |                            | Compliant with Bellcore GR-63-CORE ZONE 4                          |                                              |  |
| Mechanical stress               |                            | Compliant with ETSI EN 300 019                                     |                                              |  |



This topic introduces equipment configuration in typical scenarios.

#### A.1 Typical RF Configuration Modes


This topic provides an overview of the typical configuration modes of RF links of the OptiX RTN 980.

# A.1 Typical RF Configuration Modes

This topic provides an overview of the typical configuration modes of RF links of the OptiX RTN 980.

Figure A-1 shows typical RF configuration modes. In practice, configurations are flexible.

Figure A-1 Typical RF configuration modes



# **B** Compliance Standards

B.1 ITU-R Standards The OptiX RTN 980 complies with the ITU-R standards designed for microwave equipment.

B.2 ETSI Standards The OptiX RTN 980 complies with the ETSI standards designed for microwave equipment.

B.3 IEC Standards The OptiX RTN 980 is compliant with the IEC standards related to the waveguide.

B.4 ITU-T Standards The OptiX RTN 980 complies with the ITU-T standards designed for SDH/PDH equipment.

B.5 IETF Standards The OptiX RTN 980 complies with IETF standards.

B.6 IEEE Standards The OptiX RTN 980 complies with the IEEE standards designed for Ethernet networks.

B.7 MEF Standards The OptiX RTN 980 complies with MEF standards.

B.8 AF Standards The OptiX RTN 980 complies with AF standards.

B.9 Environmental Standards

The OptiX RTN 980 complies with the environmental standards designed for split-mount microwave equipment.

# **B.1 ITU-R Standards**

The OptiX RTN 980 complies with the ITU-R standards designed for microwave equipment.

| Standard         | Description                                                                                                                                       |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| ITU-R F.383-8    | Radio-frequency channel arrangements for high capacity radio-relay systems operating in the lower 6 GHz band                                      |
| ITU-R F.384-10   | Radio-frequency channel arrangements for medium and high capacity<br>analogue or digital radio-relay systems operating in the upper 6 GHz<br>band |
| ITU-R F.385-9    | Radio-frequency channel arrangements for fixed wireless systems operating in the 7 GHz band                                                       |
| ITU-R F.386-8    | Radio-frequency channel arrangements for medium and high capacity<br>analogue or digital radio-relay systems operating in the 8 GHz band          |
| ITU-R F.387-10   | Radio-frequency channel arrangements for radio-relay systems operating in the 11 GHz band                                                         |
| ITU-R F.497-7    | Radio-frequency channel arrangements for radio-relay systems operating in the 13 GHz frequency band                                               |
| ITU-R F.595-9    | Radio-frequency channel arrangements for fixed wireless systems operating in the 18 GHz frequency band                                            |
| ITU-R F.636-3    | Radio-frequency channel arrangements for radio-relay systems operating in the 15 GHz band                                                         |
| ITU-R F.637-3    | Radio-frequency channel arrangements for radio-relay systems operating in the 23 GHz band                                                         |
| ITU-R F.747      | Radio-frequency channel arrangements for fixed wireless systems operating in the 10 GHz band                                                      |
| ITU-R F.748-4    | Radio-frequency channel arrangements for radio-relay systems operating in the 25, 26 and 28 GHz bands                                             |
| ITU-R F.749-2    | Radio-frequency arrangements for systems of the fixed service operating in the 38 GHz band                                                        |
| ITU-R F.1191-1-2 | Bandwidths and unwanted emissions of digital radio-relay systems                                                                                  |
| ITU-R F.1520-2   | Radio-frequency channel arrangements for systems in the fixed service operating in the band 31.8-33.4 GHz                                         |
| ITU-R P.530-12   | Propagation data and prediction methods required for the design of terrestrial line-of-sight systems                                              |
| ITU-R P.453-9    | The radio refractive index: its formula and refractivity data                                                                                     |

| Standard        | Description                                                                                                                                                                                                 |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ITU-R P.525-2   | Calculation of free-space attenuation                                                                                                                                                                       |
| ITU-R P.837-5   | Characteristics of precipitation for propagation modelling                                                                                                                                                  |
| ITU-R P.838-3   | Specific attenuation model for rain for use in prediction methods                                                                                                                                           |
| ITU-R F.1093    | Effects of multipath propagation on the design and operation of line-<br>of-sight digital fixed wireless systems                                                                                            |
| ITU-R F.1101    | Characteristics of digital fixed wireless systems below about 17 GHz                                                                                                                                        |
| ITU-R F.1102    | Characteristics of fixed wireless systems operating in frequency bands above about 17 GHz                                                                                                                   |
| ITU-R F.1330    | Performance limits for bringing into service the parts of international plesiochronous digital hierarchy and synchronous digital hierarchy paths and sections implemented by digital fixed wireless systems |
| ITU-R F.1605    | Error performance and availability estimation for synchronous digital hierarchy terrestrial fixed wireless systems                                                                                          |
| ITU-R F.1668    | Error performance objectives for real digital fixed wireless links used<br>in 27 500 km hypothetical reference paths and connections                                                                        |
| ITU-R F.1703    | Availability objectives for real digital fixed wireless links used in 27<br>500 km hypothetical reference paths and connections                                                                             |
| ITU-R F.592     | Vocabulary of terms for the fixed service                                                                                                                                                                   |
| ITU-R F.746     | Radio-frequency arrangements for fixed service systems                                                                                                                                                      |
| ITU-R F.750     | Architectures and functional aspects of radio-relay systems for<br>synchronous digital hierarchy (SDH)-based network                                                                                        |
| ITU-R F.751     | Transmission characteristics and performance requirements of radio-<br>relay systems for SDH-based networks                                                                                                 |
| ITU-R F.556     | Hypothetical reference digital path for radio-relay systems which may<br>form part of an integrated services digital network with a capacity<br>above the second hierarchical level                         |
| ITU-R SM.329-10 | Unwanted emissions in the spurious domain                                                                                                                                                                   |

# **B.2 ETSI Standards**

The OptiX RTN 980 complies with the ETSI standards designed for microwave equipment.

| Standard                      | Description                                                                                                                                                                                                                                                                                       |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ETSI EN 302 217-1<br>V1.3.1   | Fixed Radio Systems; Characteristics and requirements for point-to-<br>point equipment and antennas; Part 1: Overview and system-<br>independent common characteristics                                                                                                                           |
| ETSI EN 302<br>217-2-1 V1.3.1 | Fixed Radio Systems; Characteristics and requirements for point-to-<br>point equipment and antennas; Part 2-1: System-dependent<br>requirements for digital systems operating in frequency bands where<br>frequency co-ordination is applied                                                      |
| ETSI EN 302<br>217-2-2 V1.3.1 | Fixed Radio Systems; Characteristics and requirements for point-to-<br>point equipment and antennas; Part 2-2: Harmonized EN covering<br>essential requirements of Article 3.2 of R&TTE Directive for digital<br>systems operating in frequency bands where frequency co-ordination<br>is applied |
| ETSI EN 302 217-3<br>V1.2.1   | Fixed Radio Systems; Characteristics and requirements for point-to-<br>point equipment and antennas; Part 3: Harmonized EN covering<br>essential requirements of Article 3.2 of R&TTE Directive for<br>equipment operating in frequency bands where no frequency co-<br>ordination is applied     |
| ETSI EN 302<br>217-4-1 V1.4.1 | Fixed Radio Systems; Characteristics and requirements for point-to-<br>point equipment and antennas; Part 4-1: System-dependent<br>requirements for antennas                                                                                                                                      |
| ETSI EN 302<br>217-4-2 V1.5.1 | Fixed Radio Systems; Characteristics and requirements for point-to-<br>point equipment and antennas; Part 4-2: Harmonized EN covering<br>essential requirements of Article 3.2 of R&TTE Directive for<br>antennas                                                                                 |
| ETSI EN 301 126-1<br>V1.1.2   | Fixed Radio Systems; Conformance testing; Part 1: Point-to-Point<br>equipment - Definitions, general requirements and test procedures                                                                                                                                                             |
| ETSI EN 301<br>126-3-1 V1.1.2 | Fixed Radio Systems; Conformance testing; Part 3-1: Point-to-Point antennas; Definitions, general requirements and test procedures                                                                                                                                                                |
| ETSI EN 301 390<br>V1.2.1     | Fixed Radio Systems; Point-to-point and Multipoint Systems;<br>Spurious emissions and receiver immunity limits at equipment/<br>antenna port of Digital Fixed Radio Systems                                                                                                                       |

 Table B-2 ETSI standard

# **B.3 IEC Standards**

The OptiX RTN 980 is compliant with the IEC standards related to the waveguide.

| Standard    | Description                                                                                                |
|-------------|------------------------------------------------------------------------------------------------------------|
| IEC 60154-1 | Flanges for waveguides. Part 1: General requirements                                                       |
| IEC 60154-2 | Flanges for waveguides. Part 2: Relevant specifications for flanges for ordinary rectangular waveguides    |
| IEC 60154-3 | Flanges for waveguides. Part 3: Relevant specifications for flanges for flat rectangular waveguides        |
| IEC 60154-4 | Flanges for waveguides. Part 4: Relevant specifications for flanges for circular waveguides                |
| IEC 60154-6 | Flanges for waveguides. Part 6: Relevant specifications for flanges for medium flat rectangular waveguides |
| IEC 60154-7 | Flanges for waveguides - Part 7: Relevant specifications for flanges for square waveguides                 |
| IEC 60153-1 | Hollow metallic waveguides. Part 1: General requirements and measuring methods                             |
| IEC 60153-2 | Hollow metallic waveguides. Part 2: Relevant specifications for ordinary rectangular waveguides            |
| IEC 60153-3 | Hollow metallic waveguides. Part 3: Relevant specifications for flat rectangular waveguides                |
| IEC 60153-4 | Hollow metallic waveguides. Part 4: Relevant specifications for circular waveguides                        |
| IEC 60153-6 | Hollow metallic waveguides. Part 6: Relevant specifications for medium flat rectangular waveguides         |
| IEC 60153-7 | Hollow metallic waveguides. Part 7: Relevant specifications for square waveguides                          |

| Table B-3 Relevant IEC standards |
|----------------------------------|
|----------------------------------|

# **B.4 ITU-T Standards**

The OptiX RTN 980 complies with the ITU-T standards designed for SDH/PDH equipment.

| Standard    | Description                                                              |
|-------------|--------------------------------------------------------------------------|
| ITU-T G.664 | Optical safety procedures and requirements for optical transport systems |
| ITU-T G.702 | Digital hierarchy bit rates                                              |
| ITU-T G.703 | Physical/electrical characteristics of hierarchical digital interfaces   |

Table B-4 ITU-T standard

| Standard       | Description                                                                                                                                          |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| ITU-T G.704    | Synchronous frame structures used at 1544, 6312, 2048, 8448 and 44,736 kbit/s hierarchical levels                                                    |
| ITU-T G.706    | Frame alignment and cyclic redundancy check (CRC) procedures relating to basic frame structures defined in Recommendation G.704                      |
| ITU-T G.707    | Network node interface for the synchronous digital hierarchy (SDH)                                                                                   |
| ITU-T G.773    | Protocol suites for Q-interfaces for management of transmission systems                                                                              |
| ITU-T G.774    | Synchronous digital hierarchy (SDH) management information<br>model for the network element view                                                     |
| ITU-T G.774.1  | Synchronous Digital Hierarch y(SDH) performance monitoring for<br>the network element view                                                           |
| ITU-T G.774.2  | Synchronous digital hierarchy (SDH) configuration of the payload structure for the network element view                                              |
| ITU-T G.774.3  | Synchronous digital hierarchy (SDH) management of multiplex-<br>section protection for the network element view                                      |
| ITU-T G.774.4  | Synchronous digital hierarchy (SDH) management of the sub-<br>network connection protection for the network element view                             |
| ITU-T G.774.5  | Synchronous digital hierarchy (SDH) management of connection supervision functionality(HCS/LCS) for the network element view                         |
| ITU-T G.774.6  | Synchronous digital hierarchy (SDH) unidirectional performance<br>monitoring for the network element view                                            |
| ITU-T G.774.7  | Synchronous digital hierarchy (SDH) management of lower order<br>path trace and interface labeling for the network element view                      |
| ITU-T G.774.9  | Synchronous digital hierarchy (SDH) configuration of linear<br>multiplex section protection for the network element view                             |
| ITU-T G.774.10 | Synchronous digital hierarchy (SDH) configuration of linear<br>multiplex section protection for the network element view                             |
| ITU-T G.775    | Loss of Signal (LOS), Alarm Indication Signal (AIS) and Remote<br>Defect Indication (RDI) defect detection and clearance criteria for<br>PDH signals |
| ITU-T G.7710   | Common equipment management function requirements                                                                                                    |
| ITU-T G.780    | Vocabulary of terms for synchronous digital hierarchy (SDH)<br>networks and equipment                                                                |
| ITU-T G.781    | Synchronization layer functions                                                                                                                      |
| ITU-T G.783    | Characteristics of synchronous digital hierarchy (SDH) equipment functional blocks                                                                   |

| Standard      | Description                                                                                                                                                              |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ITU-T G.784   | Synchronous digital hierarchy (SDH) management                                                                                                                           |
| ITU-T G.803   | Architecture of transport networks based on the synchronous digital hierarchy (SDH)                                                                                      |
| ITU-T G.805   | Generic functional architecture of transport networks                                                                                                                    |
| ITU-T G.806   | Characteristics of transport equipment - Description methodology and generic functionality                                                                               |
| ITU-T G.808.1 | Generic protection switching - Linear trail and sub-network protection                                                                                                   |
| ITU-T G.810   | Definitions and terminology for synchronization networks                                                                                                                 |
| ITU-T G.811   | Timing characteristics of primary reference clocks                                                                                                                       |
| ITU-T G.812   | Timing requirements of slave clocks suitable for use as node clocks<br>in synchronization networks                                                                       |
| ITU-T G.813   | Timing characteristics of SDH equipment slave clocks (SEC)                                                                                                               |
| ITU-T G.821   | Error performance of an international digital connection operating at<br>a bit rate below the primary rate and forming part of an integrated<br>services digital network |
| ITU-T G.822   | Controlled slip rate objectives on an international digital connection                                                                                                   |
| ITU-T G.823   | The control of jitter and wander within digital networks which are based on the 2048 kbit/s hierarchy                                                                    |
| ITU-T G.825   | The control of jitter and wander within digital networks which are based on the synchronous digital hierarchy (SDH)                                                      |
| ITU-T G.826   | Error performance parameters and objectives for international, constant bit rate digital paths at or above the primary rate                                              |
| ITU-T G.828   | Error performance parameters and objectives for international, constant bit rate synchronous digital paths                                                               |
| ITU-T G.829   | Error performance events for SDH multiplex and regenerator sections                                                                                                      |
| ITU-T G.831   | Management capabilities of transport networks based on the synchronous digital hierarchy (SDH)                                                                           |
| ITU-T G.832   | Transport of SDH elements on PDH networks - Frame and multiplexing structures                                                                                            |
| ITU-T G.841   | Types and characteristics of SDH network protection architectures                                                                                                        |
| ITU-T G.842   | Inter-working of SDH network protection architectures                                                                                                                    |
| ITU-T G.957   | Optical interfaces for equipments and systems relating to the synchronous digital hierarchy                                                                              |

| Standard                | Description                                                                                      |
|-------------------------|--------------------------------------------------------------------------------------------------|
| ITU-T G.958             | Digital line systems based on the synchronous digital hierarchy for use on optical fiber cables. |
| ITU-T G.7043/Y.<br>1343 | Virtual concatenation of Plesiochronous Digital Hierarchy (PDH) signals                          |
| ITU-T G.8010            | Architecture of Ethernet layer networks                                                          |
| ITU-T G.8011            | Ethernet over Transport - Ethernet services framework                                            |
| ITU-T G.8011.1          | Ethernet private line service                                                                    |
| ITU-T G.8011.2          | Ethernet virtual private line service                                                            |
| ITU-T G.8012            | Ethernet UNI and Ethernet over transport NNI                                                     |
| ITU-T G.8021            | Characteristics of Ethernet transport network equipment functional blocks                        |
| ITU-T G.8110            | MPLS layer network architecture                                                                  |
| ITU-T G.8110.1          | Application of MPLS in the transport network                                                     |
| ITU-T G.8121            | Characteristics of transport MPLS equipment functional blocks                                    |
| ITU-T G.8112            | Interfaces for the transport MPLS (T-MPLS) hierarchy                                             |
| ITU-T G.8113.1          | Operations, Administration and Maintenance mechanism for MPLS-<br>TP networks                    |
| ITU-T G.8131            | Protection switching for transport MPLS (T-MPLS) networks                                        |
| ITU-T G.8261/Y.<br>1361 | Timing and synchronization aspects in packet networks                                            |
| ITU-T G.8262/Y.<br>1362 | Timing characteristics of synchronous Ethernet equipment slave clock (EEC)                       |
| ITU-T G.8264            | Timing distribution through packet networks                                                      |
| ITU-T Y.1541            | Network performance objectives for IP-based services                                             |
| ITU-T Y.1710            | Requirements for OAM functionality for MPLS networks                                             |
| ITU-T Y.1730            | Requirements for OAM functions in Ethernet based networks and<br>Ethernet services               |
| ITU-T Y.1731            | OAM functions and mechanisms for Ethernet based networks                                         |
| ITU-T G.8032/Y.<br>1344 | Ethernet Ring Protection Switching                                                               |
| ITU-T Y.1711            | Operation & Maintenance mechanism for MPLS networks                                              |
| ITU-T Y.1720            | Protection switching for MPLS networks                                                           |
| ITU-T I.610             | B-ISDN operation and maintenance principles and functions                                        |

| Standard     | Description                                                                           |
|--------------|---------------------------------------------------------------------------------------|
| ITU-T Y.1291 | An architectural framework for support of quality of service (QoS) in packet networks |

### **B.5 IETF Standards**

The OptiX RTN 980 complies with IETF standards.

| Standard | Description                                                                                                                                           |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| RFC 2819 | Remote Network Monitoring Management Information Base                                                                                                 |  |
| RFC 4664 | Framework for layer 2 virtual private networks (L2VPNs)                                                                                               |  |
| RFC 3031 | MPLS architecture                                                                                                                                     |  |
| RFC 3469 | Framework for multi-protocol label switching (MPLS)-based recovery                                                                                    |  |
| RFC 3811 | Definitions of textual conventions for multiprotocol label switching (MPLS) management                                                                |  |
| RFC 3813 | Multiprotocol label switching (MPLS) label switching router (LSR) management information base                                                         |  |
| RFC 3814 | Multiprotocol label switching (MPLS) forwarding equivalence class<br>to next hop label forwarding entry (FEC-To-NHLFE) management<br>information base |  |
| RFC 4221 | Multiprotocol label switching (MPLS) management overview                                                                                              |  |
| RFC 4377 | Operations and management (OAM) requirements for multi-protocol label switched (MPLS) networks                                                        |  |
| RFC 4378 | A framework for multi-protocol label switching (MPLS) operations<br>and management (OAM)                                                              |  |
| RFC 3032 | MPLS label stack encoding                                                                                                                             |  |
| RFC 3443 | Time to live (TTL) processing in multi-protocol label switching (MPLS) networks                                                                       |  |
| RFC 3916 | Requirements for pseudo-wire emulation edge-to-edge (PWE3)                                                                                            |  |
| RFC 3985 | Pseudo wire emulation edge-to-edge (PWE3) architecture                                                                                                |  |
| RFC 4197 | Requirements for edge-to-edge emulation of time division<br>multiplexed (TDM) circuits over packet switching networks                                 |  |
| RFC 4385 | Pseudowire emulation edge-to-edge (PWE3) control word for use<br>over an MPLS PSN                                                                     |  |

| Standard                                  | Description                                                                                                         |  |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| RFC 4446                                  | IANA allocations for pseudowire edge to edge emulation (PWE3)                                                       |  |
| RFC 0826                                  | Ethernet address resolution protocol                                                                                |  |
| RFC 3270                                  | Multi-protocol label switching (MPLS) support of differentiated services                                            |  |
| RFC 4448                                  | Encapsulation methods for transport of Ethernet over MPLS networks                                                  |  |
| RFC 4553                                  | Structure-agnostic time division multiplexing (TDM) over packet (SAToP)                                             |  |
| RFC 5085                                  | Pseudo wire virtual circuit connectivity verification (VCCV)                                                        |  |
| RFC 5086                                  | Structure-Aware Time Division Multiplexed (TDM) Circuit<br>Emulation Service over Packet Switched Network (CESoPSN) |  |
| RFC 4717                                  | Encapsulation Methods for Transport of Asynchronous Transfer<br>Mode (ATM) over MPLS Networks                       |  |
| RFC 4816                                  | Pseudowire Emulation Edge-to-Edge (PWE3) Asynchronous<br>Transfer Mode (ATM) Transparent Cell Transport Service     |  |
| RFC 4385                                  | Pseudowire emulation edge-to-edge (PWE3) control word for use over an MPLS PSN                                      |  |
| RFC 5254                                  | Requirements for Multi-Segment Pseudowire Emulation Edge-to-<br>Edge (PWE3)                                         |  |
| RFC 3644                                  | Policy quality of service (QoS) Information model                                                                   |  |
| RFC 2212                                  | Specification of guaranteed quality of service                                                                      |  |
| RFC 2474                                  | Definition of the differentiated services field (DS Field) in the IPv4<br>and IPv6 headers                          |  |
| RFC 2475                                  | An architecture for differentiated services                                                                         |  |
| RFC 2597                                  | Assured forwarding PHB group                                                                                        |  |
| RFC 2698                                  | A two rate three color marker                                                                                       |  |
| RFC 3246                                  | An expedited forwarding PHB (Per-hop behavior)                                                                      |  |
| RFC 3270                                  | Multi-protocol label switching (MPLS) support of differentiated services                                            |  |
| draft-ietf-12vpn-<br>oam-req-frmk-05      | L2VPN OAM requirements and framework                                                                                |  |
| draft-ietf-pwe3-<br>segmented-pw-03       | Segmented pseudo wire                                                                                               |  |
| draft-ietf-pwe3-ms-<br>pw-requirements-03 | Requirements for inter domain pseudo-wires                                                                          |  |

| Standard                          | Description                                                                                      |
|-----------------------------------|--------------------------------------------------------------------------------------------------|
| draft-ietf-pwe3-ms-<br>pw-arch-02 | An architecture for multi-segment pseudo wire emulation edge-to-<br>edge                         |
| RFC1661                           | The Point-to-Point Protocol (PPP)                                                                |
| RFC1662                           | PPP in HDLC-like Framing                                                                         |
| RFC1990                           | The PPP Multilink Protocol (MP)                                                                  |
| RFC2686                           | The Multi-Class Extension to Multi-Link PPP                                                      |
| RFC5317                           | Joint Working Team (JWT) Report on MPLS Architectural<br>Considerations for a Transport Profile  |
| RFC5586                           | MPLS Generic Associated Channel                                                                  |
| RFC5654                           | Requirements of an MPLS Transport Profile                                                        |
| RFC5921                           | A Framework for MPLS in Transport Networks                                                       |
| RFC5860                           | Requirements for Operations, Administration, and Maintenance<br>(OAM) in MPLS Transport Networks |

#### **B.6 IEEE Standards**

The OptiX RTN 980 complies with the IEEE standards designed for Ethernet networks.

| Standard     | Description                                                                                                                               |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| IEEE 802.3   | Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specification                           |
| IEEE 802.3u  | Media Access Control (MAC) parameters, physical Layer, medium<br>attachment units, and repeater for 100 Mb/s operation, type<br>100BASE-T |
| IEEE 802.3x  | Full Duplex Operation and Type 100BASE-T2                                                                                                 |
| IEEE 802.3z  | Media Access Control (MAC) parameters, physical Layer, repeater<br>and management parameters for 1000 Mb/s operation                      |
| IEEE 802.3ah | Media Access Control Parameters, Physical Layers, and Management<br>Parameters for Subscriber Access Networks                             |
| IEEE 802.1d  | Media Access Control (MAC) Bridges                                                                                                        |
| IEEE 802.1q  | Virtual bridged local area networks                                                                                                       |
| IEEE 802.1ad | Virtual Bridged Local Area Networks Amendment 4: Provider<br>Bridges                                                                      |

 Table B-6 IEEE standard

| Standard     | Description                                                                                                   |
|--------------|---------------------------------------------------------------------------------------------------------------|
| IEEE 802.1ag | Virtual Bridged Local Area Networks — Amendment 5: Connectivity<br>Fault Management                           |
| IEEE 1588v2  | IEEE Standard for a Precision Clock Synchronization Protocol for<br>Networked Measurement and Control Systems |
| IEEE 802.3af | Data Terminal Equipment (DTE) Power Via Media Dependent<br>Interface (MDI)                                    |
| IEEE 802.3at | Data Terminal Equipment (DTE) Power via the Media Dependent<br>Interface (MDI) Enhancements                   |

### **B.7 MEF Standards**

The OptiX RTN 980 complies with MEF standards.

| Standard | Description                                                                              |
|----------|------------------------------------------------------------------------------------------|
| MEF 2    | Requirements and framework for Ethernet service protection in metro<br>Ethernet networks |
| MEF 4    | Metro Ethernet network architecture framework - Part 1: generic framework                |
| MEF 9    | Abstract Test Suite for Ethernet Services at the UNI                                     |
| MEF 10   | Ethernet services attributes phase 1                                                     |
| MEF 14   | Abstract Test Suite for Traffic Management Phase 1                                       |
| MEF 17   | Service OAM Framework and Requirements                                                   |
| MEF 18   | Abstract Test Suite for Circuit Emulation Services                                       |
| MEF 21   | Abstract Test Suite for UNI Type 2 Part 1: Link OAM                                      |
| MEF 22   | Mobile Backhaul Implementation Agreement Phase 1                                         |

#### **B.8 AF Standards**

The OptiX RTN 980 complies with AF standards.

| Standard        | Description                                            |
|-----------------|--------------------------------------------------------|
| AF-PHY-0086.001 | Inverse Multiplexing for ATM Specification Version 1.1 |
| AF-TM-0121.000  | Traffic Management Specification                       |

 Table B-8 AF standard

# **B.9** Environmental Standards

The OptiX RTN 980 complies with the environmental standards designed for split-mount microwave equipment.

| Standard                       | Description                                                                                                                                                                                                                                    |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EN 55022                       | Limits and Methods of Measurement of Radio Disturbance<br>Characteristics of Information Technology Equipment                                                                                                                                  |
| CISPR 22                       | Limits and methods of measurement of radio disturbance characteristics of information                                                                                                                                                          |
| ETSI EN 301 489-1              | Electromagnetic compatibility and Radio spectrum Matters (ERM);<br>Electromagnetic Compatibility (EMC) standard for radio equipment<br>and services; Part 1: Common technical requirements                                                     |
| ETSI EN 301 489-4              | Electromagnetic compatibility and Radio spectrum Matters (ERM);<br>Electromagnetic Compatibility (EMC) standard for radio equipment<br>and services; Part 4: Specific conditions for fixed radio links and<br>ancillary equipment and services |
| EN 60950-1                     | Information technology equipment-Safety-Part 1: General requirements                                                                                                                                                                           |
| UL 60950-1                     | Information technology equipment-Safety-Part 1: General requirements                                                                                                                                                                           |
| IEC 60825-1                    | Safety of laser products-Part 1: Equipment classification, requirements and user's guide                                                                                                                                                       |
| IEC 60825-2                    | Safety of laser products-Part 2: Safety of optical fiber communication systems (OFCS)                                                                                                                                                          |
| IEC 60950-1                    | Information technology equipment-Safety-Part 1: General requirements                                                                                                                                                                           |
| IEC 60950-22<br>(Outdoor Unit) | Information technology equipment-Safety-Part 22: Equipment to be installed outdoors                                                                                                                                                            |
| IEC 61000-4-2                  | Electromagnetic compatibility (EMC) Part 2: Testing and<br>measurement techniques Section 2: Electrostatic discharge immunity<br>test Basic EMC Publication                                                                                    |

| Table B-9 | environmental | standard |
|-----------|---------------|----------|
|-----------|---------------|----------|

| Standard                                                                      | Description                                                                                                                                                                                                                                      |  |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| IEC 61000-4-3                                                                 | Electromagnetic compatibility; Part 3: Testing and measurement techniques Section 3 radio frequency electromagnetic fields; immunity test.                                                                                                       |  |
| IEC 61000-4-4                                                                 | Electromagnetic compatibility (EMC) Part 4: Testing and<br>measurement techniques Section 4: Electrical fast transient/burst<br>immunity test Basic EMC publication                                                                              |  |
| IEC 61000-4-5                                                                 | Electromagnetic compatibility (EMC) Part 5: Testing and<br>measurement techniques Section 5: Surge immunity test                                                                                                                                 |  |
| IEC 61000-4-6                                                                 | Electromagnetic compatibility: Part 6: Testing and measurement<br>techniques: Section 6 conducted disturbances induced by radio-<br>frequency fields; immunity test                                                                              |  |
| IEC 721-3-1 Classes<br>1K4/1Z2/1Z3/1Z5/1<br>B2/1C2/1S3/1M2                    | Classification of environmental conditions - Part 3: Classification of groups of environmental parameters and their severities - Section 1: Storage Classes 1K4/1Z2/1Z3/1Z5/1B2/1C2/1S3/1M2                                                      |  |
| IEC 721-3-2 Classes<br>2K4/2B2/2C2/2S2/2<br>M2                                | Classification of environmental conditions - Part 3: Classification of groups of environmental parameters and their severities - Section 2: Transportation Classes 2K4/2B2/2C2/2S2/2M2                                                           |  |
| IEC 721-3-3 Classes<br>3K5/3Z2/3Z4/3B2/3<br>C2(3C1)/3S2/3M2<br>(Indoor Unit)  | Classification of environmental conditions - Part 3: Classification of<br>groups of environmental parameters and their severities - Section 3:<br>Stationary use at weather protected locations Classes<br>3K5/3Z2/3Z4/3B2/3C2(3C1)/3S2/3M2      |  |
| IEC 721-3-4 Classes<br>4K2/4Z5/4Z7/4B1/4<br>C2(4C3)/4S2/4M5<br>(Outdoor Unit) | Classification of environmental conditions - Part 3: Classification of<br>groups of environmental parameters and their severities - Section 4:<br>Stationary use at non-weather protected locations. Classes<br>4K2/4Z5/4Z7/4B1/4C2(4C3)/4S2/4M5 |  |
| ETSI EN 300<br>019-1-1 Class 1.2                                              | Environmental conditions and environmental tests for<br>telecommunications equipment; Part 1-1: Classification of<br>environmental conditions; Storage Class 1.2                                                                                 |  |
| ETSI EN 300<br>019-1-2 Class 2.3                                              | Environmental conditions and environmental tests for<br>telecommunications equipment; Part 1-2: Classification of<br>environmental conditions; Transportation Class 2.3                                                                          |  |
| ETSI EN 300<br>019-1-3 Class 3.2<br>(Indoor Unit)                             | Environmental conditions and environmental tests for<br>telecommunications equipment; Part 1-3: Classification of<br>environmental conditions; Stationary use at weather-protected<br>locations; Class 3.2                                       |  |
| ETSI EN 300<br>019-1-4 Class 4.1<br>(Outdoor Unit)                            | Environmental conditions and environmental tests for<br>telecommunications equipment; Part 1-4: Classification of<br>environmental conditions; Stationary use at non-weather-protected<br>locations Class 4.1                                    |  |

| Standard          | Description                                                                                                                                                                                                                                                                                                  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| EN 300 132-2      | Environmental Engineering (EE); Power supply interface at the input<br>to telecommunications equipment; Part 2: Operated by direct current<br>(dc)                                                                                                                                                           |  |
| EN 300 119        | Environmental Engineering (EE); European telecommunication standard for equipment practice;                                                                                                                                                                                                                  |  |
| TR 102 489 V1.1.1 | Thermal Management Guidance for equipment and its deployment                                                                                                                                                                                                                                                 |  |
| ETS 300 753       | Equipment Engineering (EE); Acoustic noise emitted by telecommunications equipment                                                                                                                                                                                                                           |  |
| IEC 60215         | Safety requirements for radio transmitting equipment                                                                                                                                                                                                                                                         |  |
| IEC 60825         | Safety of laser products                                                                                                                                                                                                                                                                                     |  |
| IEC 60657         | Non-ionizing radiation hazards in the frequency range from 10 MHz to 300 000 MHz                                                                                                                                                                                                                             |  |
| IEC 60297         | Dimensions of mechanical structures of the 482.6 mm (19 in) series                                                                                                                                                                                                                                           |  |
| IEC 60529         | Degrees of protection provided by enclosures                                                                                                                                                                                                                                                                 |  |
| IEC 60068         | Environmental Testing                                                                                                                                                                                                                                                                                        |  |
| EN 61000-3-2      | Electromagnetic compatibility (EMC) -Part 3-2: Limits -Limits for<br>harmonic current emissions (equipment input current< 16 A per<br>phase)                                                                                                                                                                 |  |
| EN 61000-3-3      | Electromagnetic compatibility (EMC) -Part 3-3: Limits -Limitation<br>of voltage changes, voltage fluctuations and flicker in public low-<br>voltage supply systems, for equipment with rated current < - 16 A per<br>phase and not subject to conditional connection                                         |  |
| EN 50383          | Basic standard for the calculation and measurement of<br>electromagnetic field strength and SAR related to human exposure<br>from radio base stations and fixed terminal stations for wireless<br>telecommunications system (110 MHz - 40 GHz)                                                               |  |
| EN 50385          | Product standard to demonstrate the compliances of radio base<br>stations and fixed terminal stations for wireless telecommunication<br>systems with the basic restrictions or the reference levels related to<br>human exposure to ratio frequency electromagnetic fields<br>(110MHz-40GHz) -General public |  |
| IEC 68-2-2        | Environmental testing: Dry heat.                                                                                                                                                                                                                                                                             |  |
| IEC 68-2-14       | Environmental testing: Change of temperature.                                                                                                                                                                                                                                                                |  |
| IEC 68-2-30       | Environmental testing: Damp heat, cyclic: (12 + 12 hour cycle).                                                                                                                                                                                                                                              |  |

# **C** Glossary

#### Numerics

| 3G                         | See <b>3rd Generation</b> .                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3GPP                       | 3rd Generation Partnership Project                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3rd Generation (3G)        | The third generation of digital wireless technology, as defined by the International Telecommunications Union (ITU). Third generation technology is expected to deliver data transmission speeds between 144 kbit/s and 2 Mbit/s, compared to the 9.6 kbit/s to 19.2 kbit/s offered by second generation technology.                                                                                                               |
| 802.1Q in 802.1Q<br>(QinQ) | A VLAN feature that allows the equipment to add a VLAN tag to a tagged frame. The implementation of QinQ is to add a public VLAN tag to a frame with a private VLAN tag to allow the frame with double VLAN tags to be transmitted over the service provider's backbone network based on the public VLAN tag. This provides a layer 2 VPN tunnel for customers and enables transparent transmission of packets over private VLANs. |
| Α                          |                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A/D                        | analog/digit                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ABR                        | See available bit rate.                                                                                                                                                                                                                                                                                                                                                                                                            |
| ACAP                       | See adjacent channel alternate polarization.                                                                                                                                                                                                                                                                                                                                                                                       |
| ACL                        | See access control list.                                                                                                                                                                                                                                                                                                                                                                                                           |
| ADC                        | analog to digital converter                                                                                                                                                                                                                                                                                                                                                                                                        |
| ADM                        | add/drop multiplexer                                                                                                                                                                                                                                                                                                                                                                                                               |
| AF                         | See assured forwarding.                                                                                                                                                                                                                                                                                                                                                                                                            |
| AIS                        | alarm indication signal                                                                                                                                                                                                                                                                                                                                                                                                            |
| ALS                        | See automatic laser shutdown.                                                                                                                                                                                                                                                                                                                                                                                                      |
| AM                         | See adaptive modulation.                                                                                                                                                                                                                                                                                                                                                                                                           |
| APS                        | automatic protection switching                                                                                                                                                                                                                                                                                                                                                                                                     |
| ARP                        | See Address Resolution Protocol.                                                                                                                                                                                                                                                                                                                                                                                                   |

| ASBR                                                 | See autonomous system boundary router.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASIC                                                 | See application-specific integrated circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| АТМ                                                  | asynchronous transfer mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ATPC                                                 | See automatic transmit power control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AU                                                   | See administrative unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Address Resolution<br>Protocol (ARP)                 | An Internet Protocol used to map IP addresses to MAC addresses. The ARP protocol enables hosts and routers to determine link layer addresses through ARP requests and responses. The address resolution is a process by which the host converts the target IP address into a target MAC address before transmitting a frame. The basic function of ARP is to use the target equipment's IP address to query its MAC address.                                                                                                                               |
| access control list<br>(ACL)                         | A list of entities, together with their access rights, which are authorized to access a resource.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| adaptive modulation<br>(AM)                          | A technology that is used to automatically adjust the modulation mode according to the channel quality. When the channel quality is favorable, the equipment uses a high-efficiency modulation mode to improve the transmission efficiency and the spectrum utilization of the system. When the channel quality is degraded, the equipment uses the low-efficiency modulation mode to improve the anti-interference capability of the link that carries high-priority services.                                                                            |
| adjacent channel<br>alternate polarization<br>(ACAP) | A channel configuration method, which uses two adjacent channels (a horizontal polarization wave and a vertical polarization wave) to transmit two signals.                                                                                                                                                                                                                                                                                                                                                                                                |
| administrative unit<br>(AU)                          | The information structure that enables adaptation between the higher order path layer<br>and the multiplex section layer. The administrative unit consists of an information<br>payload (the higher order VC) and an AU pointer, which indicates the offset of the<br>payload frame start relative to the multiplex section frame start.                                                                                                                                                                                                                   |
| alarm suppression                                    | A method to suppress alarms for the alarm management purpose. Alarms that are suppressed are no longer reported from NEs.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| analog signal                                        | A signal in which information is represented with a continuously variable physical quantity, such as voltage. Because of this constant changing of the wave shape with regard to its passing a given point in time or space, an analog signal might have a virtually indefinite number of states or values. This contrasts with a digital signal that is expressed as a square wave and therefore has a very limited number of discrete states. Analog signals, with complicated structures and narrow bandwidth, are vulnerable to external interference. |
| application-specific<br>integrated circuit<br>(ASIC) | A special type of chip that starts out as a nonspecific collection of logic gates. Late in the manufacturing process, a layer is added to connect the gates for a specific function. By changing the pattern of connections, the manufacturer can make the chip suitable for many needs.                                                                                                                                                                                                                                                                   |
| assured forwarding<br>(AF)                           | One of the four per-hop behaviors (PHB) defined by the Diff-Serv workgroup of IETF. It is suitable for certain key data services that require assured bandwidth and short delay. For traffic within the bandwidth limit, AF assures quality in forwarding. For traffic that exceeds the bandwidth limit, AF degrades the service class and continues to forward the traffic instead of discarding the packets.                                                                                                                                             |

| attenuator                                     | A device used to increase the attenuation of an Optical Fiber Link. Generally used to ensure that the signal at the receive end is not too strong.                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| automatic laser<br>shutdown (ALS)              | A technique (procedure) to automatically shutdown the output power of laser transmitters and optical amplifiers to avoid exposure to hazardous levels.                                                                                                                                                                                                                                                                                                                                                                                            |
| automatic transmit<br>power control (ATPC)     | A method of adjusting the transmit power based on fading of the transmit signal detected at the receiver                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| autonomous system<br>boundary router<br>(ASBR) | A router that exchanges routing information with other ASs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| available bit rate (ABR)                       | A kind of service categories defined by the ATM forum. ABR only provides possible forwarding service and applies to the connections that does not require the real-time quality. It does not provide any guarantee in terms of cell loss or delay.                                                                                                                                                                                                                                                                                                |
| В                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>B-ISDN</b>                                  | See broadband integrated services digital network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BDI                                            | See backward defect indication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BE                                             | See best effort.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BER                                            | bit error rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BFD                                            | See Bidirectional Forwarding Detection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BGP                                            | Border Gateway Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BIOS                                           | See basic input/output system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BIP                                            | See bit interleaved parity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BPDU                                           | See bridge protocol data unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BSC                                            | See base station controller.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| BTS                                            | base transceiver station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bidirectional<br>Forwarding Detection<br>(BFD) | A fast and independent hello protocol that delivers millisecond-level link failure detection and provides carrier-class availability. After sessions are established between neighboring systems, the systems can periodically send BFD packets to each other. If one system fails to receive a BFD packet within the negotiated period, the system regards that the bidirectional link fails and instructs the upper layer protocol to take actions to recover the faulty link.                                                                  |
| backbone network                               | A network that forms the central interconnection for a connected network. The communication backbone for a country is WAN. The backbone network is an important architectural element for building enterprise networks. It provides a path for the exchange of information between different LANs or subnetworks. A backbone can tie together diverse networks in the same building, in different buildings in a campus environment, or over wide areas. Generally, the backbone network's capacity is greater than the networks connected to it. |
| backward defect<br>indication (BDI)            | A function that the sink node of a LSP, when detecting a defect, uses to inform the upstream end of the LSP of a downstream defect along the return path.                                                                                                                                                                                                                                                                                                                                                                                         |

| base station controller<br>(BSC)                             | A logical entity that connects the BTS with the MSC in a GSM/CDMA network. It<br>interworks with the BTS through the Abis interface, the MSC through the A interface.<br>It provides the following functions: radio resource management, base station<br>management, power control, handover control, and traffic measurement. One BSC<br>controls and manages one or more BTSs in an actual network.                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| basic input/output<br>system (BIOS)                          | Firmware stored on the computer motherboard that contains basic input/output control programs, power-on self test (POST) programs, bootstraps, and system setting information. The BIOS provides hardware setting and control functions for the computer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| baud rate                                                    | The number of times per second the signal can change on a transmission line. Commonly, the transmission line uses only two signal states, making the baud rate equal to the number of bits per second that can be transferred. The underlying transmission technique may use some of the bandwidth, so it may not be the case that user data transfers at the line's specified bit rate.                                                                                                                                                                                                                                                                                                                                                                   |
| best effort (BE)                                             | A traditional IP packet transport service. In this service, the diagrams are forwarded following the sequence of the time they reach. All diagrams share the bandwidth of the network and routers. The amount of resource that a diagram can use depends of the time it reaches. BE service does not ensure any improvement in delay time, jitter, packet loss ratio, and high reliability.                                                                                                                                                                                                                                                                                                                                                                |
| bit interleaved parity<br>(BIP)                              | A method of error monitoring. With even parity, the transmitting equipment generates<br>an X-bit code over a specified portion of the signal in such a manner that the first bit of<br>the code provides even parity over the first bit of all X-bit sequences in the covered<br>portion of the signal, the second bit provides even parity over the second bit of all X-bit<br>sequences within the specified portion, and so forth. Even parity is generated by setting<br>the BIP-X bits so that an even number of 1s exist in each monitored partition of the<br>signal. A monitored partition comprises all bits in the same bit position within the X-bit<br>sequences in the covered portion of the signal. The covered portion includes the BIP-X. |
| bridge                                                       | A device that connects two or more networks and forwards packets among them. Bridges operate at the physical network level. Bridges differ from repeaters because bridges store and forward complete packets, while repeaters forward all electrical signals. Bridges differ from routers because bridges use physical addresses, while routers use IP addresses.                                                                                                                                                                                                                                                                                                                                                                                          |
| bridge protocol data<br>unit (BPDU)                          | Data messages exchanged across switches within an extended LAN that uses a spanning tree protocol (STP) topology. BPDU packets contain information on ports, addresses, priorities, and costs, and they ensure that the data reaches its intended destination. BPDU messages are exchanged across bridges to detect loops in a network topology. These loops are then removed by shutting down selected bridge interfaces and placing redundant switch ports in a backup, or blocked, state.                                                                                                                                                                                                                                                               |
| broadband integrated<br>services digital network<br>(B-ISDN) | A standard defined by the ITU-T to handle high-bandwidth applications, such as voice.<br>It currently uses the ATM technology to transmit data over SONNET-based circuits at 155 to 622 Mbit/s or higher speed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| broadcast                                                    | A means of delivering information to all members in a network. The broadcast range is determined by the broadcast address.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| broadcast domain                                             | A group of network stations that receives broadcast packets originating from any device within the group. The broadcast domain also refers to the set of ports between which a device forwards a multicast, broadcast, or unknown destination frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| С                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAR                                                     | committed access rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CBR                                                     | See constant bit rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CBS                                                     | See committed burst size.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CC                                                      | See continuity check.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CCDP                                                    | See co-channel dual polarization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CDMA                                                    | See Code Division Multiple Access.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CE                                                      | See customer edge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CES                                                     | See circuit emulation service.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CGMP                                                    | Cisco Group Management Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CIST                                                    | See Common and Internal Spanning Tree.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CLNP                                                    | connectionless network protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| СМ                                                      | connection management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CORBA                                                   | See Common Object Request Broker Architecture.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CPU                                                     | See central processing unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CRC                                                     | See cyclic redundancy check.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CSES                                                    | consecutive severely errored second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CSMA/CD                                                 | See carrier sense multiple access with collision detection.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| СТС                                                     | common transmit clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CW                                                      | control word                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Code Division Multiple<br>Access (CDMA)                 | A communication scheme that uses frequency expansion technology to form different code sequences. When the CDMA scheme is used, subscribers with different addresses can use different code sequences for multi-address connection.                                                                                                                                                                                                                                                                                 |
| Common Object<br>Request Broker<br>Architecture (CORBA) | A specification developed by the Object Management Group in 1992 in which pieces of programs (objects) communicate with other objects in other programs, even if the two programs are written in different programming languages and are running on different platforms. A program makes its request for objects through an object request broker, or ORB, and therefore does not need to know the structure of the program from which the object comes. CORBA is designed to work in object-oriented environments. |
| Common and Internal<br>Spanning Tree (CIST)             | The single spanning tree jointly calculated by STP and RSTP, the logical connectivity using MST bridges and regions, and MSTP. The CIST ensures that all LANs in the bridged local area network are simply and fully connected.                                                                                                                                                                                                                                                                                     |
| cable tie                                               | A tie used to bind cables.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| carrier sense multiple<br>access with collision           | Carrier sense multiple access with collision detection (CSMA/CD) is a computer networking access method in which:                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| detection (CSMA/CD)                                       | • A carrier sensing scheme is used.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                           | • A transmitting data station that detects another signal while transmitting a frame, stops transmitting that frame, transmits a jam signal, and then waits for a random time interval before trying to send that frame again.                                                                                                                                                                                                                                              |
| central processing unit<br>(CPU)                          | The computational and control unit of a computer. The CPU is the device that interprets<br>and executes instructions. The CPU has the ability to fetch, decode, and execute<br>instructions and to transfer information to and from other resources over the computer's<br>main data-transfer path, the bus.                                                                                                                                                                |
| channel                                                   | A telecommunication path of a specific capacity and/or speed between two or more locations in a network. The channel can be established through wire, radio (microwave), fiber, or any combination of the three. The amount of information transmitted per second in a channel is the information transmission speed, expressed in bits per second. For example, b/s (100 bit/s), kb/s (103 bit/s), Mb/s (106 bit/s), Gb/s (109 bit/s), and Tb/s (1012 bit/s).              |
| circuit emulation<br>service (CES)                        | A function with which the E1/T1 data can be transmitted through ATM networks. At the transmission end, the interface module packs timeslot data into ATM cells. These ATM cells are sent to the reception end through the ATM network. At the reception end, the interface module re-assigns the data in these ATM cells to E1/T1 timeslots. The CES technology guarantees that the data in E1/T1 timeslots can be recovered to the original sequence at the reception end. |
| clock tracing                                             | The method of keeping the time on each node synchronized with a clock source in the network.                                                                                                                                                                                                                                                                                                                                                                                |
| co-channel dual polarization (CCDP)                       | A channel configuration method, which uses a horizontal polarization wave and a vertical polarization wave to transmit two signals. The Co-Channel Dual Polarization has twice the transmission capacity of the single polarization.                                                                                                                                                                                                                                        |
| committed burst size<br>(CBS)                             | A parameter used to define the capacity of token bucket C, that is, the maximum burst IP packet size when information is transferred at the committed information rate. This parameter must be greater than 0 but should be not less than the maximum length of an IP packet to be forwarded.                                                                                                                                                                               |
| constant bit rate (CBR)                                   | A kind of service categories defined by the ATM forum. CBR transfers cells based on<br>the constant bandwidth. It is applicable to service connections that depend on precise<br>clocking to ensure undistorted transmission.                                                                                                                                                                                                                                               |
| continuity check (CC)                                     | An Ethernet connectivity fault management (CFM) method used to detect the connectivity between MEPs by having each MEP periodically transmit a Continuity Check Message (CCM).                                                                                                                                                                                                                                                                                              |
| cross polarization<br>interference<br>cancellation (XPIC) | A technology used in the case of the Co-Channel Dual Polarization (CCDP) to eliminate the cross-connect interference between two polarization waves in the CCDP.                                                                                                                                                                                                                                                                                                            |
| customer edge (CE)                                        | A part of the BGP/MPLS IP VPN model that provides interfaces for directly connecting to the Service Provider (SP) network. A CE can be a router, switch, or host.                                                                                                                                                                                                                                                                                                           |

| cyclic redundancy<br>check (CRC)                         | A procedure used to check for errors in data transmission. CRC error checking uses a complex calculation to generate a number based on the data transmitted. The sending device performs the calculation before performing the transmission and includes the generated number in the packet it sends to the receiving device. The receiving device then repeats the same calculation. If both devices obtain the same result, the transmission is considered to be error free. This procedure is known as a redundancy check because each transmission includes not only data but extra (redundant) error-checking values. |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DC                                                       | direct current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DC-C                                                     | See DC-return common (with ground).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DC-I                                                     | See DC-return isolate (with ground).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DC-return common<br>(with ground) (DC-C)                 | A power system, in which the BGND of the DC return conductor is short-circuited with the PGND on the output side of the power supply cabinet and also on the line between the output of the power supply cabinet and the electric equipment.                                                                                                                                                                                                                                                                                                                                                                               |
| DC-return isolate (with ground) (DC-I)                   | A power system, in which the BGND of the DC return conductor is short-circuited with the PGND on the output side of the power supply cabinet and is isolated from the PGND on the line between the output of the power supply cabinet and the electric equipment.                                                                                                                                                                                                                                                                                                                                                          |
| DCC                                                      | See data communications channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DCN                                                      | See data communication network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DDF                                                      | digital distribution frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DDN                                                      | See digital data network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DE                                                       | discard eligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DM                                                       | See delay measurement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DS boundary node                                         | A DS node that connects one DS domain to a node either in another DS domain or in a domain that is not DS-capable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DS interior node                                         | A DS node located at the center of a DS domain. It is a non-DS boundary node.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DS node                                                  | A DS-compliant node, which is subdivided into DS boundary node and ID interior node.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DSCP                                                     | See differentiated services code point.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DVMRP                                                    | See Distance Vector Multicast Routing Protocol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DiffServ                                                 | See Differentiated Services.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Differentiated Services<br>(DiffServ)                    | An IETF standard that defines a mechanism for controlling and forwarding traffic in a differentiated manner based on CoS settings to handle network congestion.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Distance Vector<br>Multicast Routing<br>Protocol (DVMRP) | An Internet gateway protocol based primarily on the RIP. The DVMRP protocol implements a typical dense mode IP multicast solution and uses IGMP to exchange routing datagrams with its neighbors.                                                                                                                                                                                                                                                                                                                                                                                                                          |
| data communication<br>network (DCN)                      | A communication network used in a TMN or between TMNs to support the data communication function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| data communications<br>channel (DCC)         | The data channel that uses the D1-D12 bytes in the overhead of an STM-N signal to transmit information on the operation, management, maintenance, and provisioning (OAM&P) between NEs. The DCC channel composed of bytes D1-D3 is referred to as the 192 kbit/s DCC-R channel. The other DCC channel composed of bytes D4-D12 is referred to as the 576 kbit/s DCC-M channel.                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| delay measurement<br>(DM)                    | The time elapsed since the start of transmission of the first bit of the frame by a source node until the reception of the last bit of the loopbacked frame by the same source node, when the loopback is performed at the frame's destination node.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| differentiated services<br>code point (DSCP) | According to the QoS classification standard of the Differentiated Service (Diff-Serv),<br>the type of services (ToS) field in the IP header consists of six most significant bits and<br>two currently unused bits, which are used to form codes for priority marking.<br>Differentiated services code point (DSCP) is the six most important bits in the ToS. It is<br>the combination of IP precedence and types of service. The DSCP value is used to ensure<br>that routers supporting only IP precedence can be used because the DSCP value is<br>compatible with IP precedence. Each DSCP maps a per-hop behavior (PHB). Therefore,<br>terminal devices can identify traffic using the DSCP value. |
| digital data network<br>(DDN)                | A data transmission network that is designed to transmit data on digital channels (such as the fiber channel, digital microwave channel, or satellite channel).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| digital modulation                           | A method that controls the changes in amplitude, phase, and frequency of the carrier based on the changes in the baseband digital signal. In this manner, the information can be transmitted by the carrier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| dual-polarized antenna                       | An antenna intended to simultaneously radiate or receive two independent radio waves orthogonally polarized.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Б                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Е

| E-Aggr | See Ethernet aggregation.                            |
|--------|------------------------------------------------------|
| E-LAN  | See Ethernet local area network.                     |
| E-Line | See Ethernet line.                                   |
| ECC    | See embedded control channel.                        |
| EMC    | See electromagnetic compatibility.                   |
| EMI    | See electromagnetic interference.                    |
| EPL    | See Ethernet private line.                           |
| EPLAN  | See Ethernet private LAN service.                    |
| EPLD   | See erasable programmable logic device.              |
| ERPS   | Ethernet ring protection switching                   |
| ESD    | electrostatic discharge                              |
| ETS    | European Telecommunication Standards                 |
| ETSI   | See European Telecommunications Standards Institute. |
| EVPL   | See Ethernet virtual private line.                   |
| EVPLAN | See Ethernet virtual private LAN service.            |

| Ethernet                                                        | A LAN technology that uses the carrier sense multiple access with collision detection (CSMA/CD) media access control method. The Ethernet network is highly reliable and easy to maintain. The speed of an Ethernet interface can be 10 Mbit/s, 100 Mbit/s, 1000 Mbit/s, or 10,000 Mbit/s.                        |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ethernet aggregation<br>(E-Aggr)                                | A type of Ethernet service that is based on a multipoint-to-point EVC (Ethernet virtual connection).                                                                                                                                                                                                              |
| Ethernet line (E-Line)                                          | A type of Ethernet service that is based on a point-to-point EVC (Ethernet virtual connection).                                                                                                                                                                                                                   |
| Ethernet local area<br>network (E-LAN)                          | A type of Ethernet service that is based on a multipoint-to-multipoint EVC (Ethernet virtual connection).                                                                                                                                                                                                         |
| Ethernet private LAN<br>service (EPLAN)                         | A type of Ethernet service provided by SDH, PDH, ATM, or MPLS server layer<br>networks. This service is carried over dedicated bandwidth between multipoint-to-<br>multipoint connections.                                                                                                                        |
| Ethernet private line<br>(EPL)                                  | A type of Ethernet service provided by SDH, PDH, ATM, or MPLS server layer<br>networks. This service is carried over dedicated bandwidth between point-to-point<br>connections.                                                                                                                                   |
| Ethernet virtual<br>private LAN service<br>(EVPLAN)             | A type of Ethernet service provided by SDH, PDH, ATM, or MPLS server layer<br>networks. This service is carried over shared bandwidth between multipoint-to-<br>multipoint connections.                                                                                                                           |
| Ethernet virtual<br>private line (EVPL)                         | A type of Ethernet service provided by SDH, PDH, ATM, or MPLS server layer<br>networks. This service is carried over shared bandwidth between point-to-point<br>connections.                                                                                                                                      |
| European<br>Telecommunications<br>Standards Institute<br>(ETSI) | A standards-setting body in Europe. Also the standards body responsible for GSM.                                                                                                                                                                                                                                  |
| electromagnetic<br>compatibility (EMC)                          | A condition which prevails when telecommunications equipment is performing its individually designed function in a common electromagnetic environment without causing or suffering unacceptable degradation due to unintentional electromagnetic interference to or from other equipment in the same environment. |
| electromagnetic<br>interference (EMI)                           | Any electromagnetic disturbance that interrupts, obstructs, or otherwise degrades or limits the performance of electronics/electrical equipment.                                                                                                                                                                  |
| embedded control<br>channel (ECC)                               | A logical channel that uses a data communications channel (DCC) as its physical layer to enable the transmission of operation, administration, and maintenance (OAM) information between NEs.                                                                                                                     |
| engineering label                                               | A mark on a cable, a subrack, or a cabinet for identification.                                                                                                                                                                                                                                                    |
| erasable<br>programmable logic<br>device (EPLD)                 | A logic array device which can be used to implement the required functions by programming the array. In addition, a user can modify and program the array repeatedly until the program meets the requirement.                                                                                                     |
| F                                                               |                                                                                                                                                                                                                                                                                                                   |
| FD                                                              | See frequency diversity.                                                                                                                                                                                                                                                                                          |

**FDDI** See fiber distributed data interface.

| FDI                                     | See forward defect indication.                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FEC                                     | See forward error correction.                                                                                                                                                                                                                                                                                                                                                        |
| FFD                                     | fast failure detection                                                                                                                                                                                                                                                                                                                                                               |
| FFD packet                              | A path failure detection method independent from CV. Different from a CV packet, the frequency for generating FFD packets is configurable to satisfy different service requirements. By default, the frequency is 20/s. An FFD packet contains information the same as that in a CV packet. The destination end LSR processes FFD packets in the same way for processing CV packets. |
| FIFO                                    | See first in first out.                                                                                                                                                                                                                                                                                                                                                              |
| FPGA                                    | See field programmable gate array.                                                                                                                                                                                                                                                                                                                                                   |
| FTP                                     | File Transfer Protocol                                                                                                                                                                                                                                                                                                                                                               |
| fiber distributed data interface (FDDI) | A standard developed by the American National Standards Institute (ANSI) for high-<br>speed fiber-optic LANs. FDDI provides specifications for transmission rates of 100<br>megabits per second on token ring networks.                                                                                                                                                              |
| field programmable<br>gate array (FPGA) | A semi-customized circuit that is used in the Application Specific Integrated Circuit (ASIC) field and developed based on programmable components. FPGA remedies many of the deficiencies of customized circuits, and allows the use of many more gate arrays.                                                                                                                       |
| first in first out (FIFO)               | A stack management method in which data that is stored first in a queue is also read and invoked first.                                                                                                                                                                                                                                                                              |
| forward defect<br>indication (FDI)      | A packet generated and traced forward to the sink node of the LSP by the node that first detects defects. It includes fields to indicate the nature of the defect and its location. Its primary purpose is to suppress alarms being raised at affected higher level client LSPs and (in turn) their client layers.                                                                   |
| forward error<br>correction (FEC)       | A bit error correction technology that adds correction information to the payload at the transmit end. Based on the correction information, the bit errors generated during transmission can be corrected at the receive end.                                                                                                                                                        |
| fragmentation                           | A process of breaking a packet into smaller units when transmitting over a network node that does not support the original size of the packet.                                                                                                                                                                                                                                       |
| frequency diversity<br>(FD)             | A diversity scheme in which two or more microwave frequencies with a certain frequency interval are used to transmit/receive the same signal and selection is then performed between the two signals to ease the impact of fading.                                                                                                                                                   |
| G                                       |                                                                                                                                                                                                                                                                                                                                                                                      |
| GCRA                                    | generic cell rate algorithm                                                                                                                                                                                                                                                                                                                                                          |
| GFC                                     | generic flow control                                                                                                                                                                                                                                                                                                                                                                 |
| GFP                                     | See Generic Framing Procedure.                                                                                                                                                                                                                                                                                                                                                       |
| GNE                                     | See gateway network element.                                                                                                                                                                                                                                                                                                                                                         |
| GPS                                     | See Global Positioning System.                                                                                                                                                                                                                                                                                                                                                       |
| GTS                                     | See generic traffic shaping.                                                                                                                                                                                                                                                                                                                                                         |
| GUI                                     | graphical user interface                                                                                                                                                                                                                                                                                                                                                             |

| Generic Framing<br>Procedure (GFP)              | A framing and encapsulated method that can be applied to any data type. GFP is defined by ITU-T G.7041.                                                                                                                                                                                                                                            |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Global Positioning<br>System (GPS)              | A global navigation satellite system that provides reliable positioning, navigation, and timing services to users worldwide.                                                                                                                                                                                                                       |
| gateway                                         | A device that connects two network segments using different protocols. It is used to translate the data in the two network segments.                                                                                                                                                                                                               |
| gateway network<br>element (GNE)                | An NE that serves as a gateway for other NEs to communicate with a network management system.                                                                                                                                                                                                                                                      |
| generic traffic shaping<br>(GTS)                | A traffic control measure that proactively adjusts the output speed of the traffic. This is to adapt the traffic to network resources that can be provided by the downstream router to avoid packet discarding and congestion.                                                                                                                     |
| Н                                               |                                                                                                                                                                                                                                                                                                                                                    |
| HDLC                                            | High-Level Data Link Control                                                                                                                                                                                                                                                                                                                       |
| HQoS                                            | See hierarchical quality of service.                                                                                                                                                                                                                                                                                                               |
| HSDPA                                           | See High Speed Downlink Packet Access.                                                                                                                                                                                                                                                                                                             |
| HSM                                             | hitless switch mode                                                                                                                                                                                                                                                                                                                                |
| High Speed Downlink<br>Packet Access<br>(HSDPA) | A modulating-demodulating algorithm put forward in 3GPP R5 to meet the requirement for asymmetric uplink and downlink transmission of data services. It enables the maximum downlink data service rate to reach 14.4 Mbit/s without changing the WCDMA network topology.                                                                           |
| hierarchical quality of<br>service (HQoS)       | A type of QoS that controls the traffic of users and performs the scheduling according to the priority of user services. HQoS has an advanced traffic statistics function, and the administrator can monitor the usage of bandwidth of each service. Hence, the bandwidth can be allocated reasonably through traffic analysis.                    |
| hybrid radio                                    | The hybrid transmission of Native E1 and Native Ethernet signals. Hybrid radio supports the AM function.                                                                                                                                                                                                                                           |
| I                                               |                                                                                                                                                                                                                                                                                                                                                    |
| I/O                                             | input/output                                                                                                                                                                                                                                                                                                                                       |
| ICMP                                            | See Internet Control Message Protocol.                                                                                                                                                                                                                                                                                                             |
| IDU                                             | See indoor unit.                                                                                                                                                                                                                                                                                                                                   |
| IEEE                                            | See Institute of Electrical and Electronics Engineers.                                                                                                                                                                                                                                                                                             |
| IF                                              | See intermediate frequency.                                                                                                                                                                                                                                                                                                                        |
| IGMP                                            | See Internet Group Management Protocol.                                                                                                                                                                                                                                                                                                            |
| IGMP snooping                                   | A multicast constraint mechanism running on a layer 2 device. This protocol manages<br>and controls the multicast group by listening to and analyzing Internet Group<br>Management Protocol (IGMP) packets between hosts and Layer 3 devices. In this<br>manner, the spread of the multicast data on layer 2 network can be prevented efficiently. |
| IGP                                             | See Interior Gateway Protocol.                                                                                                                                                                                                                                                                                                                     |

| IMA                                                            | See inverse multiplexing over ATM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IP                                                             | Internet Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IPv4                                                           | See Internet Protocol version 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| IPv6                                                           | See Internet Protocol version 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| IS-IS                                                          | See Intermediate System to Intermediate System.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ISDN                                                           | integrated services digital network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ISO                                                            | International Organization for Standardization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| IST                                                            | internal spanning tree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ITU                                                            | See International Telecommunication Union.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Institute of Electrical<br>and Electronics<br>Engineers (IEEE) | A professional association of electrical and electronics engineers based in the United States, but with membership from numerous other countries. The IEEE focuses on electrical, electronics, and computer engineering, and produces many important technology standards.                                                                                                                                                                                                                                                                       |
| Interior Gateway<br>Protocol (IGP)                             | A routing protocol that is used within an autonomous system. The IGP runs in small-<br>sized and medium-sized networks. The commonly used IGPs are the routing information<br>protocol (RIP), the interior gateway routing protocol (IGRP), the enhanced IGRP<br>(EIGRP), and the open shortest path first (OSPF).                                                                                                                                                                                                                               |
| Intermediate System to<br>Intermediate System<br>(IS-IS)       | A protocol used by network devices (routers) to determine the best way to forward datagram or packets through a packet-based network.                                                                                                                                                                                                                                                                                                                                                                                                            |
| International<br>Telecommunication<br>Union (ITU)              | A United Nations agency, one of the most important and influential recommendation bodies, responsible for recommending standards for telecommunication (ITU-T) and radio networks (ITU-R).                                                                                                                                                                                                                                                                                                                                                       |
| Internet Control<br>Message Protocol<br>(ICMP)                 | A network layer protocol that provides message control and error reporting between a host server and an Internet gateway.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Internet Group<br>Management Protocol<br>(IGMP)                | One of the TCP/IP protocols for managing the membership of Internet Protocol multicast groups. It is used by IP hosts and adjacent multicast routers to establish and maintain multicast group memberships.                                                                                                                                                                                                                                                                                                                                      |
| Internet Protocol<br>version 4 (IPv4)                          | The current version of the Internet Protocol (IP). IPv4 utilizes a 32bit address which is assigned to hosts. An address belongs to one of five classes (A, B, C, D, or E) and is written as 4 octets separated by periods and may range from 0.0.0.0 through to 255.255.255.255. Each IPv4 address consists of a network number, an optional subnetwork number, and a host number. The network and subnetwork numbers together are used for routing, and the host number is used to address an individual host within the network or subnetwork. |
| Internet Protocol<br>version 6 (IPv6)                          | An update version of IPv4, which is designed by the Internet Engineering Task Force (IETF) and is also called IP Next Generation (IPng). It is a new version of the Internet Protocol. The difference between IPv6 and IPv4 is that an IPv4 address has 32 bits while an IPv6 address has 128 bits.                                                                                                                                                                                                                                              |
| indoor unit (IDU)                                              | The indoor unit of the split-structured radio equipment. It implements accessing, multiplexing/demultiplexing, and intermediate frequency (IF) processing for services.                                                                                                                                                                                                                                                                                                                                                                          |

| intermediate frequency<br>(IF)                 | The transitional frequency between the frequencies of a modulated signal and an RF signal.                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| inverse multiplexing<br>over ATM (IMA)         | A technique that involves inverse multiplexing and de-multiplexing of ATM cells in a cyclical fashion among links grouped to form a higher bandwidth logical link whose rate is approximately the sum of the link rates.                                                                                                                                                                                                  |
| L                                              |                                                                                                                                                                                                                                                                                                                                                                                                                           |
| L2VPN                                          | Layer 2 virtual private network                                                                                                                                                                                                                                                                                                                                                                                           |
| LACP                                           | See Link Aggregation Control Protocol.                                                                                                                                                                                                                                                                                                                                                                                    |
| LAG                                            | See link aggregation group.                                                                                                                                                                                                                                                                                                                                                                                               |
| LAN                                            | See local area network.                                                                                                                                                                                                                                                                                                                                                                                                   |
| LAPS                                           | Link Access Protocol-SDH                                                                                                                                                                                                                                                                                                                                                                                                  |
| LB                                             | See loopback.                                                                                                                                                                                                                                                                                                                                                                                                             |
| LCAS                                           | See link capacity adjustment scheme.                                                                                                                                                                                                                                                                                                                                                                                      |
| LM                                             | See loss measurement.                                                                                                                                                                                                                                                                                                                                                                                                     |
| LOS                                            | See loss of signal.                                                                                                                                                                                                                                                                                                                                                                                                       |
| LPT                                            | link-state pass through                                                                                                                                                                                                                                                                                                                                                                                                   |
| LSDB                                           | link state database                                                                                                                                                                                                                                                                                                                                                                                                       |
| LSP                                            | See label switched path.                                                                                                                                                                                                                                                                                                                                                                                                  |
| LSP tunnel                                     | An LSP over which traffic is transmitted based on labels that are assigned to FECs on the ingress. The traffic is transparent to the intermediate nodes                                                                                                                                                                                                                                                                   |
| LSR                                            | See label switching router.                                                                                                                                                                                                                                                                                                                                                                                               |
| LTE                                            | Long Term Evolution                                                                                                                                                                                                                                                                                                                                                                                                       |
| Layer 2 switching                              | A data forwarding method. In a LAN, a network bridge or 802.3 Ethernet switch transmits and distributes packet data based on the MAC address. Since the MAC address is at the second layer of the OSI model, this data forwarding method is called Layer 2 switching.                                                                                                                                                     |
| Link Aggregation<br>Control Protocol<br>(LACP) | A dynamic link aggregation protocol that improves the transmission speed and<br>reliability. The two ends of the link send LACP packets to inform each other of their<br>parameters and form a logical aggregation link. After the aggregation link is formed,<br>LACP maintains the link status in real time and dynamically adjusts the ports on the<br>aggregation link upon detecting the failure of a physical port. |
| label switched path<br>(LSP)                   | A sequence of hops (R0Rn) in which a packet travels from R0 to Rn through label switching mechanisms. A label-switched path can be chosen dynamically, based on common routing mechanisms or through configuration.                                                                                                                                                                                                       |
| label switching router<br>(LSR)                | Basic element of an MPLS network. All LSRs support the MPLS protocol. The LSR is composed of two parts: control unit and forwarding unit. The former is responsible for allocating the label, selecting the route, creating the label forwarding table, creating and removing the label switch path; the latter forwards the labels according to groups received in the label forwarding table.                           |

| laser                                        | A component that generates directional optical waves of narrow wavelengths. The laser light has better coherence than ordinary light. Semi-conductor lasers provide the light used in a fiber system.                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| line rate                                    | The maximum packet forwarding capacity on a cable. The value of line rate equals the maximum transmission rate capable on a given type of media.                                                                                                                                                                                                                                                                                                                                                       |
| link aggregation group<br>(LAG)              | An aggregation that allows one or more links to be aggregated together to form a link aggregation group so that a MAC client can treat the link aggregation group as if it were a single link.                                                                                                                                                                                                                                                                                                         |
| link capacity<br>adjustment scheme<br>(LCAS) | LCAS in the virtual concatenation source and sink adaptation functions provides a control mechanism to hitless increase or decrease the capacity of a link to meet the bandwidth needs of the application. It also provides a means of removing member links that have experienced failure. The LCAS assumes that in cases of capacity initiation, increases or decreases, the construction or destruction of the end-to-end path is the responsibility of the network and element management systems. |
| local area network<br>(LAN)                  | A network formed by the computers and workstations within the coverage of a few square kilometers or within a single building, featuring high speed and low error rate. Current LANs are generally based on switched Ethernet or Wi-Fi technology and run at 1,000 Mbit/s (that is, 1 Gbit/s).                                                                                                                                                                                                         |
| loopback (LB)                                | A troubleshooting technique that returns a transmitted signal to its source so that the signal or message can be analyzed for errors. The loopback can be a inloop or outloop.                                                                                                                                                                                                                                                                                                                         |
| loss measurement (LM)                        | A method used to collect counter values applicable for ingress and egress service frames where the counters maintain a count of transmitted and received data frames between a pair of MEPs.                                                                                                                                                                                                                                                                                                           |
| loss of signal (LOS)                         | No transitions occurring in the received signal.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| М                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MA                                           | maintenance association                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MAC                                          | See Media Access Control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MADM                                         | multiple add/drop multiplexer                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MBS                                          | maximum burst size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MD                                           | See maintenance domain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MD5                                          | See message digest algorithm 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MDI                                          | medium dependent interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MEP                                          | maintenance association end point                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MIB                                          | See management information base.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MLPPP                                        | Multi-Link Point-to-Point Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MP                                           | maintenance point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MPLS                                         | See Multiprotocol Label Switching.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MPLS L2VPN                                   | A network that provides the Layer 2 VPN service based on an MPLS network. In this case, on a uniform MPLS network, the carrier is able to provide Layer 2 VPNs of different media types, such as ATM, FR, VLAN, Ethernet, and PPP.                                                                                                                                                                                                                                                                     |

| MPLS TE                                                         | multiprotocol label switching traffic engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MPLS VPN                                                        | See multiprotocol label switching virtual private network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MPLS-TP                                                         | See MultiProtocol Label Switching Transport Profile.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MS                                                              | multiplex section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MSP                                                             | See multiplex section protection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MST region                                                      | See Multiple Spanning Tree region.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MSTI                                                            | See multiple spanning tree instance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MSTP                                                            | See Multiple Spanning Tree Protocol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MTBF                                                            | See mean time between failures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MTTR                                                            | See mean time to repair.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MTU                                                             | See maximum transmission unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Media Access Control<br>(MAC)                                   | A protocol at the media access control sublayer. The protocol is at the lower part of the data link layer in the OSI model and is mainly responsible for controlling and connecting the physical media at the physical layer. When transmitting data, the MAC protocol checks whether to be able to transmit data. If the data can be transmitted, certain control information is added to the data, and then the data and the control information are transmitted in a specified format to the physical layer. When receiving data, the MAC protocol checks whether the information is correct and whether the data is transmitted correctly. If the information is correct and the data is transmitted to the LLC layer. |
| MultiProtocol Label<br>Switching Transport<br>Profile (MPLS-TP) | A packet transport technology proposed by IETF that combines the packet experience of MPLS with the operational experience of transport networks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Multiple Spanning<br>Tree Protocol (MSTP)                       | A protocol that can be used in a loop network. Using an algorithm, the MSTP blocks redundant paths so that the loop network can be trimmed as a tree network. In this case, the proliferation and endless cycling of packets is avoided in the loop network. The protocol that introduces the mapping between VLANs and multiple spanning trees. This solves the problem that data cannot be normally forwarded in a VLAN because in STP/RSTP, only one spanning tree corresponds to all the VLANs.                                                                                                                                                                                                                        |
| Multiple Spanning<br>Tree region (MST<br>region)                | A region that consists of switches that support the MSTP in the LAN and links among them. Switches physically and directly connected and configured with the same MST region attributes belong to the same MST region.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Multiprotocol Label<br>Switching (MPLS)                         | A technology that uses short tags of fixed length to encapsulate packets in different link layers, and provides connection-oriented switching for the network layer on the basis of IP routing and control protocols.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| maintenance domain<br>(MD)                                      | The network or the part of the network for which connectivity is managed by connectivity fault management (CFM). The devices in a maintenance domain are managed by a single Internet service provider (ISP).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| management<br>information base (MIB)                            | A type of database used for managing the devices in a communications network. It comprises a collection of objects in a (virtual) database used to manage entities (such as routers and switches) in a network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| maximum transmission<br>unit (MTU)                                        | The largest packet of data that can be transmitted on a network. MTU size varies, depending on the network—576 bytes on X.25 networks, for example, 1500 bytes on Ethernet, and 17,914 bytes on 16 Mbit/s token ring. Responsibility for determining the size of the MTU lies with the link layer of the network. When packets are transmitted across networks, the path MTU, or PMTU, represents the smallest packet size (the one that all networks can transmit without breaking up the packet) among the networks involved. |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mean time between<br>failures (MTBF)                                      | The average time between consecutive failures of a piece of equipment. It is a measure of the reliability of the system.                                                                                                                                                                                                                                                                                                                                                                                                        |
| mean time to repair<br>(MTTR)                                             | The average time that a device will take to recover from a failure.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| message digest<br>algorithm 5 (MD5)                                       | A hash function that is used in a variety of security applications to check message integrity. MD5 processes a variable-length message into a fixed-length output of 128 bits. It breaks up an input message into 512-bit blocks (sixteen 32-bit little-endian integers). After a series of processing, the output consists of four 32-bit words, which are then cascaded into a 128-bit hash number.                                                                                                                           |
| multicast                                                                 | A process of transmitting data packets from one source to many destinations. The destination address of the multicast packet uses Class D address, that is, the IP address ranges from 224.0.0.0 to 239.255.255.255. Each multicast address represents a multicast group rather than a host.                                                                                                                                                                                                                                    |
| multiple spanning tree<br>instance (MSTI)                                 | A type of spanning trees calculated by MSTP within an MST Region, to provide a simply<br>and fully connected active topology for frames classified as belonging to a VLAN that<br>is mapped to the MSTI by the MST Configuration. A VLAN cannot be assigned to<br>multiple MSTIs.                                                                                                                                                                                                                                               |
| multiplex section<br>protection (MSP)                                     | A function, which is performed to provide capability for switching a signal between and including two multiplex section termination (MST) functions, from a "working" to a "protection" channel.                                                                                                                                                                                                                                                                                                                                |
| multiprotocol label<br>switching virtual<br>private network<br>(MPLS VPN) | An Internet Protocol (IP) virtual private network (VPN) based on the multiprotocol label<br>switching (MPLS) technology. It applies the MPLS technology for network routers and<br>switches, simplifies the routing mode of core routers, and combines traditional routing<br>technology and label switching technology. It can be used to construct the broadband<br>Intranet and Extranet to meet various service requirements.                                                                                               |
| Ν                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| N+1 protection                                                            | A radio link protection system composed of N working channels and one protection channel.                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NE                                                                        | network element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| NE Explorer                                                               | The main operation interface of the NMS, which is used to manage the telecommunication equipment. In the NE Explorer, a user can query, manage, and maintain NEs, boards, and ports.                                                                                                                                                                                                                                                                                                                                            |
| NNI                                                                       | network-to-network interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NPE                                                                       | network provider edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NSAP                                                                      | See network service access point.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NSF                                                                       | non-stop forwarding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| network service access<br>point (NSAP)                | A network address defined by ISO, at which the OSI Network Service is made available to a Network service user by the Network service provider.                                                                                                                                                           |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| network storm                                         | A phenomenon that occurs during data communication. To be specific, mass broadcast packets are transmitted in a short time; the network is congested; transmission quality and availability of the network decrease rapidly. The network storm is caused by network connection or configuration problems. |
| node                                                  | A managed device in the network. For a device with a single frame, one node stands for one device. For a device with multiple frames, one node stands for one frame of the device.                                                                                                                        |
| non-GNE                                               | See non-gateway network element.                                                                                                                                                                                                                                                                          |
| non-gateway network<br>element (non-GNE)              | A network element that communicates with the NM application layer through the gateway NE application layer.                                                                                                                                                                                               |
| 0                                                     |                                                                                                                                                                                                                                                                                                           |
| O&M                                                   | operation and maintenance                                                                                                                                                                                                                                                                                 |
| OAM                                                   | See operation, administration and maintenance.                                                                                                                                                                                                                                                            |
| OAMPDU                                                | operation, administration and maintenance protocol data unit                                                                                                                                                                                                                                              |
| ODF                                                   | optical distribution frame                                                                                                                                                                                                                                                                                |
| ODU                                                   | See outdoor unit.                                                                                                                                                                                                                                                                                         |
| OSPF                                                  | See Open Shortest Path First.                                                                                                                                                                                                                                                                             |
| Open Shortest Path<br>First (OSPF)                    | A link-state, hierarchical interior gateway protocol (IGP) for network routing that uses cost as its routing metric. A link state database is constructed of the network topology, which is identical on all routers in the area.                                                                         |
| operation,<br>administration and<br>maintenance (OAM) | A set of network management functions that cover fault detection, notification, location, and repair.                                                                                                                                                                                                     |
| orderwire                                             | A channel that provides voice communication between operation engineers or maintenance engineers of different stations.                                                                                                                                                                                   |
| outdoor unit (ODU)                                    | The outdoor unit of the split-structured radio equipment. It implements frequency conversion and amplification for radio frequency (RF) signals.                                                                                                                                                          |
| Р                                                     |                                                                                                                                                                                                                                                                                                           |
| P2P                                                   | See point-to-point service.                                                                                                                                                                                                                                                                               |
| PBS                                                   | See peak burst size.                                                                                                                                                                                                                                                                                      |
| РСВ                                                   | See printed circuit board.                                                                                                                                                                                                                                                                                |
| PDH                                                   | See plesiochronous digital hierarchy.                                                                                                                                                                                                                                                                     |
| PDU                                                   | protocol data unit                                                                                                                                                                                                                                                                                        |
| PE                                                    | See provider edge.                                                                                                                                                                                                                                                                                        |
| РНВ                                                   | See per-hop behavior.                                                                                                                                                                                                                                                                                     |

| PIR                                             | peak information rate                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PLA                                             | See physical link aggregation.                                                                                                                                                                                                                                                                                                                                                                               |
| PLL                                             | See phase-locked loop.                                                                                                                                                                                                                                                                                                                                                                                       |
| PPP                                             | Point-to-Point Protocol                                                                                                                                                                                                                                                                                                                                                                                      |
| PRBS                                            | See pseudo random binary sequence.                                                                                                                                                                                                                                                                                                                                                                           |
| PRI                                             | primary rate interface                                                                                                                                                                                                                                                                                                                                                                                       |
| PSN                                             | See packet switched network.                                                                                                                                                                                                                                                                                                                                                                                 |
| PSTN                                            | See public switched telephone network.                                                                                                                                                                                                                                                                                                                                                                       |
| PTN                                             | packet transport network                                                                                                                                                                                                                                                                                                                                                                                     |
| РТР                                             | Precision Time Protocol                                                                                                                                                                                                                                                                                                                                                                                      |
| PTP clock                                       | See Precision Time Protocol clock.                                                                                                                                                                                                                                                                                                                                                                           |
| PVP                                             | See permanent virtual path.                                                                                                                                                                                                                                                                                                                                                                                  |
| PW                                              | See pseudo wire.                                                                                                                                                                                                                                                                                                                                                                                             |
| PWE3                                            | See pseudo wire emulation edge-to-edge.                                                                                                                                                                                                                                                                                                                                                                      |
| Precision Time<br>Protocol clock (PTP<br>clock) | A type of high-decision clock defined by the IEEE 1588 V2 standard. The IEEE 1588 V2 standard specifies the precision time protocol (PTP) in a measurement and control system. The PTP protocol ensures clock synchronization precise to sub-microseconds.                                                                                                                                                   |
| packet switched<br>network (PSN)                | A telecommunications network that works in packet switching mode.                                                                                                                                                                                                                                                                                                                                            |
| paired slots                                    | Two slots of which the overheads can be passed through by using the bus on the backplane.                                                                                                                                                                                                                                                                                                                    |
| peak burst size (PBS)                           | A parameter that defines the capacity of token bucket P, that is, the maximum burst IP packet size when the information is transferred at the peak information rate.                                                                                                                                                                                                                                         |
| per-hop behavior<br>(PHB)                       | IETF Diff-Serv workgroup defines forwarding behaviors of network nodes as per-hop<br>behaviors (PHB), such as, traffic scheduling and policing. A device in the network should<br>select the proper PHB behaviors, based on the value of DSCP. At present, the IETF<br>defines four types of PHB. They are class selector (CS), expedited forwarding (EF),<br>assured forwarding (AF), and best-effort (BE). |
| permanent virtual path<br>(PVP)                 | Virtual path that consists of PVCs.                                                                                                                                                                                                                                                                                                                                                                          |
| phase-locked loop<br>(PLL)                      | A circuit that consists essentially of a phase detector that compares the frequency of a voltage-controlled oscillator with that of an incoming carrier signal or reference-frequency generator. The output of the phase detector, after passing through a loop filter, is fed back to the voltage-controlled oscillator to keep it exactly in phase with the incoming or reference frequency.               |
| physical link<br>aggregation (PLA)              | Being a technology providing load balancing based on physical layer bandwidths, physical link aggregation (PLA) combines Ethernet transmission paths in several Integrated IP radio links into a logical Ethernet link for higher Ethernet bandwidth and Ethernet transmission reliability.                                                                                                                  |

| plesiochronous digital<br>hierarchy (PDH)      | A multiplexing scheme of bit stuffing and byte interleaving. It multiplexes the minimum rate 64 kit/s into rates of 2 Mbit/s, 34 Mbit/s, 140 Mbit/s, and 565 Mbit/s.                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| point-to-point service<br>(P2P)                | A service between two terminal users. In P2P services, senders and recipients are terminal users.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| polarization                                   | A kind of electromagnetic wave, the direction of whose electric field vector is fixed or rotates regularly. Specifically, if the electric field vector of the electromagnetic wave is perpendicular to the plane of horizon, this electromagnetic wave is called vertically polarized wave; if the electric field vector of the electromagnetic wave is parallel to the plane of horizon, this electromagnetic wave is called horizontal polarized wave; if the tip of the electric field vector, at a fixed point in space, describes a circle, this electromagnetic wave is called circularly polarized wave. |
| printed circuit board<br>(PCB)                 | A board used to mechanically support and electrically connect electronic components<br>using conductive pathways, tracks, or traces, etched from copper sheets laminated onto<br>a non-conductive substrate.                                                                                                                                                                                                                                                                                                                                                                                                    |
| provider edge (PE)                             | A device that is located in the backbone network of the MPLS VPN structure. A PE is responsible for managing VPN users, establishing LSPs between PEs, and exchanging routing information between sites of the same VPN. A PE performs the mapping and forwarding of packets between the private network and the public channel. A PE can be a UPE, an SPE, or an NPE.                                                                                                                                                                                                                                          |
| pseudo random binary<br>sequence (PRBS)        | A sequence that is random in the sense that the value of each element is independent of the values of any of the other elements, similar to a real random sequence.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| pseudo wire (PW)                               | An emulated connection between two PEs for transmitting frames. The PW is established<br>and maintained by PEs through signaling protocols. The status information of a PW is<br>maintained by the two end PEs of a PW.                                                                                                                                                                                                                                                                                                                                                                                         |
| pseudo wire emulation<br>edge-to-edge (PWE3)   | An end-to-end Layer 2 transmission technology. It emulates the essential attributes of a telecommunication service such as ATM, FR or Ethernet in a packet switched network (PSN). PWE3 also emulates the essential attributes of low speed time division multiplexing (TDM) circuit and SONET/SDH. The simulation approximates to the real situation.                                                                                                                                                                                                                                                          |
| public switched<br>telephone network<br>(PSTN) | A telecommunications network established to perform telephone services for the public subscribers. Sometimes it is called POTS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Q                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| QPSK                                           | See quadrature phase shift keying.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| QinQ                                           | See 802.1Q in 802.1Q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| QoS                                            | See quality of service.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| quadrature phase shift<br>keying (QPSK)        | A modulation method of data transmission through the conversion or modulation and<br>the phase determination of the reference signals (carrier). It is also called the fourth period<br>or 4-phase PSK or 4-PSK. QPSK uses four dots in the star diagram. The four dots are<br>evenly distributed on a circle. On these phases, each QPSK character can perform two-<br>bit coding and display the codes in Gray code on graph with the minimum BER.                                                                                                                                                            |

| quality of service (QoS)                                  | A commonly-used performance indicator of a telecommunication system or channel.<br>Depending on the specific system and service, it may relate to jitter, delay, packet loss<br>ratio, bit error ratio, and signal-to-noise ratio. It functions to measure the quality of the<br>transmission system and the effectiveness of the services, as well as the capability of a<br>service provider to meet the demands of users. |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RADIUS                                                    | See Remote Authentication Dial In User Service.                                                                                                                                                                                                                                                                                                                                                                              |
| <b>RADIUS</b> accounting                                  | An accounting mode in which the BRAS sends the accounting packets to the RADIUS server. Then the RADIUS server performs accounting.                                                                                                                                                                                                                                                                                          |
| RDI                                                       | remote defect indication                                                                                                                                                                                                                                                                                                                                                                                                     |
| RED                                                       | See random early detection.                                                                                                                                                                                                                                                                                                                                                                                                  |
| REI                                                       | remote error indication                                                                                                                                                                                                                                                                                                                                                                                                      |
| RF                                                        | See radio frequency.                                                                                                                                                                                                                                                                                                                                                                                                         |
| RFC                                                       | See Request For Comments.                                                                                                                                                                                                                                                                                                                                                                                                    |
| RMEP                                                      | remote maintenance association end point                                                                                                                                                                                                                                                                                                                                                                                     |
| RMON                                                      | remote network monitoring                                                                                                                                                                                                                                                                                                                                                                                                    |
| RNC                                                       | See radio network controller.                                                                                                                                                                                                                                                                                                                                                                                                |
| RSL                                                       | See received signal level.                                                                                                                                                                                                                                                                                                                                                                                                   |
| RSSI                                                      | See received signal strength indicator.                                                                                                                                                                                                                                                                                                                                                                                      |
| RSTP                                                      | See Rapid Spanning Tree Protocol.                                                                                                                                                                                                                                                                                                                                                                                            |
| RSVP                                                      | See Resource Reservation Protocol.                                                                                                                                                                                                                                                                                                                                                                                           |
| RTN                                                       | radio transmission node                                                                                                                                                                                                                                                                                                                                                                                                      |
| RTSP                                                      | Real-Time Streaming Protocol                                                                                                                                                                                                                                                                                                                                                                                                 |
| Rapid Spanning Tree<br>Protocol (RSTP)                    | An evolution of the Spanning Tree Protocol (STP) that provides faster spanning tree convergence after a topology change. The RSTP protocol is backward compatible with the STP protocol.                                                                                                                                                                                                                                     |
| Remote Authentication<br>Dial In User Service<br>(RADIUS) | A security service that authenticates and authorizes dial-up users and is a centralized access control mechanism. RADIUS uses the User Datagram Protocol (UDP) as its transmission protocol to ensure real-time quality. RADIUS also supports the retransmission and multi-server mechanisms to ensure good reliability.                                                                                                     |
| Request For Comments<br>(RFC)                             | A document in which a standard, a protocol, or other information pertaining to the operation of the Internet is published. The RFC is actually issued, under the control of the IAB, after discussion and serves as the standard. RFCs can be obtained from sources such as InterNIC.                                                                                                                                        |
| Resource Reservation<br>Protocol (RSVP)                   | A protocol that reserves resources on every node along a path. RSVP is designed for an integrated services Internet.                                                                                                                                                                                                                                                                                                         |
| RoHS                                                      | restriction of the use of certain hazardous substances                                                                                                                                                                                                                                                                                                                                                                       |

| radio frequency (RF)                         | A type of electric current in the wireless network using AC antennas to create an electromagnetic field. It is the abbreviation of high-frequency AC electromagnetic wave. The AC with the frequency lower than 1 kHz is called low-frequency current. The AC with frequency higher than 10 kHz is called high-frequency current. RF can be classified into such high-frequency current.         |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| radio network<br>controller (RNC)            | A device in a radio network subsystem that is in charge of controlling the usage and integrity of radio resources.                                                                                                                                                                                                                                                                               |
| random early detection<br>(RED)              | A packet loss algorithm used in congestion avoidance. It discards the packet according to the specified higher limit and lower limit of a queue so that global TCP synchronization resulting from traditional tail drop can be prevented.                                                                                                                                                        |
| real-time variable bit<br>rate (rt-VBR)      | A parameter intended for real-time applications, such as compressed voice over IP (VoIP) and video conferencing. The rt-VBR is characterized by a peak cell rate (PCR), sustained cell rate (SCR), and maximum burst size (MBS). You can expect the source device to transmit in bursts and at a rate that varies with time.                                                                     |
| received signal level<br>(RSL)               | The signal level at a receiver input terminal.                                                                                                                                                                                                                                                                                                                                                   |
| received signal strength<br>indicator (RSSI) | The received wide band power, including thermal noise and noise generated in the receiver, within the bandwidth defined by the receiver pulse shaping filter, for TDD within a specified timeslot. The reference point for the measurement shall be the antenna                                                                                                                                  |
| receiver sensitivity                         | The minimum acceptable value of mean received power at point Rn (a reference point at an input to a receiver optical connector) to achieve a $1x10-12$ BER when the FEC is enabled.                                                                                                                                                                                                              |
| regeneration                                 | The process of receiving and reconstructing a digital signal so that the amplitudes, waveforms and timing of its signal elements are constrained within specified limits.                                                                                                                                                                                                                        |
| route                                        | The path that network traffic takes from its source to its destination. Routes can change dynamically.                                                                                                                                                                                                                                                                                           |
| router                                       | A device on the network layer that selects routes in the network. The router selects the optimal route according to the destination address of the received packet through a network and forwards the packet to the next router. The last router is responsible for sending the packet to the destination host. Can be used to connect a LAN to a LAN, a WAN to a WAN, or a LAN to the Internet. |
| rt-VBR                                       | See real-time variable bit rate.                                                                                                                                                                                                                                                                                                                                                                 |
| S                                            |                                                                                                                                                                                                                                                                                                                                                                                                  |
| SAI                                          | service area identifier                                                                                                                                                                                                                                                                                                                                                                          |
| SAToP                                        | Structure-Agnostic Time Division Multiplexing over Packet                                                                                                                                                                                                                                                                                                                                        |
| SCSI                                         | Small Computer System Interface                                                                                                                                                                                                                                                                                                                                                                  |
| SD                                           | See space diversity.                                                                                                                                                                                                                                                                                                                                                                             |
| SDH                                          | See synchronous digital hierarchy.                                                                                                                                                                                                                                                                                                                                                               |
| SEC                                          | security screening                                                                                                                                                                                                                                                                                                                                                                               |
| SES                                          | severely errored second                                                                                                                                                                                                                                                                                                                                                                          |
| SETS                                         | SDH equipment timing source                                                                                                                                                                                                                                                                                                                                                                      |

| SF                                                 | See signal fail.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SFP                                                | small form-factor pluggable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SLA                                                | See service level agreement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SNCP                                               | subnetwork connection protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SNMP                                               | See Simple Network Management Protocol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SNR                                                | See signal-to-noise ratio.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SSL                                                | See Secure Sockets Layer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SSM                                                | See Synchronization Status Message.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| STM                                                | See synchronous transport module.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| STM-1                                              | See Synchronous Transport Module level 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| STM-4                                              | Synchronous Transport Module level 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| STM-N                                              | Synchronous Transport Module level N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| STP                                                | Spanning Tree Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Secure Sockets Layer<br>(SSL)                      | A security protocol that works at a socket level. This layer exists between the TCP layer and the application layer to encrypt/decode data and authenticate concerned entities.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Simple Network<br>Management Protocol<br>(SNMP)    | A network management protocol of TCP/IP. It enables remote users to view and modify<br>the management information of a network element. This protocol ensures the<br>transmission of management information between any two points. The polling<br>mechanism is adopted to provide basic function sets. According to SNMP, agents, which<br>can be hardware as well as software, can monitor the activities of various devices on the<br>network and report these activities to the network console workstation. Control<br>information about each device is maintained by a management information block. |
| Synchronization Status<br>Message (SSM)            | A message that carries the quality levels of timing signals on a synchronous timing link.<br>SSM messages provide upstream clock information to nodes on an SDH network or<br>synchronization network.                                                                                                                                                                                                                                                                                                                                                                                                     |
| Synchronous<br>Transport Module level<br>1 (STM-1) | Synchronous transfer mode at 155 Mbit/s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| service level agreement<br>(SLA)                   | A service agreement between a customer and a service provider. SLA specifies the service level for a customer. The customer can be a user organization (source domain) or another differentiated services domain (upstream domain). An SLA may include traffic conditioning rules which constitute a traffic conditioning agreement as a whole or partially.                                                                                                                                                                                                                                               |
| signal fail (SF)                                   | A signal indicating that associated data has failed in the sense that a near-end defect condition (non-degrade defect) is active.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| signal-to-noise ratio<br>(SNR)                     | The ratio of the amplitude of the desired signal to the amplitude of noise signals at a given point in time. SNR is expressed as 10 times the logarithm of the power ratio and is usually expressed in dB.                                                                                                                                                                                                                                                                                                                                                                                                 |
| single-ended switching                             | A protection mechanism that takes switching action only at the affected end of the protected entity in the case of a unidirectional failure.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| single-polarized<br>antenna            | An antenna intended to radiate or receive radio waves with only one specified polarization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| space diversity (SD)                   | A diversity scheme that enables two or more antennas separated by a specific distance<br>to transmit/receive the same signal and selection is then performed between the two<br>signals to ease the impact of fading. Currently, only receive SD is used.                                                                                                                                                                                                                                                                                                                                                                             |
| subnet mask                            | The technique used by the IP protocol to determine which network segment packets are destined for. The subnet mask is a binary pattern that is stored in the device and is matched with the IP address.                                                                                                                                                                                                                                                                                                                                                                                                                               |
| synchronous digital<br>hierarchy (SDH) | A transmission scheme that follows ITU-T G.707, G.708, and G.709. SDH defines the transmission features of digital signals, such as frame structure, multiplexing mode, transmission rate level, and interface code. SDH is an important part of ISDN and B-ISDN.                                                                                                                                                                                                                                                                                                                                                                     |
| synchronous transport<br>module (STM)  | An information structure used to support section layer connections in the SDH. It consists<br>of information payload and Section Overhead (SOH) information fields organized in a<br>block frame structure which repeats every 125. The information is suitably conditioned<br>for serial transmission on the selected media at a rate which is synchronized to the<br>network. A basic STM is defined at 155 520 kbit/s. This is termed STM-1. Higher<br>capacity STMs are formed at rates equivalent to N times this basic rate. STM capacities<br>for N = 4, N = 16 and N = 64 are defined; higher values are under consideration. |
| Т                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| T1                                     | A North American standard for high-speed data transmission at 1.544Mbps. It provides 24 x 64 kbit/s channels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TCI                                    | tag control information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ТСР                                    | See Transmission Control Protocol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TCP/IP                                 | Transmission Control Protocol/Internet Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TD-SCDMA                               | See Time Division-Synchronous Code Division Multiple Access.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TDD                                    | time division duplex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TDM                                    | See time division multiplexing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TDMA                                   | See Time Division Multiple Access.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ТЕ                                     | See traffic engineering.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TEDB                                   | See traffic engineering database.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TIM                                    | trace identifier mismatch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TMN                                    | See telecommunications management network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TOS                                    | test operation system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TTL                                    | See time to live.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TUG                                    | tributary unit group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Telnet                                 | A standard terminal emulation protocol in the TCP/IP protocol stack. Telnet allows users to log in to remote systems and use resources as if they were connected to a local system. Telnet is defined in RFC 854.                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Time Division Multiple<br>Access (TDMA)                                      | An approach used for allocating a single channel among many users, by dividing the channel into different timeslots during which each user has access to the medium.                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Time Division-<br>Synchronous Code<br>Division Multiple<br>Access (TD-SCDMA) | A 3G mobile communications standard found in UMTS mobile telecommunications<br>networks in China as an alternative to W-CDMA. TD-SCDMA integrates technologies<br>of CDMA, TDMA, and FDMA, and makes use of technologies including intelligent<br>antenna, joint detection, low chip rate (LCR), and adaptive power control. With the<br>flexibility of service processing, a TD-SCDMA network can connect to other networks<br>through the RNC. |
| Transmission Control<br>Protocol (TCP)                                       | The protocol within TCP/IP that governs the breakup of data messages into packets to<br>be sent using Internet Protocol (IP), and the reassembly and verification of the complete<br>messages from packets received by IP. A connection-oriented, reliable protocol (reliable<br>in the sense of ensuring error-free delivery), TCP corresponds to the transport layer in<br>the ISO/OSI reference model.                                        |
| tail drop                                                                    | A congestion management mechanism, in which packets arrive later are discarded when<br>the queue is full. This policy of discarding packets may result in network-wide<br>synchronization due to the TCP slow startup mechanism.                                                                                                                                                                                                                 |
| tangent ring                                                                 | A concept borrowed from geometry. Two tangent rings have a common node between them. The common node often leads to single-point failures.                                                                                                                                                                                                                                                                                                       |
| telecommunications<br>management network<br>(TMN)                            | A protocol model defined by ITU-T for managing open systems in a communications network. TMN manages the planning, provisioning, installation, and OAM of equipment, networks, and services.                                                                                                                                                                                                                                                     |
| time division<br>multiplexing (TDM)                                          | A multiplexing technology. TDM divides the sampling cycle of a channel into time slots $(TSn, n=0, 1, 2, 3)$ , and the sampling value codes of multiple signals engross time slots in a certain order, forming multiple multiplexing digital signals to be transmitted over one channel.                                                                                                                                                         |
| time to live (TTL)                                                           | A specified period of time for best-effort delivery systems to prevent packets from looping endlessly.                                                                                                                                                                                                                                                                                                                                           |
| trTCM                                                                        | See two rate three color marker.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| traffic engineering (TE)                                                     | A technology that is used to dynamically monitor the traffic of the network and the load<br>of the network elements, to adjust in real time the parameters such as traffic management<br>parameters, route parameters and resource restriction parameters, and to optimize the<br>utilization of network resources. The purpose is to prevent the congestion caused by<br>unbalanced loads.                                                      |
| traffic engineering<br>database (TEDB)                                       | A type of database that every router generates after collecting the information about TE of every links in its area. TEDB is the base of forming the dynamic TE path in the MPLS TE network.                                                                                                                                                                                                                                                     |
| tributary loopback                                                           | A fault can be located for each service path by performing loopback to each path of the tributary board. There are three kinds of loopback modes: no loopback, outloop, and inloop.                                                                                                                                                                                                                                                              |
| tunnel                                                                       | A channel on the packet switching network that transmits service traffic between PEs.<br>In VPN, a tunnel is an information transmission channel between two entities. The tunnel<br>ensures secure and transparent transmission of VPN information. In most cases, a tunnel<br>is an MPLS tunnel.                                                                                                                                               |

| two rate three color<br>marker (trTCM) | An algorithm that meters an IP packet stream and marks its packets based on two rates,<br>Peak Information Rate (PIR) and Committed Information Rate (CIR), and their<br>associated burst sizes to be either green, yellow, or red. A packet is marked red if it<br>exceeds the PIR. Otherwise it is marked either yellow or green depending on whether it<br>exceeds or does not exceed the CIR.                                                      |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| UART                                   | universal asynchronous receiver/transmitter                                                                                                                                                                                                                                                                                                                                                                                                            |
| UAS                                    | unavailable second                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| UBR                                    | unspecified bit rate                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| UBR+                                   | Unspecified Bit Rate Plus                                                                                                                                                                                                                                                                                                                                                                                                                              |
| UDP                                    | See User Datagram Protocol.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| UI                                     | user interface                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| UNI                                    | See user-to-network interface.                                                                                                                                                                                                                                                                                                                                                                                                                         |
| UPC                                    | See usage parameter control.                                                                                                                                                                                                                                                                                                                                                                                                                           |
| User Datagram<br>Protocol (UDP)        | A TCP/IP standard protocol that allows an application program on one device to send a datagram to an application program on another. UDP uses IP to deliver datagrams. UDP provides application programs with the unreliable connectionless packet delivery service. That is, UDP messages may be lost, duplicated, delayed, or delivered out of order. The destination device does not actively confirm whether the correct data packet is received.  |
| unicast                                | The process of sending data from a source to a single recipient.                                                                                                                                                                                                                                                                                                                                                                                       |
| usage parameter<br>control (UPC)       | During communications, UPC is implemented to monitor the actual traffic on each virtual circuit that is input to the network. Once the specified parameter is exceeded, measures will be taken to control. NPC is similar to UPC in function. The difference is that the incoming traffic monitoring function is divided into UPC and NPC according to their positions. UPC locates at the user/network interface, while NPC at the network interface. |
| user-to-network<br>interface (UNI)     | The interface between user equipment and private or public network equipment (for example, ATM switches).                                                                                                                                                                                                                                                                                                                                              |
| V                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| V-NNI                                  | virtual network-network interface                                                                                                                                                                                                                                                                                                                                                                                                                      |
| V-UNI                                  | See virtual user-network interface.                                                                                                                                                                                                                                                                                                                                                                                                                    |
| VB                                     | virtual bridge                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| VBR                                    | See variable bit rate.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| VC                                     | See virtual container.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| VCC                                    | See virtual channel connection.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| VCCV                                   | virtual circuit connectivity verification                                                                                                                                                                                                                                                                                                                                                                                                              |
| VCG                                    | See virtual concatenation group.                                                                                                                                                                                                                                                                                                                                                                                                                       |
| VCI                                    | virtual channel identifier                                                                                                                                                                                                                                                                                                                                                                                                                             |

| VCTRUNK                                              | A virtual concatenation group applied in data service mapping, also called the internal port of a data service processing board.                                                                                                                              |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VLAN                                                 | virtual local area network                                                                                                                                                                                                                                    |
| VPI                                                  | See virtual path identifier.                                                                                                                                                                                                                                  |
| VPLS                                                 | virtual private LAN segment                                                                                                                                                                                                                                   |
| VPN                                                  | virtual private network                                                                                                                                                                                                                                       |
| VSWR                                                 | voltage standing wave ratio                                                                                                                                                                                                                                   |
| variable bit rate (VBR)                              | One of the traffic classes used by ATM (Asynchronous Transfer Mode). Unlike a permanent CBR (Constant Bit Rate) channel, a VBR data stream varies in bandwidth and is better suited to non real time transfers than to real-time streams such as voice calls. |
| virtual channel<br>connection (VCC)                  | A VC logical trail that carries data between two end points in an ATM network. A point-<br>to-multipoint VCC is a set of ATM virtual connections between two or multiple end<br>points.                                                                       |
| virtual circuit                                      | A channel or circuit established between two points on a data communications network with packet switching. Virtual circuits can be permanent virtual circuits (PVCs) or switched virtual circuits (SVCs).                                                    |
| virtual concatenation<br>group (VCG)                 | A group of co-located member trail termination functions that are connected to the same virtual concatenation link.                                                                                                                                           |
| virtual container (VC)                               | An information structure used to support path layer connections in the SDH. A VC consists of a payload and path overhead (POH), which are organized in a block frame structure that repeats every 125 $\mu$ s or 500 $\mu$ s.                                 |
| virtual path identifier<br>(VPI)                     | The field in the Asynchronous Transfer Mode (ATM) cell header that identifies to which virtual path the cell belongs.                                                                                                                                         |
| virtual user-network<br>interface (V-UNI)            | A virtual user-network interface, works as an action point to perform service classification and traffic control in HQoS.                                                                                                                                     |
| W                                                    |                                                                                                                                                                                                                                                               |
| WCDMA                                                | See Wideband Code Division Multiple Access.                                                                                                                                                                                                                   |
| WDM                                                  | wavelength division multiplexing                                                                                                                                                                                                                              |
| WEEE                                                 | waste electrical and electronic equipment                                                                                                                                                                                                                     |
| WFQ                                                  | See weighted fair queuing.                                                                                                                                                                                                                                    |
| WRED                                                 | See weighted random early detection.                                                                                                                                                                                                                          |
| WRR                                                  | weighted round robin                                                                                                                                                                                                                                          |
| WTR                                                  | See wait to restore.                                                                                                                                                                                                                                          |
| Web LCT                                              | The local maintenance terminal of a transport network, which is located at the NE management layer of the transport network.                                                                                                                                  |
| Wi-Fi                                                | See Wireless Fidelity.                                                                                                                                                                                                                                        |
| Wideband Code<br>Division Multiple<br>Access (WCDMA) | A standard defined by the ITU-T for the third-generation wireless technology derived from the Code Division Multiple Access (CDMA) technology.                                                                                                                |

| Wireless Fidelity (Wi-<br>Fi)             | A short-distant wireless transmission technology. It enables wireless access to the Internet within a range of hundreds of feet wide.                                                                                                                                                        |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| wait to restore (WTR)                     | The number of minutes to wait before services are switched back to the working line.                                                                                                                                                                                                         |
| weighted fair queuing<br>(WFQ)            | A fair queue scheduling algorithm based on bandwidth allocation weights. This scheduling algorithm allocates the total bandwidth of an interface to queues, according to their weights and schedules the queues cyclically. In this manner, packets of all priority queues can be scheduled. |
| weighted random early<br>detection (WRED) | A packet loss algorithm used for congestion avoidance. It can prevent the global TCP synchronization caused by traditional tail-drop. WRED is favorable for the high-priority packet when calculating the packet loss ratio.                                                                 |
| winding pipe                              | A tool for fiber routing, which acts as the corrugated pipe.                                                                                                                                                                                                                                 |
| X                                         |                                                                                                                                                                                                                                                                                              |
| XPIC                                      | See cross polarization interference cancellation.                                                                                                                                                                                                                                            |