

RTN XMC ODU V 300

Hardware Description

Issue Draft G Date 2017-06-15

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2017. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

All other trademarks and trade names mentioned in this document are the property of their respective holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.

- Address: Huawei Industrial Base Bantian, Longgang Shenzhen 518129 People's Republic of China
- Website: <u>http://www.huawei.com</u>
- Email: <u>support@huawei.com</u>

About This Document

Overview

This document describes the RTN XMC ODU and related devices, which consist of the hybrid coupler, separate mounting components, antennas, antenna adapter, and cables.

Product Version

The following table lists the product version related to this document.

Product Name	Product Version
RTN XMC ODU	V300

Intended Audience

This document is intended for:

• Field engineers

Change History

This provides the changes of the RTN XMC ODU Hardware Description.

• Issue Draft G(2017-06-15)

This is draft G release.

Compared with issue Draft F(2016-12-30), this issue includes the following new information.

- Added information about the 13GHz and 18GHz of XMC-3W ODU.
- Added information about the 1024 QAM and 2048 QAM of 32 GHz (112 MHz)supported XMC-3 ODU.
- Modified the information about the RED. For details, see section 1.7 Labels.

• Issue Draft F(2016-12-30)

This is draft F release.

Compared with issue Draft E(2016-04-30), this issue includes the following new information.

- Added information about the 15GHz and 23GHz of XMC-3W ODU.
- Issue Draft E(2016-04-30)

This is draft E release.

Compared with issue Draft D(2016-03-31), this issue includes the following new information.

- Added information about the 7GHz and 8GHz of XMC-3W ODU.
- Issue Draft D(2016-03-31)

This is draft D release.

Compared with issue Draft C(2015-12-31), this issue includes the following new information.

- Added information about the 11 GHz.
- Issue Draft C(2015-12-31)

This is draft C release.

Compared with issue Draft B (2015-07-30), this issue includes the following new information.

- Added information about the 3.5 MHz.
- Added information about electronic labels (E-Labels).
- Added descriptions of frequency Sub-Band combination.
- Added information about the 7 GHz and 8 GHz.
- Issue Draft B(2015-07-30)

This is draft B release.

Compared with issue Draft A (2015-02-28), this issue includes the following new information.

- Added information about the 4096 QAM.
- Added information about the 13 GHz, 15 GHz, 18 GHz, 23 GHz and 38 GHz.
- Issue Draft A (2015-02-28) This is draft A release.

Organization

This document is organized as follows.

1 Outdoor Unit (ODU)

The ODU is an outdoor unit of the digital microwave system. It is used to convert and amplify signals. The ODUs that are described in this document are the RTN XMC ODUs.

2 Hybrid coupler

Hybrid coupler is short for the RF signal combiner/divider. It is used to install two ODUs on one antenna. The hybrid couplers that are described in this document are the hybrid couplers adaptive to the RTN XMC ODUs.

3 OMT

The orthogonal mode transducer (OMT) is the short name for the polarized hybrid coupler. The OMT is used when two ODUs with different polarization directions need to be installed on the same antenna.

4 Dual-Polarized Coupler

A dual-polarized coupler helps install four ODUs directly on one dual-polarized antenna.

5 Separate Mounting Components

The separate mounting components consist of the ODU separate mounting bracket and flexible waveguide. The separate mounting components described in this document are the separate mounting components adaptive to the RTN XMC ODUs.

6 Antennas

The microwave device uses the parabolic antennas to transmit and receive electromagnetic waves. The antennas described in this document are the parabolic antennas adaptive to the RTN XMC ODUs.

7 Antenna Adapter

This describes the antenna adapter. In direct mounting mode, the antenna adapter is used for transfer if the antenna does not adaptive to the RTN XMC ODU.

8 Cables

This describes the cables of the ODU. The cables of the ODU which consist of the IF cable and ODU PGND cable.

9 Appendix

This chapter introduces information about frequency sub-band combination of XMC-3/ XMC-3W ODU.

Conventions

Symbol Conventions

The symbols that may be found in this document are defined as follows.

Symbol	Description	
A DANGER	Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.	
	Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.	
	Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury.	

Symbol	Description
	Indicates a potentially hazardous situation which, if not avoided, could result in equipment damage, data loss, performance deterioration, or unanticipated results. NOTICE is used to address practices not related to personal injury.
III NOTE	Calls attention to important information, best practices and tips. NOTE is used to address information not related to personal injury, equipment damage, and environment deterioration.

General Conventions

The general conventions that may be found in this document are defined as follows.

Convention	Description	
Times New Roman	Normal paragraphs are in Times New Roman.	
Boldface	Names of files, directories, folders, and users are in boldface . For example, log in as user root .	
Italic	Book titles are in <i>italics</i> .	
Courier New	Examples of information displayed on the screen are in Courier New.	

Command Conventions

The command conventions that may be found in this document are defined as follows.

Convention	Description	
Boldface	The keywords of a command line are in boldface .	
Italic	Command arguments are in <i>italics</i> .	
[]	Items (keywords or arguments) in brackets [] are optional.	
{ x y }	Optional items are grouped in braces and separated by vertical bars. One item is selected.	
[x y]	Optional items are grouped in brackets and separated by vertical bars. One item is selected or no item is selected.	
{ x y }*	Optional items are grouped in braces and separated by vertical bars. A minimum of one item or a maximum of all items can be selected.	

Convention	Description	
[x y]*	Optional items are grouped in brackets and separated by vertical bars. Several items or no item can be selected.	

GUI Conventions

The GUI conventions that may be found in this document are defined as follows.

Convention	Description
Boldface	Buttons, menus, parameters, tabs, window, and dialog titles are in boldface . For example, click OK .
>	Multi-level menus are in boldface and separated by the ">" signs. For example, choose File > Create > Folder .

Keyboard Operations

The keyboard operations that may be found in this document are defined as follows.

Format	Description
Key	Press the key. For example, press Enter and press Tab.
Key 1+Key 2	Press the keys concurrently. For example, pressing Ctrl + Alt + A means the three keys should be pressed concurrently.
Key 1, Key 2	Press the keys in turn. For example, pressing Alt, A means the two keys should be pressed in turn.

Mouse Operations

The mouse operations that may be found in this document are defined as follows.

Action	Description
Click	Select and release the primary mouse button without moving the pointer.
Double-click	Press the primary mouse button twice continuously and quickly without moving the pointer.
Drag	Press and hold the primary mouse button and move the pointer to a certain position.

Contents

About This Document	
1 Outdoor Unit (ODU)	1
1.1 Device Type	
1.2 Appearance	4
1.3 Functions	
1.4 Working Principles	
1.5 Installation Mode	
1.6 Interfaces	
1.7 Labels	
1.8 Technical Specifications	
1.8.1 XMC-2 ODU	
1.8.2 XMC-2H ODU	
1.8.3 XMC-3 ODU	
1.8.4 XMC-3W ODU	
2 Hybrid coupler	
2.1 Device Type	
2.2 Appearance	
2.3 Functions	
2.4 Working Principles	
2.5 Interfaces	
2.6 Label	
2.7 Technical Specifications	
3 OMT	
3.1 Functions and Features	
3.2 Working Principle	
3.3 Interfaces	
3.4 Technical Specifications	
4 Dual-Polarized Coupler	
- 4.1 Functions and Features	
4.2 Working Principle	
4.3 Interfaces	
4.4 Technical Specifications.	

5 Separate Mounting Components	89
5.1 ODU Separate Mounting Bracket	
5.2 Flexible Waveguide	
6 Antennas	93
6.1 Device Type	
6.2 Functions	
6.3 Working Principles	
6.4 Interfaces	
6.5 Antenna Diameters	
6.6 Technical Specifications	
7 Antenna Adapter	
8 Cables	105
8.1 IF Cable	
8.2 PGND Cable of the ODU	
9 Appendix	
9.1 Information about Sub-band Combination of XMC-3 ODU	
9.2 Information about Sub-band Combination of XMC-3W ODU	

1 Outdoor Unit (ODU)

About This Chapter

The ODU is an outdoor unit of the digital microwave system. It is used to convert and amplify signals. The ODUs that are described in this document are the RTN XMC ODUs.

1.1 Device Type

This describes the types of the ODU. The XMC-2 XMC-2H XMC-3 and XMC-3W ODU is a type of ODU in high power.

1.2 Appearance

The ODU is an outdoor integrated device that adopts the unified design.

1.3 Functions

The ODU, a microwave RF unit, has the function of frequency conversion and power amplification. The ODU determines microwave frequencies of the transmitted and received signals and is not affected by transmission service types such as the TDM Service and Ethernet service.

1.4 Working Principles

This describes the working principles of the ODU. The working principles of different types of ODUs are similar.

1.5 Installation Mode

The ODU can be installed on the antenna in two modes: direct mounting mode and separate mounting mode.

1.6 Interfaces

The interfaces of the ODU consist of the antenna interface, IF interface, RSSI interface, and grounding screw.

1.7 Labels

The following labels are attached to the ODU: nameplate label, bar code, radiation label, and overtemperature label. These labels are used to identify the device information, radiation alarm, and overtemperature alarm of the ODU.

1.8 Technical Specifications

The technical specifications of the ODU consist of working formats, frequency bands, transceiver specifications, IF specifications, integrated system specifications, and frequency information.

1.1 Device Type

This describes the types of the ODU. The XMC-2 XMC-2H XMC-3 and XMC-3W ODU is a type of ODU in high power.

Table 1-1 shows the performance and attributes of the ODU.

Item	XMC-2 ODU	XMC-2H ODU
ODU type	ODU in high power	ODU in high power
Frequency band	6 GHz, 7 GHz, 8 GHz, 10 GHz, 11 GHz, 13 GHz, 15 GHz, 18 GHz, 23 GHz, 26 GHz, 28 GHz, 32 GHz, 38 GHz and 42 GHz	L6 GHz, U6 GHz, 7 GHz, 8 GHz and 11 GHz
Microwave modulation format	QPSK, QPSKSTRONG, 16 QAM, 16 QAMSTRONG, 32 QAM, 64 QAM, 128 QAM, 256 QAM, 512 QAM, 512 QAMLIGHT, 1024 QAM and 1024 QAMLIGHT	QPSK, QPSKSTRONG, 16 QAM, 16 QAMSTRONG, 32 QAM, 64 QAM, 128 QAM, 256 QAM, 512 QAM, 512 QAMLIGHT, 1024 QAM and 1024 QAMLIGHT
Channel spacing	3.5 MHz,7 MHz, 14 MHz, 28 MHz, 40 MHz and 56 MHz NOTE	7 MHz, 14 MHz, 28 MHz, 40 MHz and 56 MHz
	• The channel spacings supported by the OptiX RTN 950 comply with ETSI standards. Channel spacings 14 MHz, 28 MHz and 56 MHz apply to most frequency bands; but channel spacings 13.75 MHz 27.5 MHz and 55 MHz apply to the 18 GHz frequency band.	
	• The 6 GHz, 28 GHz, and 32 GHz frequency bands do not support the 3.5 MHz channel spacing.	
	 Only the QPSK and 16 QAM modulation modes can be used for the channel spacing of 3.5 MHz. 	

 Table 1-1 Performance attributes of the XMC-2,XMC-2H ODU

 Table 1-2 Performance attributes of the XMC-3,XMC-3W ODU

Item	XMC-3 ODU	XMC-3W ODU
ODU type	ODU in high power	ODU in high power
Frequency band	7 GHz, 8 GHz, 11 GHz, 13 GHz, 15 GHz, 18 GHz, 23 GHz, 26 GHz, 28 GHz, 32 GHz and 38 GHz	7 GHz, 8 GHz, 13 GHz, 15GHz, 18 GHz, 23GHz

Item	XMC-3 ODU	XMC-3W ODU
Microwave modulation format Channel	QPSK, QPSKSTRONG, 16 QAM, 16 QAMSTRONG, 32 QAM, 64 QAM, 128 QAM, 256 QAM, 512 QAM, 512 QAMLIGHT, 1024 QAM, 1024 QAMLIGHT, 2048 QAM and 4096 QAM 3.5 MHz, 7 MHz, 14 MHz, 28	QPSK, QPSKSTRONG, 16 QAM, 16 QAMSTRONG, 32 QAM, 64 QAM, 128 QAM, 256 QAM, 512 QAM, 512 QAMLIGHT, 1024 QAM, 1024 QAMLIGHT, 2048 QAM and 4096 QAM 3.5 MHz, 7 MHz, 14 MHz, 28
spacing	 MHz, 40 MHz, 56 MHz and 112 MHz NOTE The channel spacings supported by XMC-3 ODU complies with the ETSI standard. In the ETSI standard, the 18 GHz frequency band is planned based on the interval of 13.75 MHz, 27.5 MHz and 55 MHz, which corresponds to 14 MHz, 28 MHz and 56 MHz in most application scenarios. The 3.5 MHz bandwidth supports the modulation mode of QPSK and 16 QAM . The 112 MHz bandwidth can be implemented only when the IS6 mode of the intermediate frequency (IF) board is used in the 32 GHz working frequencies; The 112 MHz bandwidth supports the modulation format of QPSK, QPSKSTRONG, 16 QAM, 16 QAMSTRONG, 32 QAM, 64 QAM, 128 QAM, 256 QAM, 512 QAM, 1024 QAM and 2048 QAM. 	 MHz, 40 MHz and 56 MHz NOTE The channel spacings supported by XMC-3W ODU complies with the ETSI standard. In the ETSI standard, the 18 GHz frequency band is planned based on the interval of 13.75 MHz, 27.5 MHz and 55 MHz, which corresponds to 14 MHz, 28 MHz and 56 MHz in most application scenarios. The 3.5 MHz bandwidth supports the modulation mode of QPSK and 16 QAM .

1.2 Appearance

The ODU is an outdoor integrated device that adopts the unified design.

Figure 1-1 shows the appearance of the XMC-2 ODU.

Figure 1-1 Appearance of the XMC-1 and XMC-2 ODU

Figure 1-2 shows the appearance of the XMC-2H ODU.

Figure 1-2 Appearance of the XMC-2H ODU

Figure 1-3 shows the appearance of the XMC-3 ODU or XMC-3W ODU.

Figure 1-3 Appearance of the XMC-3/XMC-3W ODU

Table 1-3 describes the appearance of the ODU.

Seri al No.	Item	Description	
1	Guide pin	The guide pin is used together with the guide trough to facilitate the installation of the ODU.	
2	Polarization direction identifier	H: Horizontal polarization V: Vertical polarization	
3	Cooling fins	The 45°slant angle of the cooling fins ensures the ventilation of the ODU in horizontal-polarized and vertical-polarized conditions to facilitate heat dissipation.	
4	Handle	The handle is used to facilitate the holding and installation of the ODU.	
5	Pressure vent	Ensures that the pressure inside the ODU and that outside the ODU are the same, thus preventing explosion. In addition, the pressure vent valve can prevent moisture.	
6	RSSI interface	See Interfaces on the ODU.	
7	IF interface		
8	Grounding screw		
9	Cut corner	In horizontal and vertical conditions, cables are inclined from the cut corner to enhance waterproof reliability.	

ΠΝΟΤΕ

Numbers in Table 1-3 correspond to those in Figure 1-1, Figure 1-2 and Figure 1-3.

1.3 Functions

The ODU, a microwave RF unit, has the function of frequency conversion and power amplification. The ODU determines microwave frequencies of the transmitted and received signals and is not affected by transmission service types such as the TDM Service and Ethernet service.

The ODU supports the following features:

- Various channel spacing.
- Various modulation formats.
- Adaptive modulation (AM) function.
- Adjustment of TX/RX frequencies through software.
- Adjustment of TX power through software.
- Temperature detection.
- TX power detection.
- RX power detection.
- Received Signal Strength Indicator (RSSI) interface: The ODU has an RSSI interface, which indicates the RX power in voltage.
- Mute transmission.
- Automatic Transmit Power Control (ATPC).
- Remote Transmission Power Control (RTPC).
- Automatic Gain Control (AGC) function of received signals:

The ODU automatically adjusts the channel gain according to the level of received signals.

1.4 Working Principles

This describes the working principles of the ODU. The working principles of different types of ODUs are similar.

Working Principles

Figure 1-4 shows the working principles of the ODU.

port

Rx RF

LNA

Down-conversion

Figure 1-4 Working principles of the ODU

The ODU is located between the IDU and the antenna system, implementing the functions of frequency conversion and amplification of signals. The working principles of the ODU are as follows:

Processing of the signals to be transmitted

Rx IF

The multiplexer unit divides the input signals transmitted through the IF cable into the 350 MHz IF TX signals, O&M uplink signals, and -48 V DC power signals.

The IF TX signals are processed as follows:

- The IF TX signals are up-converted, filtered, and amplified to RF TX signals. Then, a. the RF TX signals are sent to the AMP unit.
- b The AMP unit amplifies the power of the RF TX signals. The power of the RF TX signals can be controlled by the IDU software.
- The amplified RF TX signals are sent to the antenna through the duplexer isolation c. unit.

The O&M uplink signals are the 5.5 MHz signals modulated in Amplitude Shift Keying (ASK) mode. The signals are sent to the CTRL unit and demodulated.

The -48 V DC power signals are sent to the PWR unit. The PWR generates secondary power supplies for each module of the ODU.

- Processing of the received signals
 - The duplexer isolation unit separates the RF input signals from other signals а received by the antenna.
 - The RF signals are amplified through the Low Noise Amplifier (LNA) unit. b.
 - The amplified RF signals are down-converted, filtered, and amplified to 140 MHz c. IF RX signals and transmitted to the multiplexer unit.
 - The multiplexer unit combines the IF RX signals and O&M downlink signals and d. then transmits the combined signals to the IDU through IF cable.

The CTRL unit performs the ASK modulation on the O&M downlink signals to generate 10 MHz signals. The modulated signals are transmitted to the multiplexer unit. The CTRL unit provides the RSSI interface and monitors the RX level through the RSSI circuit.

1.5 Installation Mode

The ODU can be installed on the antenna in two modes: direct mounting mode and separate mounting mode.

Direct Mounting Mode

The ODU does not support hot swap.

When the small-diameter and single-polarized antenna is used, the direct mounting mode is usually adopted. In this case, if one ODU uses one antenna, the ODU should be installed at the back of the antenna. If two ODUs share one antenna, one RF signal combiner-divider (hereinafter referred to as hybrid coupler) should be added between the antenna and the ODU.

ΠΝΟΤΕ

Use a hybrid coupler adaptive to the XMC ODU if two ODUs are configured with only one antenna installed in direct-mounting mode.

Figure 1-5 shows the direct mounting mode.

Figure 1-5 Direct mounting mode

Separate Mounting Mode

When the dual-polarized antenna or the large-diameter and single-polarized antenna is used, the separate mounting mode is adopted. In this case, two ODUs can share one feed boom by adding a hybrid coupler.

In separate mounting mode, the ODU separated mounting bracket is used to fix the ODU or hybrid coupler on the pole. The ODU or hybrid coupler and the antenna are connected through a flexible wave guide.

Figure 1-6 shows the separate mounting mode using a single-polarized antenna.

Figure 1-6 Separate mounting mode using a single-polarized antenna

Figure 1-7 shows the separate mounting mode using a dual-polarized antenna.

Figure 1-7 Separate mounting mode using a dual-polarized antenna

1.6 Interfaces

The interfaces of the ODU consist of the antenna interface, IF interface, RSSI interface, and grounding screw.

Figure 1-8 shows the interfaces of the XMC-2 ODU.

Figure 1-8 Interfaces of the XMC-2 ODU

Figure 1-9 shows the interfaces of the XMC-2H ODU.

Figure 1-9 Interfaces of the XMC-2H ODU

Figure 1-10shows the interfaces of the XMC-3 ODU or XMC-3W ODU.

Figure 1-10 Interfaces of the XMC-3/XMC-3W ODU

Table 1-4 describes the interfaces of the ODU.

Table 1-4 Interfaces of t	the ODU
---------------------------	---------

Seri al No.	Interface Name	Interface Type	Description
1	Antenna interface	153IEC-R70, can be interconnected with the PDR70 (6 GHz frequency band) 153IEC-R84, can be interconnected with the PBR84 (7/8 GHz frequency band) 153IEC-R100, can be interconnected with the PBR100 (10G/11 GHz frequency band) 153IEC-R120, can be interconnected with the PBR120 (13 GHz frequency band) 153IEC-R140, can be interconnected with the PBR140 (15 GHz frequency band) 153IEC-R220, can be interconnected with the PBR220 (18/23/26 GHz frequency band) 153IEC-R320, can be interconnected with the PBR320 (28/32/38 GHz frequency band) UG 383/U-R400, can be interconnected with the UG 383/U-R400 (42 GHz frequency band)	The antenna interface is a waveguide interface that is connected to an antenna, a hybrid coupler, an antenna adapter, or a flexible waveguide. NOTE The antenna interface on the XMC-3/XMC-3W ODU can adapt to the polarization direction of the antenna. Therefore, no manual adjustment is required.
2	Grounding screw	M5 screw	The grounding screw is connected to the PGND cable .
3	IF interface	N type (female)	The IF interface is connected to the IDU through an IF cable.
4	RSSI interface	XMC-2/XMC-2H ODU:BNC type (female) XMC-3/XMC-3W ODU:TNC type (female)	The received signal strength of the ODU can be calculated based on the voltage of the interface that is measured through a multimeter.

1.7 Labels

The following labels are attached to the ODU: nameplate label, bar code, radiation label, and overtemperature label. These labels are used to identify the device information, radiation alarm, and overtemperature alarm of the ODU.

The ODU labels and the meanings of the labels are describes as follows:

• Nameplate Label

Figure 1-11 shows the nameplate label of the ODU.

Figure 1-11 Nameplate label of the ODU

HUAWEI	RTN XMC 7G-	3		
ITEM: 52 T/R SPA SUB BAN TX: Lo,7	2414080 CING: 154/161/160 ND: A/I/A 414-7496.5 MHz	MHz	Â	€ €
CMIIT ID	:	CIDF15000116		
华为技术有限公司 HUAWEI TECHNOLOGIES CO., LTD. 中国制造 MADE IN CHINA HQ of Huawei, Bantian, Longgang District, Shenzhen, 518129, P.R.C				

Table 1-5 describes the meanings of the parameters on the nameplate label.

Label Information	Content of the Label	Parameter	Meaning
ODU name	RTN XMC 7G-3	① _: Frequency band	Working frequency of the ODU (GHz)
	3	² : ODU type	2: ODU in high power
			2H: ODU in high power
			3: ODU in high power
			3W: ODU in high power
		3. Component name	Indicates that the component is an ODU

Table 1-5 Meanings of the parameters on the nameplate label

Label Information	Content of the Label	Parameter	Meaning
ODU code (ITEM)	52414080	-	Used to identify the type of the ODU
ODU T/R spacing (T/R SPACING)	154/161/160 MHz	-	Spacing between RX and TX frequencies (MHz)
ODU subband (SUB BAND)	A/I/A	-	Frequency subbands numbered with letters
TX status information about the ODU	Lo,7414-7496.5 MHz	①: TX high/low station	Hi: TX high station Lo: TX low station
		②: Range of the TX frequency	Range of the ODU TX frequency (MHz)
CMIIT ID	-	-	ID of Radio Transmission Equipment Type Approval Certificate (domestic)

• Bar Code and Warning Label

 Table 1-6 shows the bar code and warning labels of the ODU and describes the meanings of the labels.

 Table 1-6 Bar code and warning label

Name	Appearance	Meaning	
Bar code		Bar code of the ODU serial number, which is used to uniquely identify each ODU	
Warning label		 The warning labels from left to right indicate the following: Electrostatic warning Radiation warning Overtemperature warning 	
		High-voltage warning	

• Electronic label (E-Label)

Figure 1-12 shows the E-Label of an ODU.

ΠΝΟΤΕ

This document takes the E-Label of XMC-3 ODU 15 GHz frequency band as an example.

Figure 1-12 E-Label of an ODU

Table 1-7 Items on the E-label

Number	Description	Number	Description
1	Name	12, 13	Additional description
2	Product category	14	TR spacing 1
3	Frequency band	15	TR spacing 2
4	Performance	16	TR spacing 3
5	High/low site	17	Sub Band
6	Transmit power level	18	TX start frequency 1
7	TX start frequency	19	TX start frequency 2
8	TX end frequency	20	TX start frequency 3
9	RX start frequency	21	TX end frequency 1
10	RX end frequency	22	TX end frequency 2
11	Document language	23	TX end frequency 3

T/R Spacing (MHz)	Sub Band	TX Frequency Lower Limit(MHz)	TX Frequency Upper Limit(MHz)
420	В	14,718.00	14,928.00
315	С	14,823.00	14,942.00
322	С	14,823.00	14,942.00

Table 1-8 Key information on E-Label

1.8 Technical Specifications

The technical specifications of the ODU consist of working formats, frequency bands, transceiver specifications, IF specifications, integrated system specifications, and frequency information.

1.8.1 XMC-2 ODU

This describes the technical specifications of the XMC-2 ODU.

Working Formats

 Table 1-9 lists the modulation format and the channel spacing of the ODU.

Item	Item Specification					
Modulation format QPSK, QPSKSTRONG, 16 QAM, 16 QAMSTRONG, 32 QAM, 0 QAM, 128 QAM, 256 QAM, 512 QAM, 512 QAMLIGHT,1024 QAM and 1024 QAMLIGHT						
Channel spacing	Channel spacing 3.5 MHz, 7 MHz, 14 MHz, 28 MHz, 40 MHz, and 56 MHz					
 NOTE The enhancement QAM, and 1024 Q frequency (IF) boa GHz, 26 GHz, 28 Q The enhancement QAM, and 1024 Q intermediate frequ 	 NOTE The enhancement modes QPSKSTRONG, 16 QAMSTRONG, 512 QAM, 512 QAMLIGHT, 1024 QAM, and 1024 QAMLIGHT can be implemented only when the IS3 mode of the intermediate frequency (IF) board is used in the 6 GHz, 7 GHz, 8 GHz, 11 GHz, 13 GHz, 15 GHz, 18 GHz, 23 GHz, 26 GHz, 28 GHz, 32 GHz, 38 GHz, and 42 GHz working frequencies. The enhancement modes QPSKSTRONG, 16 QAMSTRONG, 512 QAM, 512 QAMLIGHT, 1024 QAM, and 1024 QAMLIGHT for the 10 GHz frequency band must work in IS3 mode of the intermediate for the intermediate for the intermediate for the intermediate frequency band must work in the intermediate for the intermediate for the intermediate for the intermediate for the intermediate frequency band must work in the intermediate for the intermediate for					
• The duct interval s standard, the 18 G corresponds to 14/	• The duct interval supported by XMC-2 ODU complies with the ETSI standard. In the ETSI standard, the 18 GHz frequency band is planned based on the interval of 13.75/27.5/55 MHz, which corresponds to 14/28/56 MHz in most application scenarios.					
 The 10 GHz(TR91 spacing. 	• The 10 GHz(TR91 MHz) frequency band does not support the 40 MHz and the 56 MHz channel spacing.					

able 1-9 Working for	nats of the ODU	(XMC-2 ODU)
----------------------	-----------------	-------------

• Only the QPSK and 16 QAM modulation modes can be used for the channel spacing of 3.5 MHz.

Frequency Bands

Table 1-10 lists the working frequency bands of the ODU.

Frequency Band	Frequency Range (GHz)	Interval Between Center RX and TX Frequencies in a Channel (MHz)
6 GHz	From 5.925 to 7.125	252.04, 160/170, and 340/350
7 GHz	From 7.093 to 7.897	154, 161, 168, 196, and 245
8 GHz	From 7.731 to 8.497	119/126, 151.614, 208, 266,303, 310 and 311.32 NOTE 310 is a sub-frequency band of the 8 GHz-2E frequency band.
10 GHz	From 10.130 to 10.650	350
	From 10.500 to 10.678	91
11 GHz	From 10.675 to 11.745	500/490, 530/520
13 GHz	From 12.751 to 13.248	266
15 GHz	From 14.400 to 15.358	315/322, 420, 490, 644, and 728
18 GHz	From 17.685 to 19.710	1010/1008, 1092.5, 1560
23 GHz	From 21.200 to 23.618	1008, 1200, and 1232
26 GHz	From 24.250 to 26.453	1008
28 GHz	From 27.520 to 29.481	1008
32 GHz	From 31.815 to 33.383	812
38 GHz	From 37.044 to 40.105	1260
42 GHz	From 40.522 to 43.464	1500

Table 1-10 Working frequency bands of the ODU (XMC-2 ODU)

Transceiver Specifications

Table 1-11 and Table 1-12 list the transceiver specifications of the ODU.

ΠΝΟΤΕ

The maximum error between the actual transmit power of the ODU and the preset transmit power on the NMS is ± 2 dB.

When the receive power of the ODU is between -70 dBm and -30 dBm, the maximum error between the actual receive power of the ODU and the receive power displayed on the NMS is ± 2 dB.

When the receive power of the ODU is between -90 dBm and -70 dBm, the maximum error between the actual receive power of the ODU and the receive power displayed on the NMS is ± 3 dB.

When the receive power of the ODU is between -30 dBm and -20 dBm, the maximum error between the actual receive power of the ODU and the receive power displayed on the NMS is ± 3 dB.

Table 1 11 Tree		finations of t	$(\mathbf{X}\mathbf{M}\mathbf{C}, 2\mathbf{O})$	
Table 1-11 Ital	iscerver spec	incations of t	(ANIC-2 UI	JU,152/1F2)

Item	Specification						
	QPSK	16 QAM	32 QAM	64 QAM	128 QAM	256 QAM	
Rated maximum TX power(dBm) NOTE • When the working frequency is 7 GHz or 8 GHz and the channel spacing is 40 MHz or 56 MHz, the							
 value of this counter in each modulation format reduces by 3 dB. When the working frequency is 7 GHz-2E or 8 GHz-2E and the channel spacing is 40 MHz or 56 MHz, the value of this counter in each modulation format do not reduces. 							
6 GHz	30 dBm	28 dBm	26.5 dBm	25 dBm	25 dBm	23 dBm	
7 GHz	26.5 dBm	25.5 dBm	25.5 dBm	25 dBm	25 dBm	23 dBm	
8 GHz	26.5 dBm	25.5 dBm	25.5 dBm	25 dBm	25 dBm	23 dBm	
7 GHz-2 E	30 dBm	26 dBm	26 dBm	25 dBm	25 dBm	23 dBm	
8 GHz-2 E	30 dBm	26 dBm	26 dBm	25 dBm	25 dBm	23 dBm	
10 GHz(T R350 MHz)	26.5 dBm	23.5 dBm	23.5 dBm	21.5 dBm	21.5 dBm	19.5 dBm	
10 GHz(T R91 MHz)	24.5 dBm	22.5 dBm	22.5 dBm	20.5 dBm	20.5 dBm	18.5 dBm	
11 GHz	26 dBm	24 dBm	24 dBm	22 dBm	22 dBm	20 dBm	
13 GHz	25 dBm	22 dBm	22 dBm	20.5 dBm	20.5 dBm	17.5 dBm	
15 GHz	25 dBm	22 dBm	22 dBm	20.5 dBm	20.5 dBm	18.5 dBm	
18 GHz	24 dBm	21 dBm	21 dBm	19.5 dBm	19.5 dBm	16.5 dBm	
23 GHz	24 dBm	21 dBm	21 dBm	19.5 dBm	19.5 dBm	17.5 dBm	
26 GHz	22 dBm	20 dBm	20 dBm	18 dBm	18 dBm	16 dBm	
28 GHz	25 dBm	22 dBm	21.5 dBm	19 dBm	19 dBm	17 dBm	
32 GHz	23 dBm	21 dBm	19.5 dBm	17 dBm	17 dBm	15 dBm	
38 GHz	20 dBm	17 dBm	17 dBm	16 dBm	16 dBm	14 dBm	
42 GHz	16 dBm	12 dBm	12 dBm	11 dBm	11 dBm	9 dBm	
Rated minimum TX power(dBm)							

Item		Specification						
	QPSK	16 QAM	32 QAM	64 QAM	128 QAM	256 QAM		
6 GHz	0 dBm							
7 GHz	6.5 dBm							
8 GHz	6.5 dBm							
10 GHz(T R350 MHz)	0 dBm							
10 GHz(T R91 MHz)	0 dBm							
11 GHz	0 dBm							
13 GHz	5 dBm							
15 GHz	5 dBm							
18 GHz	4 dBm							
23 GHz	4 dBm							
26 GHz	0 dBm							
28 GHz	-5 dBm							
32 GHz	-5 dBm							
38 GHz	0 dBm							
42 GHz	-5 dBm							
Maxim um RF RX power	 6/7/8/10/2 QPSK/16 42 GHz QPSK/16 64 QAM/256 QAM 	11/13/15/18/2 QAM/32 QA QAM/32 QA 128 QAM: -2 I: -25 dBm	3/26/28/32/38 M/64 QAM/1 M: -20 dBm 3 dBm	GHz 28 QAM/256	QAM: -20 dB	m		
Frequen cy stability	≤±5 ppm NOTE When the T/ requirement	R spacing is 311 of the ETSI.	.32 MHz or 151	.614 MHz, the f	requency toleran	ce meets the		

Table 1-12 Transceiver specifications of the ODU(XMC-2 ODU, IS3)

Item		Specification						
	QPSK/ QPSK	16 QAM/	32 QAM	64 QAM	128 QAM	256 QAM	512 QAM/	1024 QAM/
	STRO NG	16 QAMS					512 QAML	1024 QAML
		TRON G					IGHT	IGHT

Rated maximum TX power(dBm)

NOTE

- When the working frequency is 7 GHz or 8 GHz and the channel spacing is 40 MHz or 56 MHz, the value of this counter in each modulation format reduces by 3 dB.
- When the working frequency is 7 GHz-2E or 8 GHz-2E and the channel spacing is 40 MHz or 56 MHz, the value of this counter in each modulation format do not reduces.
- 7 GHz-2E and 8 GHz-2E are the new version, support QPSKSTRONG,16 QAMSTRONG, 512 QAM, 512 QAMLIGHT,1024 QAM, and 1024 QAMLIGHT Modulation format.

6 GHz	30 dBm	28 dBm	26.5 dBm	25 dBm	25 dBm	23 dBm	21 dBm	19 dBm
7 GHz	26.5 dBm	25.5 dBm	25.5 dBm	25 dBm	25 dBm	23 dBm	-	-
8 GHz	26.5 dBm	25.5 dBm	25.5 dBm	25 dBm	25 dBm	23 dBm	_	-
7 GHz- 2E	30 dBm	28 dBm	28 dBm	26 dBm	26 dBm	24 dBm	24 dBm	23 dBm
8 GHz- 2E	30 dBm	28 dBm	28 dBm	26 dBm	26 dBm	24 dBm	24 dBm	23 dBm
10 GHz(TR35 0 MHz)	26.5 dBm	24.5 dBm	24.5 dBm	23.5 dBm	23.5 dBm	21.5 dBm	21.5 dBm	19.5 dBm
10 GHz(TR91 MHz)	24.5 dBm	23.5 dBm	23.5 dBm	22.5 dBm	22.5 dBm	20.5 dBm	20.5 dBm	18.5 dBm
11 GHz	26 dBm	25 dBm	25 dBm	24 dBm	24 dBm	22 dBm	22 dBm	20 dBm
13 GHz	25 dBm	24 dBm	24 dBm	23 dBm	23 dBm	21 dBm	20 dBm	18 dBm

Item				Specif	ication			
	QPSK/ QPSK STRO NG	16 QAM/ 16 QAMS TRON G	32 QAM	64 QAM	128 QAM	256 QAM	512 QAM/ 512 QAML IGHT	1024 QAM/ 1024 QAML IGHT
15 GHz	25 dBm	24 dBm	24 dBm	23 dBm	23 dBm	21 dBm	21 dBm	19 dBm
18 GHz	24 dBm	23 dBm	23 dBm	22 dBm	22 dBm	20 dBm	19 dBm	17 dBm
23 GHz	24 dBm	23 dBm	23 dBm	22 dBm	22 dBm	19.5 dBm	19.5 dBm	18 dBm
26 GHz	22 dBm	21 dBm	21 dBm	20 dBm	20 dBm	17 dBm	17 dBm	15 dBm
28 GHz	25 dBm	22 dBm	21.5 dBm	19 dBm	19 dBm	17 dBm	15 dBm	13 dBm
32 GHz	23 dBm	21 dBm	19.5 dBm	17 dBm	17 dBm	15 dBm	13 dBm	11 dBm
38 GHz	20 dBm	18 dBm	18 dBm	17 dBm	17 dBm	16 dBm	15 dBm	13 dBm
42 GHz	16 dBm	14 dBm	14 dBm	13 dBm	13 dBm	11 dBm	10 dBm	8 dBm
Rated	ninimum T	X power(dBm)					
6 GHz	0 dBm							
7 GHz	6.5 dBm							
8 GHz	6.5 dBm							
10 GHz(TR35 0 MHz)	0 dBm							
10 GHz(TR91 MHz)	0 dBm							

Item				Specifi	ication			
	QPSK/ QPSK STRO NG	16 QAM/ 16 QAMS TRON G	32 QAM	64 QAM	128 QAM	256 QAM	512 QAM/ 512 QAML IGHT	1024 QAM/ 1024 QAML IGHT
11 GHz	0 dBm							
13 GHz	5 dBm							
15 GHz	5 dBm							
18 GHz	4 dBm							
23 GHz	4 dBm							
26 GHz	0 dBm							
28 GHz	-5 dBm							
32 GHz	-5 dBm							
38 GHz	0 dBm							
42 GHz	-5 dBm							
Maxi mum RF RX powe r	 6 GHz, 7 GHz, 8 GHz, 10 GHz, 11 GHz, 13 GHz, 15 GHz, 18 GHz, 23 GHz, 26 GHz, 28 GHz, 32 GHz and 38 GHz QPSK, QPSKSTRONG, 16 QAM, 16 QAMSTRONG, 32 QAM, 64 QAM, 128 QAM and 256 QAM: -20 dBm 42 GHz QPSK, QPSKSTRONG, 16 QAM, 16 QAMSTRONG, 32 QAM: -20 dBm 64 QAM, 128 QAM: -23 dBm 256 QAM: -25 dBm 							
Freq uenc y stabil ity	≤±5 ppm NOTE When the requirem	e T/R spacin hent of the E7	g is 311.32 N FSI.	ИНz or 151.6	514 MHz, the	e frequency t	olerance mee	ets the

IF Specifications

 Table 1-13 lists the IF specifications of the ODU.

	Item	Specification
IF signal	Center frequency of the input IF	350 MHz
	Center frequency of the RX IF	140 MHz
	Return loss of the IF interface	< -15 dB
ODU O&M signal	Modulation mode	ASK
	Uplink signal	5.5 MHz
	Downlink signal	10 MHz

Table 1-13 IF specifications of the ODU (XMC-2 ODU)

Integrated System Specifications

Table 1-14 lists the integrated system specifications of the ODU.

Item	Specification				
Integrated system dimensions	6 GHz, 10 GHz, 11 GHz, 26 GHz, 28 GHz, 32 GHz and 42 GHz:228 mm x 228 mm x 75 mm (width x depth x height)				
	7 GHz, 8 GHz, 13 GHz, 15 GHz, 18 GHz, 23 GHz and 38 GHz:222 mm x 222 mm x 75 mm (width x depth x height)				
Weight	\leq 4.5 kg				
Power supply	-48 V (from -32 V to -72 V) DC				
Power consumption	\leq 35 W (6 GHz frequency band)				
	\leq 33 W (7 GHz and 8 GHz frequency band)				
	\leq 36 W (10 GHz and 11 GHz frequency band)				
	\leq 27 W (13 GHz frequency band)				
	\leq 26 W (15 GHz frequency band)				
	\leq 30 W (18 GHz, 28 GHz, 32 GHz and 42 GHz frequency band)				
	\leq 28 W (23 GHz, 26 GHz and 38 GHz frequency band)				

Table 1-1	4 Integrated	system s	specifications	of the	ODU	(XMC-2	ODU)
-----------	--------------	----------	----------------	--------	-----	--------	------

Frequency Information

- Instead of the upper/lower limits of the central frequency of channels, the upper/lower limits of the frequency that carries the TX signals are described as follows to indicate the scope of frequencies supported by the ODU. The lowest central frequency of channels is higher than the lower limit frequency by half of the channel spacing. The highest central frequency of channels is lower than the upper limit frequency by half of the channel spacing.
- The T/R spacing values listed in the following tables are default values. In special application scenarios and within the frequency range covered by the duplexer, the T/R spacing values within each band are configurable.

 Table 1-15 lists the information about the 6 GHz frequency band.

T/R Spacing	Sub- Band	Lower Sul Frequence	b-band TX cy (MHz)	Higher Sub-band TX Frequency (MHz)		
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit	
252.04	А	5,925.00	6,025.00	6,175.00	6,275.00	
252.04	В	6,000.00	6,100.00	6,250.00	6,350.00	
252.04	C	6,075.00	6,175.00	6,325.00	6,425.00	
160/170	А	6,540.00	6,600.00	6,700.00	6,760.00	
160/170	В	6,580.00	6,640.00	6,740.00	6,800.00	
160/170	С	6,620.00	6,680.00	6,780.00	6,840.00	
160/170	D	6,660.00	6,710.00	6,820.00	6,870.00	
340/350	А	6,425.00	6,540.00	6,765.00	6,880.00	
340/350	В	6,520.00	6,630.00	6,860.00	6,970.00	
340/350	C	6,600.00	6,710.00	6,940.00	7,050.00	
340/350	D	6,670.00	6,785.00	7,010.00	7,125.00	

 Table 1-15 Information about the 6 GHz frequency band (XMC-2 ODU)

 Table 1-16 lists the information about the 7 GHz frequency band.

Table	1-16 Informat	ion about the	7 GHz frequency	y band (XMC-2 OI)U)
-------	---------------	---------------	-----------------	----------	----------	-----

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Sub-band T Frequency (MHz)		
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit	
154	А	7,428.00	7,484.00	7,582.00	7,638.00	
154	В	7,470.00	7,526.00	7,624.00	7,680.00	

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Sub-band TX Frequency (MHz)		
(MHz)		Lower Limit	Upper Limit	Lower Limit	Upper Limit	
154	С	7,512.00	7,568.00	7,666.00	7,722.00	
154	D	7,128.00	7,184.00	7,282.00	7,338.00	
154	Е	7,170.00	7,226.00	7,324.00	7,380.00	
154	F	7,212.00	7,268.00	7,366.00	7,422.00	
154 NOTE This is special requireme nts;	G	7,456.00	7,512.00	7,610.00	7,666.00	
154 NOTE This is special requireme nts;	Н	7,484.00	7,540.00	7,638.00	7,694.00	
160	А	7,433.50	7,496.50	7,593.50	7,656.50	
160	В	7,478.50	7,541.50	7,638.50	7,701.50	
160	С	7,526.00	7,589.00	7,686.00	7,749.00	
161	А	7,114.00	7,177.00	7,275.00	7,338.00	
161	В	7,149.00	7,212.00	7,310.00	7,373.00	
161	С	7,180.50	7,247.00	7,341.50	7,408.00	
161	D	7,219.00	7,282.00	7,380.00	7,443.00	
161	Е	7,239.00	7,302.00	7,400.00	7,463.00	
161	F	7,274.00	7,337.00	7,435.00	7,498.00	
161	G	7,309.00	7,372.00	7,470.00	7,533.00	
161	Н	7,344.00	7,407.00	7,505.00	7,568.00	
161	Ι	7,414.00	7,477.00	7,575.00	7,638.00	
161	J	7,449.00	7,512.00	7,610.00	7,673.00	
161	K	7,484.00	7,547.00	7,645.00	7,708.00	
161	L	7,519.00	7,582.00	7,680.00	7,743.00	
161	М	7,539.00	7,602.00	7,700.00	7,763.00	
161	Ν	7,574.00	7,637.00	7,735.00	7,798.00	

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Sub-band TX Frequency (MHz)		
(MHz)		Lower Limit	Upper Limit	Lower Limit	Upper Limit	
161	0	7,609.00	7,672.00	7,770.00	7,833.00	
161	Р	7,644.00	7,707.00	7,805.00	7,868.00	
161 NOTE This is special requireme nts;	Q	7,128.00	7,184.00	7,289.00	7,345.00	
161 NOTE This is special requireme nts;	R	7,212.00	7,268.00	7,373.00	7,429.00	
161 NOTE This is special requireme nts;	S	7,428.00	7,484.00	7,589.00	7,645.00	
161 NOTE This is special requireme nts;	Τ	7,512.00	7,568.00	7,673.00	7,729.00	
161 NOTE This is special requireme nts;	U	7,208.50	7,264.50	7,369.50	7,425.50	
161 NOTE This is special requireme nts;	V	7,508.50	7,564.50	7,669.50	7,725.50	
168	А	7,443.00	7,499.00	7,611.00	7,667.00	
168	В	7,485.00	7,541.00	7,653.00	7,709.00	
168	С	7,527.00	7,583.00	7,695.00	7,751.00	
168	D	7,110.50	7,170.00	7,278.50	7,338.00	
T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Sub-band TX Frequency (MHz)		
----------------	--------------	--------------------------------------	-------------	---------------------------------------	-------------	
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit	
168	Е	7,163.00	7,205.00	7,331.00	7,373.00	
168	F	7,198.00	7,236.50	7,366.00	7,404.50	
168	G	7,226.00	7,261.00	7,394.00	7,429.00	
196	А	7,093.00	7,177.00	7,289.00	7,373.00	
196	В	7,149.00	7,233.00	7,345.00	7,429.00	
196	С	7,205.00	7,261.00	7,401.00	7,457.00	
245	А	7,400.00	7,484.00	7,645.00	7,729.00	
245	В	7,484.00	7,568.00	7,729.00	7,813.00	
245	С	7,568.00	7,652.00	7,813.00	7,897.00	

 Table 1-17 lists the information about the 8 GHz frequency band.

Table 1-17 Information about the 8	GHz frequency band (XMC-2 ODU)
------------------------------------	--------------------------------

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		r Sub-band TX Higher Sub-band T uency (MHz) Frequency (MHz)	
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
119/126	А	8,279.00	8,321.00	8,398.00	8,440.00
119/126	В	8,307.00	8,349.00	8,426.00	8,468.00
119/126	C	8,335.00	8,377.00	8,454.00	8,496.00
119/126	D	8,321.00	8,349.00	8,440.00	8,468.00
119/126	Е	8,335.00	8,363.00	8,454.00	8,482.00
119/126	F	8,349.00	8,377.00	8,468.00	8,496.00
151.614	А	8,203.00	8,271.00	8,355.00	8,423.00
151.614	В	8,240.00	8,308.00	8,392.00	8,460.00
151.614	С	8,277.00	8,345.00	8,429.00	8,497.00
208	А	8,043.00	8,113.00	8,251.00	8,321.00
208	В	8,099.00	8,169.00	8,307.00	8,377.00
208	С	8,155.00	8,225.00	8,363.00	8,433.00
208	D	8,211.00	8,281.00	8,419.00	8,489.00

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Sub-band TX Frequency (MHz)	
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
266	А	7,905.00	8,024.00	8,171.00	8,290.00
266	В	8,017.00	8,136.00	8,283.00	8,402.00
310	А	7,905.00	8,017.00	8,215.00	8,327.00
310	В	8,017.00	8,129.00	8,327.00	8,439.00
310	С	8,129.00	8,185.00	8,439.00	8,495.00
311.32	А	7,731.00	7,867.00	8,042.00	8,178.00
311.32	В	7,835.00	7,971.00	8,146.00	8,282.00

 Table 1-18 lists the information about the 10 GHz frequency band.

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Su Frequenc	b-band TX cy (MHz)
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
350	А	10,130.00	10,300.00	10,480.00	10,650.00
91	А	10,500.00	10,531.00	10,591.00	10,622.00
91	В	10,528.00	10,559.00	10,619.00	10,650.00
91	C	10,556.00	10,587.00	10,647.00	10,678.00

 Table 1-19 lists the information about the 11 GHz frequency band.

Table 1-19 Information about the 11 GHz frequency band (XMC-2 ODU)

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Su Frequen	b-band TX cy (MHz)
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
500/490	А	10,700.00	10,980.00	11,200.00	11,480.00
500/490	В	10,920.00	11,200.00	11,420.00	11,700.00
530/520	А	10,675.00	10,975.00	11,205.00	11,505.00
530/520	В	10,915.00	11,215.00	11,445.00	11,745.00

 Table 1-20 lists the information about the 13 GHz frequency band.

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Su Frequene	b-band TX cy (MHz)
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
266	А	12,751.00	12,870.00	13,017.00	13,136.00
266	В	12,863.00	12,982.00	13,129.00	13,248.00
266	С	12,751.00	12,891.00	13,017.00	13,157.00

 Table 1-20 Information about the 13 GHz frequency band (XMC-2 ODU)

Table 1-21 lists the information about the 15 GHz frequency band.

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Sub-band TX Frequency (MHz)	
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
315/322	А	14,627.00	14,746.00	14,942.00	15,061.00
315/322	В	14,725.00	14,844.00	15,040.00	15,159.00
315/322	C	14,823.00	14,942.00	15,138.00	15,257.00
420	А	14,501.00	14,725.00	14,921.00	15,145.00
420	В	14,718.00	14,928.00	15,138.00	15,348.00
490	А	14,403.00	14,634.00	14,893.00	15,124.00
490	В	14,627.00	14,858.00	15,117.00	15,348.00
644	A	14,400.00	14,708.00	15,044.00	15,352.00
728	A	14,500.00	14,625.00	15,228.00	15,353.00

 Table 1-21 Information about the 15 GHz frequency band (XMC-2 ODU)

 Table 1-22 lists the information about the 18 GHz frequency band.

Table 1-22 Information about the 18	3 GHz frequency band (XMC-2 ODU)
-------------------------------------	----------------------------------

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Su Frequenc	b-band TX cy (MHz)
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
1010/1008	А	17,685.00	18,230.00	18,695.00	19,240.00

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Su Frequenc	b-band TX cy (MHz)
(MHZ)	Lower Limit	Upper Limit	Lower Limit	Upper Limit	
1010/1008	В	18,180.00	18,700.00	19,190.00	19,710.00
1560	С	17,700.00	18,140.00	19,260.00	19,700.00
1092.5	А	17,712.50	18,060.00	18,805.00	19,152.50
1092.5	В	17,987.50	18,595.00	19,080.00	19,687.50

Table 1-23 lists the information about the 23 GHz frequency band.

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Sub-band TX Frequency (MHz)	
(MHz)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
1008	А	21,990.50	22,330.00	22,998.50	23,338.00
1008	В	22,274.00	22,610.00	23,282.00	23,618.00
1008	С	22,260.00	22,610.00	23,268.00	23,618.00
1050 NOTE This is special requirement s;	А	21,950.25	22,498.00	23,000.25	23,548.00
1200	А	21,200.00	21,600.00	22,400.00	22,800.00
1200	В	21,600.00	22,000.00	22,800.00	23,200.00
1200	С	21,950.00	22,400.00	23,150.00	23,600.00
1232	А	21,200.00	21,786.00	22,432.00	23,018.00
1232	В	21,779.00	22,386.00	23,011.00	23,618.00

Table 1-23 Information about the 23 GHz frequency band (XMC-2 ODU)

Table 1-24 lists the information about the 26 GHz frequency band.

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz) Lower Limit Upper Limit		Higher Sub-band TX Frequency (MHz)	
(MHZ)				Lower Limit	Upper Limit
1008	А	24,549.00	24,885.00	25,557.00	25,893.00
1008	В	24,829.00	25,165.00	25,837.00	26,173.00
1008	С	25,109.00	25,445.00	26,117.00	26,453.00

Table 1-24 Information about the 26 GHz frequency band (XMC-2 ODU)

Table 1-25 lists the information about the 28 GHz frequency band.

Table 1-25 Information about the 28 GHz frequency band (XMC-2 ODU)

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Sub-band TX Frequency (MHz)	
(MHz)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
1008	A	27,520.00	28,025.00	28,528.00	29,033.00
1008	В	27,968.00	28,473.00	28,976.00	29,481.00

 Table 1-26 lists the information about the 32 GHz frequency band.

Table 1-26	Information	about the 32	GHz free	quency band	(XMC-2 ODU)
					· · · · · · · · · · · · · · · · · · ·

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Sub-band TX Frequency (MHz)		
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit	
812	А	31,815.00	32,207.00	32,627.00	33,019.00	
812	В	32,179.00	32,571.00	32,991.00	33,383.00	

 Table 1-27 lists the information about the 38 GHz frequency band.

Fable 1-27 Information about	it the 38 GHz frequency	band (XMC-2 ODU)
-------------------------------------	-------------------------	------------------

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Sub-band TX Frequency (MHz)	
(MHz)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
1260	А	37,044.00	37,632.00	38,304.00	38,892.00

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Sub-band TX Frequency (MHz)		
(IVIHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit	
1260	В	37,604.00	38,192.00	38,864.00	39,452.00	

 Table 1-28 lists the information about the 42 GHz frequency band.

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Sub-band TX Frequency (MHz)	
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
1500	А	40,522.00	41,306.00	42,022.00	42,806.00
1500	В	41,194.00	41,964.00	42,694.00	43,464.00

Table 1-28 Information about the 42 GHz frequency band (XMC-2 ODU)

1.8.2 XMC-2H ODU

This describes the technical specifications of the XMC-2H ODU.

Working Formats

Table 1-29 lists the modulation format and the channel spacing of the ODU.

 Table 1-29 Working formats of the ODU (XMC-2H ODU)

Item	Specification		
Modulation format	QPSK, QPSKSTRONG, 16 QAM, 16 QAMSTRONG, 32 QAM, 64 QAM, 128 QAM, 256 QAM, 512 QAM, 512 QAMLIGHT, 1024 QAM, and 1024 QAMLIGHT		
Channel spacing	7 MHz, 14 MHz, 28 MHz, 40 MHz, and 56 MHz		
 NOTE ALL modulation formats can be implemented only when the IS3 mode of the intermediate frequency (IF) board is used in the L6 GHz, U6 GHz, 7 GHz, 8 GHz, and 11 GHz working frequencies. 			

Frequency Bands

Table 1-30 list the working frequency bands of the ODU.

Frequency Band	Frequency Range (GHz)	Interval Between Center RX and TX Frequencies in a Channel (MHz)
L6 GHz	From 5.925 to 6.425	252.04
U6 GHz	From 6.425 to 7.125	340/350
7 GHz	From 7.093 to 7.897	154, 161, 168, 196, 245, and 160
8 GHz	From 7.731 to 8.497	119/126, 151.614, 208, 266, 310 and 311.32
11 GHz	From 10.675 to 11.745	500/490, 530/520

Table 1-30 Working frequency bands of the ODU (XMC-2H ODU)

Transceiver Specifications

Table 1-31 list the transceiver specifications of the ODU.

The maximum error between the actual transmit power of the ODU and the preset transmit power on the NMS is ± 2 dB.

When the receive power of the ODU is between -70 dBm and -30 dBm, the maximum error between the actual receive power of the ODU and the receive power displayed on the NMS is ± 2 dB.

When the receive power of the ODU is between -90 dBm and -70 dBm, the maximum error between the actual receive power of the ODU and the receive power displayed on the NMS is ± 3 dB.

When the receive power of the ODU is between -30 dBm and -20 dBm, the maximum error between the actual receive power of the ODU and the receive power displayed on the NMS is ± 3 dB.

Table 1-31	Transceiver	specifications	of the	ODU(XMC-2H	ODU)
		1			

Item	Specification							
	QPSK/ QPSK STRO NG	16 QAM/ 16 QAM STRO NG	32 QAM	64 QAM	128 QAM	256 QAM	512 QAM/ 512 QAM LIGH T	1024 QAM/ 1024 QAM LIGH T
Rated m	naximum T	X power(d	Bm)					
L6	30.5	30.5	30.5	30.5	30.5	28.5	28.5	27.5
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
U6	30.5	30.5	30.5	30.5	30.5	28.5	28.5	27.5
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
7 GHz	30.5	30.5	30.5	30.5	30.5	28.5	28.5	27.5
	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
8 GHz	30.5	30.5	30.5	30.5	30.5	28.5	28.5	27.5
	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm

Item		Specification						
	QPSK/ QPSK STRO NG	16 QAM/ 16 QAM STRO NG	32 QAM	64 QAM	128 QAM	256 QAM	512 QAM/ 512 QAM LIGH T	1024 QAM/ 1024 QAM LIGH T
11 GHz	28.5 dBm	28.5 dBm	28.5 dBm	28.5 dBm	28.5 dBm	26.5 dBm	26.5 dBm	25.5 dBm
Rated m	ninimum T2	X power(d	Bm)	-	-			
L6/ U6/7/ 8/11 GHz	5 dBm							
Maxi mum RF RX power	 L6 GHz, U6 GHz, 7 GHz, 8 GHz, 11 GHz QPSK, QPSKSTRONG, 16 QAM, 16 QAMSTRONG, 32 QAM, 64 QAM, 128 QAM, 256 QAM:-20 dBm 512 QAM, 512 QAMLIGHT, 1024 QAM, 1024 QAMLIGHT:-25 dBm 							
Frequ ency stabili ty (from -33°C to +55°C)	$\leq \pm 5$ ppm NOTE When th tolerance	 • 512 QAM, 512 QAMLIGHT, 1024 QAM, 1024 QAMLIGHT:-25 dBm ≤±5 ppm NOTE When the T/R spacing is 252.04 MHz , 311.32 MHz or 151.614 MHz, the frequency tolerance meets the requirement of the ETSI. 						

IF Specifications

 Table 1-32 lists the IF specifications of the ODU.

Table 1-32	IE	specifications	of the		(XMC_2H ODE	n
Table 1-52	П	specifications	or the	000	(AMC-211 ODC	"

	Item	Specification
IF signal	Center frequency of the input IF	350 MHz
	Center frequency of the RX IF	140 MHz
	Return loss of the IF interface	< -15 dB

	Item	Specification	
ODU O&M	Modulation mode	ASK	
signal	Uplink signal	5.5 MHz	
	Downlink signal	10 MHz	

Integrated System Specifications

 Table 1-33 list the integrated system specifications of the ODU.

Table 1-33 Integrated	l system s	specifications	of the ODU	(XMC-2H ODU))

Item	Specification
Integrated system dimensions	228 mm x 228 mm x 91 mm (width x depth x height)
Weight	\leq 5 kg (L6 GHz, U6 GHz frequency band) \leq 4.5 kg (7 GHz, 8 GHz and 11 GHz frequency band)
Power supply	-48 V (from -36 V to -60 V) DC
Power consumption	\leq 42 W

Frequency Information

ΠΝΟΤΕ

- Instead of the upper/lower limits of the central frequency of channels, the upper/lower limits of the frequency that carries the TX signals are described as follows to indicate the scope of frequencies supported by the ODU. The lowest central frequency of channels is higher than the lower limit frequency by half of the channel spacing. The highest central frequency of channels is lower than the upper limit frequency by half of the channel spacing.
- The T/R spacing values listed in the following tables are default values. In special application scenarios and within the frequency range covered by the duplexer, the T/R spacing values within each band are configurable.

L6 GHz Frequency Band

 Table 1-34 lists the information about the L6 GHz frequency band.

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Sub-band TX Frequency (MHz)		
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit	
252.04	Α	5,925.00	6,004.00	6,177.00	6,256.00	

Table 1-34 Information about the L6 GHz frequency band (XMC-2H ODU)

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Su Frequenc	b-band TX cy (MHz)
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
252.04	В	5,974.00	6,063.00	6,226.00	6,315.00
252.04	С	6,034.00	6,123.00	6,286.00	6,375.00
252.04	D	6,093.00	6,173.00	6,345.00	6,425.00

 Table 1-35 lists the information about the U6 GHz frequency band.

T/R Spacing	Sub- Band	Lower Sul Frequent	b-band TX cy (MHz)	Higher Sub-band TX Frequency (MHz)		
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit	
340/350	А	6,425.00	6,509.00	6,765.00	6,849.00	
340/350	В	6,471.00	6,569.00	6,811.00	6,909.00	
340/350	С	6,536.00	6,619.00	6,876.00	6,959.00	
340/350	D	6,591.00	6,689.00	6,931.00	7,029.00	
340/350	Е	6,631.00	6,729.00	6,971.00	7,069.00	
340/350	F	6,701.00	6,785.00	7,041.00	7,125.00	

Table 1-35 Information about the U6 GHz frequency band (XMC-2H ODU)

7 GHz Frequency Band

 Table 1-36 lists the information about the 7 GHz frequency band.

Table 1-36 Information about the 7 GHz frequency band (XMC-2H ODU)

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Su Frequen	b-band TX cy (MHz)
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
154	А	7,428.00	7,484.00	7,582.00	7,638.00
154	В	7,470.00	7,526.00	7,624.00	7,680.00
154	C	7,512.00	7,568.00	7,666.00	7,722.00
154	D	7,128.00	7,184.00	7,282.00	7,338.00

T/R Spacing	Sub- Band	Lower Sul Frequence	b-band TX cy (MHz)	Higher Sub-band TX Frequency (MHz)		
(MHz)		Lower Limit	Upper Limit	Lower Limit	Upper Limit	
154	Е	7,170.00	7,226.00	7,324.00	7,380.00	
154	F	7,212.00	7,268.00	7,366.00	7,422.00	
161	А	7,114.00	7,177.00	7,275.00	7,338.00	
161	В	7,149.00	7,212.00	7,310.00	7,373.00	
161	С	7,180.50	7,247.00	7,341.50	7,408.00	
161	D	7,219.00	7,282.00	7,380.00	7,443.00	
161	Е	7,239.00	7,302.00	7,400.00	7,463.00	
161	F	7,274.00	7,337.00	7,435.00	7,498.00	
161	G	7,309.00	7,372.00	7,470.00	7,533.00	
161	Н	7,344.00	7,407.00	7,505.00	7,568.00	
161	Ι	7,414.00	7,477.00	7,575.00	7,638.00	
161	J	7,449.00	7,512.00	7,610.00	7,673.00	
161	K	7,484.00	7,547.00	7,645.00	7,708.00	
161	L	7,519.00	7,582.00	7,680.00	7,743.00	
161	М	7,539.00	7,602.00	7,700.00	7,763.00	
161	N	7,574.00	7,637.00	7,735.00	7,798.00	
161	0	7,609.00	7,672.00	7,770.00	7,833.00	
161	Р	7,644.00	7,707.00	7,805.00	7,868.00	
168	А	7,443.00	7,499.00	7,611.00	7,667.00	
168	В	7,485.00	7,541.00	7,653.00	7,709.00	
168	С	7,527.00	7,583.00	7,695.00	7,751.00	
168	D	7,110.50	7,170.00	7,278.50	7,338.00	
168	Е	7,163.00	7,205.00	7,331.00	7,373.00	
168	F	7,198.00	7,236.50	7,366.00	7,404.50	
168	G	7,226.00	7,261.00	7,394.00	7,429.00	
196	А	7,093.00	7,177.00	7,289.00	7,373.00	
196	В	7,149.00	7,233.00	7,345.00	7,429.00	
196	С	7,205.00	7,261.00	7,401.00	7,457.00	

T/R Spacing	Sub- Band	Lower Sul Frequence	o-band TX cy (MHz)	Higher Sub-band TX Frequency (MHz)		
(MHZ)		Lower Limit Upper Limit		Lower Limit	Upper Limit	
245	А	7,400.00	7,484.00	7,645.00	7,729.00	
245	В	7,484.00	7,568.00	7,729.00	7,813.00	
245	С	7,568.00	7,652.00	7,813.00	7,897.00	
160	А	7,433.50	7,496.50	7,593.50	7,656.50	
160	В	7,478.50	7,541.50	7,638.50	7,701.50	
160	С	7,526.00	7,589.00	7,686.00	7,749.00	

 Table 1-37 lists the information about the 8 GHz frequency band.

T/R Spacing	Sub- Band	Lower Sul Frequence	o-band TX cy (MHz)	Higher Sub-band TX Frequency (MHz)		
(MHZ)		Lower Limit	Lower Limit Upper Limit		Upper Limit	
119/126	А	8,279.00	8,321.00	8,398.00	8,440.00	
119/126	В	8,307.00	8,349.00	8,426.00	8,468.00	
119/126	С	8,335.00	8,377.00	8,454.00	8,496.00	
151.614	А	8,203.00	8,271.00	8,355.00	8,423.00	
151.614	В	8,240.00	8,308.00	8,392.00	8,460.00	
151.614	С	8,277.00	8,345.00	8,429.00	8,497.00	
208	А	8,043.00	8,113.00	8,251.00	8,321.00	
208	В	8,099.00	8,169.00	8,307.00	8,377.00	
208	С	8,155.00	8,225.00	8,363.00	8,433.00	
208	D	8,211.00	8,281.00	8,419.00	8,489.00	
266	А	7,905.00	8,024.00	8,171.00	8,290.00	
266	В	8,017.00	8,136.00	8,283.00	8,402.00	
310	А	7,905.00	8,017.00	8,215.00	8,327.00	
310	В	8,017.00	8,129.00	8,327.00	8,439.00	
310	С	8,129.00	8,185.00	8,439.00	8,495.00	

Table 1-37 Information about the 8 GHz frequency band (XMC-2H ODU)

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Sub-band TX Frequency (MHz)			
(MHZ)	Lower L		Upper Limit	Lower Limit	Upper Limit		
311.32	А	7,731.00	7,867.00	8,042.00	8,178.00		
311.32	В	7,835.00	7,971.00	8,146.00	8,282.00		

 Table 1-38 lists the information about the 11 GHz frequency band.

Table 1-38 Information about the 11 GHz frequency band (XMC-2H ODU)

T/R Spacing	Sub- Band	Lower Sul Frequence	b-band TX cy (MHz)	Higher Sub-band TX Frequency (MHz)			
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit		
500/490	А	10,700.00	10,980.00	11,200.00	11,480.00		
500/490	В	10,920.00	11,200.00	11,420.00	11,700.00		
530/520	А	10,675.00	10,975.00	11,205.00	11,505.00		
530/520	В	10,915.00	11,215.00	11,445.00	11,745.00		

1.8.3 XMC-3 ODU

This describes the technical specifications of the XMC-3 ODU.

Working Formats

Table 1-39 lists the modulation format and the channel spacing of the ODU.

Table 1-39 Working formats of the ODU (XMC-3 ODU)

Item	Specification
Modulation format	QPSK, QPSKSTRONG, 16 QAM, 16 QAMSTRONG, 32 QAM, 64 QAM, 128 QAM, 256 QAM, 512 QAM, 512 QAMLIGHT, 1024 QAM, 1024 QAMLIGHT, 2048 QAM and 4096 QAM
Channel spacing	3.5 MHz, 7 MHz, 14 MHz, 28 MHz, 40 MHz, 56 MHz, and 112 MHz

Item	Specification							
NOTE								
• The channel spacin standard, the 18 G corresponds to 14/	• The channel spacings supported by XMC-3 ODU complies with the ETSI standard. In the ETSI standard, the 18 GHz frequency band is planned based on the interval of 13.75/27.5/55 MHz, which corresponds to 14/28/56 MHz in most application scenarios.							
• The 3.5 MHz band (IF) board is suppo	width can be implemented only when the IS3 mode of the intermediate frequency orts the modulation mode of QPSK and 16 QAM.							
 The 32 GHz worki bandwidth support 32 QAM, 64 QAM requires the cable AM and does not s greater than 60 m. 	ing frequencies support the 112 MHz bandwidth only in IS6 mode; the 112 MHz is modulation formats of QPSK, QPSKSTRONG, 16 QAM, 16 QAMSTRONG, 1, 128 QAM, 256 QAM, 512 QAM, 1024 QAM and 2048 QAM. The 1024 QAM length to be less than 12 m or greater than 30 m. The 2048 QAM supports only support ATPC. This format requires the cable length to be less than 12 m or							
 When the IS6 mod GHz. Channel space QAMSTRONG, 3: QAM. Channel space QPSK, QPSKSTR 512 QAM, 512 QA 	le of the intermediate frequency (IF) board is used in the 28 GHz, 32 GHz and 38 cing is 7 MHz, the modulation mode can be QPSK, QPSKSTRONG, 16 QAM, 16 2 QAM, 64 QAM, 128 QAM, 256 QAM, 512 QAM, 512 QAMLIGHT and 1024 acing is 14 MHz, 28 MHz, 40 MHz or 56 MHz the modulation mode can be .ONG, 16 QAM, 16 QAMSTRONG, 32 QAM, 64 QAM, 128 QAM, 256 QAM, AMLIGHT, 1024 QAM and 2048 QAM. 2048 QAM supports only the AM.							
 The 4096 QAM ca board is used and u 15 GHz, 18 GHz, 1 spacing is 28 MHz supported. ATPC i 	In be implemented only when the IS6 mode of the intermediate frequency (IF) under the normal temperature condition in the 7 GHz, 8 GHz, 11 GHz, 13 GHz, 23 GHz, and 26 GHz working frequencies; 4096 QAM supports only Channel 2, 40 MHz and 56 MHz; 4096QAM is supported only when the AM function is s not supported.							
 The cable length re If the Channel space the Channel space 80 m. 	equirements for the 4096 QAM in the 26 GHz working frequencies are as follows: cing is 28 MHz, the cable length must be less than 30 m or greater than 40 m; If ng is 40 MHz or 56 MHz, the cable length must be less than 30 m or greater than							
• The cable length re 18 GHz and 23 GF MHz, the cable ler	equirements for the 4096 QAM in the 7 GHz, 8 GHz, 11 GHz, 13 GHz, 15 GHz, Iz working frequencies are as follows: If the Channel spacing is 40 MHz or 56 ngth must be less than 30 m or greater than 80 m.							

Frequency Bands

Table 1-40 list the working frequency bands of the ODU.

Frequency Band	Frequency Range (GHz)	Interval Between Center RX and TX Frequencies in a Channel (MHz)
7 GHz	From 7.093 to 7.897	154, 160, 161, 168, 196, 245
8 GHz	From 7.731 to 8.497	119/126, 151.614, 208, 266, 310, 311.32
11 GHz	From 10.675 to 11.745	490, 500, 520, 530
13 GHz	From 12.751 to 13.248	266
15 GHz	From 14.400 to 15.358	315/322, 420, 490, 644, 728
18 GHz	From 17.685 to 19.710	1010/1008, 1092.5, 1560
23 GHz	From 21.200 to 23.618	1008, 1050, 1200, 1232

Table 1-40 Working frequency ban	nds of the ODU (XMC-3 ODU)
----------------------------------	----------------------------

Frequency Band	Frequency Range (GHz)	Interval Between Center RX and TX Frequencies in a Channel (MHz)
26 GHz	From 24.25 to 26.453	1008
28 GHz	From 27.52 to 29.481	1008
32 GHz	From 31.815 to 33.383	812
38 GHz	From 37.044 to 40.105	1260

Transceiver Specifications

The following table lists the transceiver specifications of the XMC-3 ODU.

The maximum error between the actual transmit power of the ODU and the preset transmit power on the NMS is ± 2 dB;The maximum error between the actual transmit power of the 38GHz 0 dB to -10dB and the preset transmit power on the NMS is ± 3 dB.

When the receive power of the ODU is between -70 dBm and -30 dBm, the maximum error between the actual receive power of the ODU and the receive power displayed on the NMS is ± 2 dB.

When the receive power of the ODU is between -90 dBm and -70 dBm, the maximum error between the actual receive power of the ODU and the receive power displayed on the NMS is ± 3 dB.

When the receive power of the ODU is between -30 dBm and -20 dBm, the maximum error between the actual receive power of the ODU and the receive power displayed on the NMS is ± 3 dB.

Transceiver specifications of the XMC-3 ODU (IS3)

Item	Specification								
	QPS K/ QPS KST RON G	16 QAM /16 QAM STR ONG	32 QA M	64 QAM	128 QAM	256 QAM	512 QAM /512 QAM LIGH T	1024 QAM /1024 QAM LIGH T	2048 QAM
7 GHz	30	28	28	26	26	24	24	23	21
	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
8 GHz	30	28	28	26	26	24	24	23	21
	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
11	27	25	25	25	25	23	23	20	20
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
13	25	24	24	23	23	21	20	18	18
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
15	25	24	24	23	23	21	21	19	19
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm

Table 1-41 Rated maximum TX power of the XMC-3 ODU

Item	Specification								
	QPS K/ QPS KST RON G	16 QAM /16 QAM STR ONG	32 QA M	64 QAM	128 QAM	256 QAM	512 QAM /512 QAM LIGH T	1024 QAM /1024 QAM LIGH T	2048 QAM
18	24	23	23	22	22	20	19	17	17
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
23	24	23	23	22	22	19.5	19.5	18	18
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
26	22	21	21	19	19	17	17	15	15
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
28	22	20	20	19	19	17	16	15	15
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
32	22	20	20	19	19	17	16	15	15
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
38	20	18	18	17	17	16	15	13	13
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm

Table 1-42 Rated minimum TX power of the XMC-3 ODU

Item	Specification									
	QPS K/ QPS KST RON G	16 QAM /16 QAM STR ONG	32 QA M	64 QAM	128 QAM	256 QAM	512 QAM /512 QAM LIGH T	1024 QAM /1024 QAM LIGH T	2048 QAM	
7 GHz	5 dBm	5 dBm	5 dBm	5 dBm	5 dBm	5 dBm	5 dBm	5 dBm	5 dBm	
8 GHz	5 dBm	5 dBm	5 dBm	5 dBm	5 dBm	5 dBm	5 dBm	5 dBm	5 dBm	
11 GHz	-4 dBm	-4 dBm	-4dB m	-4 dBm	-4 dBm	-4 dBm	-4 dBm	-4 dBm	-4 dBm	
13 GHz	-5 dBm	-5 dBm	-5 dBm	-5 dBm	-5 dBm	-5 dBm	-5 dBm	-5 dBm	-5 dBm	
15 GHz	-5 dBm	-5 dBm	-5 dBm	-5 dBm	-5 dBm	-5 dBm	-5 dBm	-5 dBm	-5 dBm	

Item		Specification								
	QPS K/ QPS KST RON G	16 QAM /16 QAM STR ONG	32 QA M	64 QAM	128 QAM	256 QAM	512 QAM /512 QAM LIGH T	1024 QAM /1024 QAM LIGH T	2048 QAM	
18	-7	-7	-7	-7	-7	-7	-7	-7	-7	
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	
23	-7	-7	-7	-7	-7	-7	-7	-7	-7	
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	
26	-10	-10	-10	-10	-10	-10	-10	-10	-10	
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	
28	-6	-6	-6	-6	-6	-6	-6	-6	-6	
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	
32	-10	-10	-10	-10	-10	-10	-10	-10	3 dBm	
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm		
38	-6	-6	-6	-6	-6	-6	-6	-6	0 dBm	
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm		

Table 1-43 Maximum RF RX power of the XMC-3 ODU

Item	Specification								
	QPS K/ QPS KST RON G	16 QAM /16 QAM STR ONG	32 QA M	64 QAM	128 QAM	256 QAM	512 QAM /512 QAM LIGH T	1024 QAM /1024 QAM LIGH T	2048 QAM
7 GHz	-20	-20	-20	-20	-20	-20	-25	-25	-30
	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
8 GHz	-20	-20	-20	-20	-20	-20	-25	-25	-30
	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
11	-20	-20	-20	-20	-20	-20	-25	-25	-30
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
13	-20	-20	-20	-20	-20	-20	-25	-25	-30
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
15	-20	-20	-20	-20	-20	-20	-25	-25	-30
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm

Item		Specification								
	QPS K/ QPS KST RON G	16 QAM /16 QAM STR ONG	32 QA M	64 QAM	128 QAM	256 QAM	512 QAM /512 QAM LIGH T	1024 QAM /1024 QAM LIGH T	2048 QAM	
18	-20	-20	-20	-20	-20	-20	-25	-25	-30	
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	
23	-20	-20	-20	-20	-20	-20	-25	-25	-30	
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	
26	-20	-20	-20	-20	-20	-20	-25	-25	-30	
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	
28	-20	-20	-20	-20	-20	-20	-25	-25	-30	
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	
32	-20	-20	-20	-20	-20	-20	-25	-25	-30	
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	
38	-20	-20	-20	-20	-20	-20	-25	-25	-30	
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	

Table 1-44 ATPC maximun range and Frequency stability of the XMC-3 ODU

Item	Specifi	ication
	ATPC maximun range	Frequency stability (from -33°C to +55°C)
7 GHz	30 dB	≤±5 ppm
8 GHz	30 dB	NOTE When the T/R spacing is 311.32 MHz or
11 GHz	32 dB	151.614 MHz, the frequency tolerance meets the requirement of the ETSI.
13 GHz	33 dB	
15 GHz	33 dB	
18 GHz	34 dB	
23 GHz	34 dB	
26 GHz	32 dB	
28 GHz	32 dB	
32 GHz	32 dB	
38 GHz	30 dB	

Transceiver specifications of the XMC-3 ODU (IS6)

Item		Specification								
	QPS K/ QPS KST RO NG	16 QA M/16 QA MST RO NG	32 QA M	64 QA M	128 QA M	256 QA M	512 QA M	1024 QA M	2048 QA M	4096 QA M
7	30	28	28	26	26	24	24	23	21	20
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
8	30	28	28	26	26	24	24	23	21	20
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
11	27	25	25	25	25	23	23	20	20	18
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
13	25	24	24	23	23	21	20	18	18	17
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
15	25	24	24	23	23	21	21	19	19	18
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
18	24	23	23	22	22	20	19	17	17	16
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
23	24	23	23	22	22	19.5	19.5	18	18	17
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
26	22	21	21	19	19	17	17	15	15	14
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
28	22	20	20	19	19	17	16	15	15	-
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	
32	22	20	20	19	19	17	16	15	15	-
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	
32 GHz (112 MHz)	22 dBm	18 dBm	18 dBm	17 dBm	17 dBm	16 dBm	14 dBm	11 dBm	11 dBm	-
38	20	18	18	17	17	16	15	13	13	-
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	

Table 1-45 Rated maximum TX power of the XMC-3 ODU

Item		Specification								
	QPS K/ QPS KST RO NG	16 QA M/16 QA MST RO NG	32 QA M	64 QA M	128 QA M	256 QA M	512 QA M	1024 QA M	2048 QA M	4096 QA M
7	5	5	5	5	5	5	5	5	5	5
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
8	5	5	5	5	5	5	5	5	5	5
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
11	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
13	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
15	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
18	-7	-7	-7	-7	-7	-7	-7	-7	-7	-7
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
23	-7	-7	-7	-7	-7	-7	-7	-7	-7	-7
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
26	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
28	-6	-6	-6	-6	-6	-6	-6	-6	-6	-
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	
32	-10	-10	-10	-10	-10	-10	-10	-10	3	-
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	
32 GHz (112 MHz)	-2 dBm	-2 dBm	-2 dBm	-2 dBm	-2 dBm	-2 dBm	-2 dBm	- 2 dBm	5 dBm	-
38	-6	-6	-6	-6	-6	-6	-6	-6	0	-
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	

Table 1-46 Rated minimum TX power of the XMC-3 ODU

Item		Specification								
	QPS K/ QPS KST RO NG	16 QA M/16 QA MST RO NG	32 QA M	64 QA M	128 QA M	256 QA M	512 QA M	1024 QA M	2048 QA M	4096 QA M
7	-20	-20	-20	-20	-20	-20	-25	-25	-30	-35
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
8	-20	-20	-20	-20	-20	-20	-25	-25	-30	-35
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
11	-20	-20	-20	-20	-20	-20	-25	-25	-30	-35
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
13	-20	-20	-20	-20	-20	-20	-25	-25	-30	-35
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
15	-20	-20	-20	-20	-20	-20	-25	-25	-30	-35
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
18	-20	-20	-20	-20	-20	-20	-25	-25	-30	-35
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
23	-20	-20	-20	-20	-20	-20	-25	-25	-30	-35
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
26	-20	-20	-20	-20	-20	-20	-25	-25	-30	-35
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
28	-20	-20	-20	-20	-20	-20	-25	-25	-30	-
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	
32	-20	-20	-20	-20	-20	-20	-25	-25	-30	-
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	
38	-20	-20	-20	-20	-20	-20	-25	-25	-30	-
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	

Table 1-47 Maximum RF RX power of the XMC-3 ODU

Table 1-48 ATPC maximun range and Frequency	y stability of the XMC-3 ODU
---	------------------------------

Item	Specification					
	ATPC maximun range	Frequency stability (from -33°C to +55°C)				
7 GHz	30 dB	≤±5 ppm				
8 GHz	30 dB					

Item	Specification					
	ATPC maximun range	Frequency stability (from -33°C to +55°C)				
11 GHz	32 dB	NOTE When the T/R spacing is 311 32 MHz or				
13 GHz	33 dB	151.614 MHz, the frequency tolerance meets the requirement of the ETSI				
15 GHz	33 dB	needs are requirement of the 1151.				
18 GHz	34 dB					
23 GHz	34 dB					
26 GHz	32 dB					
28 GHz	32 dB					
32 GHz	32 dB					
38 GHz	30 dB					

IF Specifications

Table 1-49 lists the IF specifications of the ODU.

Table 1-49	IF	specifications	of the	ODU	(XMC-3	ODU)
		-p			(

	Item	Specification
IF signal	Center frequency of the input IF	350 MHz
	Center frequency of the RX IF	140 MHz
	Return loss of the IF interface	< -15 dB
ODU O&M	Modulation mode	ASK
sıgnal	Uplink signal	5.5 MHz
	Downlink signal	10 MHz

Integrated System Specifications

Table 1-50 list the integrated system specifications of the ODU.

Item	Specification
Integrated system dimensions	7 GHz, 8 GHz, 11 GHz: 195 mm x 195 mm x 43.5 mm (width x depth x height)
	13 GHz, 15 GHz, 18 GHz, 23 GHz, 26 GHz, 28 GHz, 32 GHz, 38 GHz: 172 mm x 172 mm x 41.5 mm (width x depth x height)
Weight	13 GHz, 15 GHz, 18 GHz, 23 GHz, 26 GHz, 28 GHz, 32 GHz, 38 GHz: ≤ 2.5 kg
	7 GHz, 8 GHz, 11 GHz: \leq 2.8 kg
Power supply	-48 V (from -36 V to -60 V) DC
Power consumption	7 GHz, 8 GHz, 11 GHz: 30 W
	13 GHz, 15 GHz, 26 GHz: 20.5 W
	18 GHz, 23 GHz: 24.5 W
	28 GHz, 32 GHz: 25 W
	38 GHz: 22 W

Table 1-50 Integrated system specifications of the ODU (XMC-3 ODU)

- Instead of the upper/lower limits of the central frequency of channels, the upper/lower limits of the frequency that carries the TX signals are described as follows to indicate the scope of frequencies supported by the ODU. The lowest central frequency of channels is higher than the lower limit frequency by half of the channel spacing. The highest central frequency of channels is lower than the upper limit frequency by half of the channel spacing.
- The T/R spacing values listed in the following tables are default values. In special application scenarios and within the frequency range covered by the duplexer, the T/R spacing values within each band are configurable.

7 GHz Frequency Band

 Table 1-51 lists the information about the 7 GHz frequency band.

T/R Spacing	Sub- Band	Lower Sul Frequence	o-band TX cy (MHz)	Higher Su Frequenc	b-band TX cy (MHz)
(MHz)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
154	А	7,427.00	7,485.00	7,581.00	7,639.00
154	В	7,456.00	7,526.00	7,610.00	7,680.00
154	С	7,512.00	7,568.00	7,666.00	7,722.00
154	D	7,128.00	7,184.00	7,282.00	7,338.00
154	E	7,170.00	7,226.00	7,324.00	7,380.00

Table 1-51 Information about the 7 GHz frequency band (XMC-3 ODU)

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Sub-band TX Frequency (MHz)	
(MHz)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
154	F	7,212.00	7,268.00	7,366.00	7,422.00
154 NOTE This is special requireme nts;	G	7,484.00	7,541.00	7,638.00	7,695.00
154 NOTE This is special requireme nts;	Η	7,539.00	7,569.00	7,693.00	7,723.00
160	А	7,433.50	7,496.50	7,593.50	7,656.50
160	В	7,478.50	7,541.50	7,638.50	7,701.50
160	С	7,526.00	7,589.00	7,686.00	7,749.00
161	А	7,114.00	7,177.00	7,275.00	7,338.00
161	В	7,149.00	7,212.00	7,310.00	7,373.00
161	С	7,718.50	7,247.00	7,341.50	7,408.00
161	D	7,219.00	7,282.00	7,380.00	7,443.00
161	Е	7,239.00	7,302.00	7,400.00	7,463.00
161	F	7,274.00	7,337.00	7,435.00	7,498.00
161	G	7,309.00	7,372.00	7,470.00	7,533.00
161	Н	7,344.00	7,407.00	7,505.00	7,568.00
161	Ι	7,414.00	7,484.00	7,575.00	7,645.00
161	J	7,449.00	7,512.00	7,610.00	7,673.00
161	К	7,484.00	7,547.00	7,645.00	7,708.00
161	L	7,519.00	7,582.00	7,680.00	7,743.00
161	М	7,539.00	7,602.00	7,700.00	7,763.00
161	N	7,574.00	7,637.00	7,735.00	7,798.00
161	0	7,609.00	7,672.00	7,770.00	7,833.00
161	Р	7,644.00	7,707.00	7,805.00	7,868.00

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Sub-band TX Frequency (MHz)	
(MHz)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
161 NOTE This is special requireme nts;	Q	7,128.00	7,184.00	7,289.00	7,345.00
161 NOTE This is special requireme nts;	R	7,212.00	7,268.00	7,373.00	7,429.00
161 NOTE This is special requireme nts;	S	7,508.50	7,568.00	7,669.50	7,729.00
168	А	7,443.00	7,499.00	7,611.00	7,667.00
168	В	7,485.00	7,541.00	7,653.00	7,709.00
168	С	7,527.00	7,583.00	7,695.00	7,751.00
168	D	7,110.50	7,170.00	7,278.50	7,338.00
168	Е	7,163.00	7,205.00	7,331.00	7,373.00
168	F	7,198.00	7,236.50	7,366.00	7,404.50
168	G	7,226.00	7,261.00	7,394.00	7,429.00
196	А	7,093.00	7,177.00	7,289.00	7,373.00
196	В	7,149.00	7,233.00	7,345.00	7,429.00
196	C	7,205.00	7,261.00	7,401.00	7,457.00
245	А	7,400.00	7,484.00	7,645.00	7,729.00
245	В	7,484.00	7,568.00	7,729.00	7,813.00
245	С	7,568.00	7,652.00	7,813.00	7,897.00

Table 1-52 lists the information about the 8 GHz frequency band.

T/R Sub- Spacing Band		Lower Sub-band TX Frequency (MHz)		Higher Sub-band TX Frequency (MHz)	
(MHz)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
119/126	А	8,279.00	8,321.00	8,398.00	8,440.00
119/126	В	8,307.00	8,349.00	8,426.00	8,468.00
119/126	C	8,335.00	8,377.00	8,454.00	8,496.00
151.614	А	8,203.00	8,271.00	8,355.00	8,423.00
151.614	В	8,240.00	8,308.00	8,392.00	8,460.00
151.614	С	8,277.00	8,345.00	8,429.00	8,497.00
208	А	8,043.00	8,113.00	8,251.00	8,321.00
208	В	8,099.00	8,169.00	8,307.00	8,377.00
208	С	8,155.00	8,225.00	8,363.00	8,433.00
208	D	8,211.00	8,281.00	8,419.00	8,489.00
266	А	7,905.00	8,024.00	8,171.00	8,290.00
266	В	8,017.00	8,136.00	8,283.00	8,402.00
310	А	7,905.00	8,017.00	8,215.00	8,327.00
310	В	8,017.00	8,129.00	8,327.00	8,439.00
310	С	8,129.00	8,185.00	8,439.00	8,495.00
311.32	А	7,731.00	7,867.00	8,042.00	8,178.00
311.32	В	7,835.00	7,971.00	8,146.00	8,282.00

Table 1-52 Information about the 8 GHz frequency band (XMC-3 ODU)

Table 1-53 lists the information about the 11 GHz frequency band.

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Su Frequenc	b-band TX cy (MHz)
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
500/490	А	10,700.00	10,980.00	11,200.00	11,480.00
500/490	В	10,920.00	11,200.00	11,420.00	11,700.00
530/520	А	10,675.00	10,975.00	11,205.00	11,505.00

Table 1-53 Information about the 11 GHz frequency band (XMC-3 ODU)

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Sub-band TX Frequency (MHz)	
(MHz)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
530/520	В	10,915.00	11,215.00	11,445.00	11,745.00

 Table 1-54 lists the information about the 13 GHz frequency band.

Table 1-54 Information about the 13	3 GHz frequency band (XMC-3 ODU)
-------------------------------------	----------------------------------

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Su Frequend	b-band TX cy (MHz)
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
266	А	12,751.00	12,891.00	13,017.00	13,157.00
266	В	12,863.00	12,982.00	13,129.00	13,248.00

15 GHz Frequency Band

Table 1-55 lists the information about the 15 GHz frequency band.

T/R Sub- Spacing Band		Lower Sub-band TX Frequency (MHz)		Higher Sub-band TX Frequency (MHz)	
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
315/322	А	14,627.00	14,746.00	14,942.00	15,061.00
315/322	В	14,725.00	14,844.00	15,040.00	15,159.00
315/322	С	14,823.00	14,942.00	15,138.00	15,257.00
420	А	14,501.00	14,725.00	14,921.00	15,145.00
420	В	14,718.00	14,928.00	15,138.00	15,348.00
490	А	14,403.00	14,634.00	14,893.00	15,124.00
490	В	14,627.00	14,858.00	15,117.00	15,348.00
644	А	14,400.00	14,708.00	15,044.00	15,352.00
728	А	14,500.00	14,625.00	15,228.00	15,353.00

 Table 1-55 Information about the 15 GHz frequency band (XMC-3 ODU)

 Table 1-56 lists the information about the 18 GHz frequency band.

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Su Frequenc	b-band TX cy (MHz)
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
1010/1008	А	17,685.00	18,230.00	18,695.00	19,240.00
1010/1008	В	18,180.00	18,700.00	19,190.00	19,710.00
1560	C	17,700.00	18,140.00	19,260.00	19,700.00
1092.5	A	17,712.50	18,060.00	18,805.00	19,152.50
1092.5	В	17,987.50	18,595.00	19,080.00	19,687.50

Table 1-56 Information about the 18 GHz frequency band (XMC-3 ODU)

23 GHz Frequency Band

 Table 1-57 lists the information about the 23 GHz frequency band.

Table 1-57 Information about the 23 GHz frequency band (XMC-3 ODU)

T/R Sub- Spacing Band		Lower Sub-band TX Frequency (MHz)		Higher Sub-band TX Frequency (MHz)	
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
1008	А	21,990.50	22,330.00	22,998.50	23,338.00
1008	В	22,260.00	22,610.00	23,268.00	23,618.00
1050	А	21,950.25	22,498.00	23,000.25	23,548.00
1200	А	21,200.00	21,600.00	22,400.00	22,800.00
1200	В	21,600.00	22,000.00	22,800.00	23,200.00
1200	C	21,950.00	22,400.00	23,150.00	23,600.00
1232	А	21,200.00	21,786.00	22,432.00	23,018.00
1232	В	21,779.00	22,386.00	23,011.00	23,618.00

26 GHz Frequency Band

 Table 1-58 lists the information about the 26 GHz frequency band.

T/R Spacing	Sub- Band	Lower Sul Frequence	b-band TX cy (MHz)	Higher Sub-band TX Frequency (MHz)		
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit	
1008	А	24,549.00	24,885.00	25,557.00	25,893.00	
1008	В	24,829.00	25,165.00	25,837.00	26,173.00	
1008	С	25,109.00	25,445.00	26,117.00	26,453.00	

Table 1-58 Information about the 26 GHz frequency band (XMC-3 ODU)

 Table 1-59 lists the information about the 28 GHz frequency band.

Table 1-59 Information about the 28 GHz frequency band (XMC-3 ODU)

T/R Spacing	Sub- Band	Lower Sul Frequence	b-band TX cy (MHz)	Higher Sub-band TX Frequency (MHz)		
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit	
1008	А	27,520.00	28,025.00	28,528.00	29,033.00	
1008	В	27,968.00	28,473.00	28,976.00	29,481.00	

32 GHz Frequency Band

Table 1-60 lists the information about the 32 GHz frequency band.

Table	1-60	Information	about the	32	GHz	frequency	v band (XMC-3	OD ID
Labic	1-00	mormation	ubbut the	52	OLIZ	in equence	y bunu (ODO

T/R Spacing	Sub- Band	Lower Sul Frequence	b-band TX cy (MHz)	Higher Sub-band TX Frequency (MHz)		
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit	
812	А	31,815.00	32,207.00	32,627.00	33,019.00	
812	В	32,179.00	32,571.00	32,991.00	33,383.00	

38 GHz Frequency Band

 Table 1-61 lists the information about the 38 GHz frequency band.

T/R Spacing	Sub- Band	Lower Sul Frequence	b-band TX cy (MHz)	Higher Sub-band TX Frequency (MHz)			
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit		
1260	А	37,044.00	37,632.00	38,304.00	38,892.00		
1260	В	37,604.00	38,192.00	38,864.00	39,452.00		

Table 1-61 Information about the 38 GHz frequency band (XMC-3 ODU)

1.8.4 XMC-3W ODU

This describes the technical specifications of the XMC-3W ODU.

Working Formats

Table 1-62 lists the modulation format and the channel spacing of the ODU.

Table 1-62 Working formats of the ODU (XMC-3W ODU)

Item	Specification
Modulation format	QPSK, QPSKSTRONG, 16 QAM, 16 QAMSTRONG, 32 QAM, 64 QAM, 128 QAM, 256 QAM, 512 QAM, 512 QAMLIGHT, 1024 QAM, 1024 QAMLIGHT, 2048 QAM and 4096 QAM
Channel spacing	3.5 MHz, 7 MHz, 14 MHz, 28 MHz, 40 MHz and 56 MHz

NOTE

- The channel spacings supported by XMC-3W ODU complies with the ETSI standard. In the ETSI standard, the 18 GHz frequency band is planned based on the interval of 13.75 MHz, 27.5 MHz and 55 MHz, which corresponds to 14 MHz, 28 MHz and 56 MHz in most application scenarios.
- The 3.5 MHz bandwidth can be implemented only when the IS3 mode of the intermediate frequency (IF) board is supports the modulation mode of QPSK and 16 QAM.
- The 4096 QAM can be implemented only when the IS6 mode of the intermediate frequency (IF) board is used and under the normal temperature condition; 4096 QAM supports only Channel spacing is 28 MHz, 40 MHz and 56 MHz; 4096QAM is supported only when the AM function is supported. ATPC is not supported.
- The cable length requirements for the 4096 QAM in the 7 GHz, 8 GHz, 13 GHz, 15GHz, 18 GHz, 23GHz working frequencies are as follows: If the Channel spacing is 40 MHz or 56 MHz, the cable length must be less than 30 m or greater than 80 m.

Frequency Bands

 Table 1-63 list the working frequency bands of the ODU.

Frequency Band	Frequency Range (GHz)	Interval Between Center RX and TX Frequencies in a Channel (MHz)
7 GHz	From 7.093 to 7.897	154, 160, 161, 168, 196, 245
8 GHz	From 7.731 to 8.497	119/126, 151.614, 208, 266, 310, 311.32
13 GHz	From 12.751 to 13.248	266
15 GHz	From 14.400 to 15.358	315/322, 420, 475, 490, 644, 728
18 GHz	From 17.685 to 19.710	1010/1008, 1092.5, 1560
23 GHz	From 21.200 to 23.618	1008, 1050, 1200, 1232

Table 1-63 Working frequency bands of the ODU (XMC-3W ODU)

Transceiver Specifications

The following table lists the transceiver specifications of the XMC-3W ODU.

ΠΝΟΤΕ

The maximum error between the actual transmit power of the ODU and the preset transmit power on the NMS is ± 2 dB.

When the receive power of the ODU is between -70 dBm and -30 dBm, the maximum error between the actual receive power of the ODU and the receive power displayed on the NMS is ± 2 dB.

When the receive power of the ODU is between -90 dBm and -70 dBm, the maximum error between the actual receive power of the ODU and the receive power displayed on the NMS is ± 3 dB.

When the receive power of the ODU is between -30 dBm and -20 dBm, the maximum error between the actual receive power of the ODU and the receive power displayed on the NMS is ± 3 dB.

Transceiver specifications of the XMC-3W ODU (IS3)

Item		Specification							
	QPS K/ QPS KST RON G	16 QAM /16 QAM STR ONG	32 QA M	64 QAM	128 QAM	256 QAM	512 QAM /512 QAM LIGH T	1024 QAM /1024 QAM LIGH T	2048 QAM
7 GHz	29	27	27	25	25	23	23	22	20
	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
8 GHz	29	27	27	25	25	23	23	22	20
	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
13	25	23	23	22	22	21	20	19	18
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm

Table 1-64 Rated maximum TX power of the XMC-3W ODU

Item		Specification							
	QPS K/ QPS KST RON G	16 QAM /16 QAM STR ONG	32 QA M	64 QAM	128 QAM	256 QAM	512 QAM /512 QAM LIGH T	1024 QAM /1024 QAM LIGH T	2048 QAM
15	25	23	23	22	22	21	21	19	19
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
18	24	22	22	21	21	20	20	18	17
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
23	24	22	22	21	21	19.5	19.5	18	18
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm

Table 1-65 Rated minimum TX power of the XMC-3W ODU

Item		Specification							
	QPS K/ QPS KST RON G	16 QAM /16 QAM STR ONG	32 QA M	64 QAM	128 QAM	256 QAM	512 QAM /512 QAM LIGH T	1024 QAM /1024 QAM LIGH T	2048 QAM
7 GHz	5 dBm	5 dBm	5 dBm	5 dBm	5 dBm	5 dBm	5 dBm	5 dBm	5 dBm
8 GHz	5 dBm	5 dBm	5 dBm	5 dBm	5 dBm	5 dBm	5 dBm	5 dBm	5 dBm
13	-5	-5	-5	-5	-5	-5	-5	-5	-5
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
15	-5	-5	-5	-5	-5	-5	-5	-5	-5
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
18	-7	-7	-7	-7	-7	-7	-7	-7	-7
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
23	-7	-7	-7	-7	-7	-7	-7	-7	-7
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm

Item		Specification							
	QPS K/ QPS KST RON G	16 QAM /16 QAM STR ONG	32 QA M	64 QAM	128 QAM	256 QAM	512 QAM /512 QAM LIGH T	1024 QAM /1024 QAM LIGH T	2048 QAM
7 GHz	-20	-20	-20	-20	-20	-20	-25	-25	-30
	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
8 GHz	-20	-20	-20	-20	-20	-20	-25	-25	-30
	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
13GHz	-20	-20	-20	-20	-20	-20	-25	-25	-30
	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
15GHz	-20	-20	-20	-20	-20	-20	-25	-25	-30
	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
18GHz	-20	-20	-20	-20	-20	-20	-25	-25	-30
	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
23GHz	-20	-20	-20	-20	-20	-20	-25	-25	-30
	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm

Table 1-66 Maximum RF RX power of the XMC-3W ODU

 Table 1-67 ATPC maximun range and Frequency stability of the XMC-3W ODU

Item	Specification						
	ATPC maximun range	Frequency stability (from -33°C to +55°C)					
7 GHz	29 dB	≤±5 ppm					
8 GHz	29 dB	NOTE When the T/R spacing is 311.32					
13 GHz	33 dB	MHz&151.614MHz, the frequency tolerance meets the requirement of the					
15 GHz	33 dB	ETSI.					
18 GHz	34 dB						
23 GHz	34 dB						

Transceiver specifications of the XMC-3W ODU (IS6)

Item	Specification									
	QPS K/ QPS KST RO NG	16 QA M/16 QA MST RO NG	32 QA M	64 QA M	128 QA M	256 QA M	512 QA M	1024 QA M	2048 QA M	4096 QA M
7	29	27	27	25	25	23	23	22	20	19
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
8	29	27	27	25	25	23	23	22	20	19
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
13	25	23	23	22	22	21	20	19	18	17
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
15	25	23	23	22	22	21	21	19	19	18
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
18	24	22	22	21	21	20	20	18	17	17
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
23	24	22	22	21	21	19.5	19.5	18	18	17
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm

 Table 1-68 Rated maximum TX power of the XMC-3W ODU

Table 1-69 Rated minimum TX power of the XMC-3W ODU

Item	Specification									
	QPS K/ QPS KST RO NG	16 QA M/16 QA MST RO NG	32 QA M	64 QA M	128 QA M	256 QA M	512 QA M	1024 QA M	2048 QA M	4096 QA M
7	5	5	5	5	5	5	5	5	5	5
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
8	5	5	5	5	5	5	5	5	5	5
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
13	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm

Item		Specification								
	QPS K/ QPS KST RO NG	16 QA M/16 QA MST RO NG	32 QA M	64 QA M	128 QA M	256 QA M	512 QA M	1024 QA M	2048 QA M	4096 QA M
15	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
18	-7	-7	-7	-7	-7	-7	-7	-7	-7	-7
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
23	-7	-7	-7	-7	-7	-7	-7	-7	-7	-7
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm

Table 1-70 Maximum RF RX power of the XMC-3W ODU

Item	Specification									
	QPS K/ QPS KST RO NG	16 QA M/16 QA MST RO NG	32 QA M	64 QA M	128 QA M	256 QA M	512 QA M	1024 QA M	2048 QA M	4096 QA M
7	-20	-20	-20	-20	-20	-20	-25	-25	-30	-35
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
8	-20	-20	-20	-20	-20	-20	-25	-25	-30	-35
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
13	-20	-20	-20	-20	-20	-20	-25	-25	-30	-35
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
15	-20	-20	-20	-20	-20	-20	-25	-25	-30	-35
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
18	-20	-20	-20	-20	-20	-20	-25	-25	-30	-35
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
23	-20	-20	-20	-20	-20	-20	-25	-25	-30	-35
GHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm

Item	Specification						
	ATPC maximun range	Frequency stability (from -33°C to +55°C)					
7 GHz	29 dB	≤±5 ppm					
8 GHz	29 dB	NOTE When the T/R spacing is 311.32					
13 GHz	33 dB	MHz&151.614MHz, the frequency stability meets the requirement of the					
15 GHz	33 dB	ETSI.					
18 GHz	34 dB						
23 GHz	34 dB						

 Table 1-71 ATPC maximun range and Frequency stability of the XMC-3W ODU

IF Specifications

 Table 1-72 lists the IF specifications of the ODU.

Fable 1-72 IF specifications	s of the ODU	(XMC-3W	ODU)
-------------------------------------	--------------	---------	------

	Item	Specification
IF signal	Center frequency of the input IF	350 MHz
	Center frequency of the RX IF	140 MHz
	Return loss of the IF interface	< -15 dB
ODU O&M signal	Modulation mode	ASK
	Uplink signal	5.5 MHz
	Downlink signal	10 MHz

Integrated System Specifications

Table 1-73 list the integrated system specifications of the ODU.
Item	Specification
Integrated system dimensions	7 GHz, 8 GHz: 195 mm x 195 mm x 70 mm (width x depth x height)
	13 GHz, 15 GHz, 18 GHz, 23 GHz: 172 mm x 172 mm x 70 mm (width x depth x height)
Weight	7 GHz, 8 GHz, 13 GHz, 15 GHz, 18 GHz, 23 GHz: ≤ 3.8 kg
Power supply	-48 V (from -36 V to -60 V) DC
Power consumption	7 GHz, 8 GHz: ≤30W 13 GHz, 15 GHz: ≤20.5W 18 GHz, 23 GHz: ≤24.5W

 Table 1-73 Integrated system specifications of the ODU (XMC-3W ODU)

Frequency Information

- Instead of the upper/lower limits of the central frequency of channels, the upper/lower limits of the frequency that carries the TX signals are described as follows to indicate the scope of frequencies supported by the ODU. The lowest central frequency of channels is higher than the lower limit frequency by half of the channel spacing. The highest central frequency of channels is lower than the upper limit frequency by half of the channel spacing.
- The T/R spacing values listed in the following tables are default values. In special application scenarios and within the frequency range covered by the duplexer, the T/R spacing values within each band are configurable.

7 GHz Frequency Band

 Table 1-74 lists the information about the 7 GHz frequency band.

T/R Spacing	T/R Sub- Spacing Band		Lower Sub-band TX Frequency (MHz)		Higher Sub-band TX Frequency (MHz)	
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit	
154	А	7,128.00	7,268.00	7,282.00	7,422.00	
154	В	7,427.00	7,569.00	7,581.00	7,723.00	
160	Х	7,433.50	7,589.00	7,593.50	7,749.00	
161	А	7,114.00	7,407.00	7,275.00	7,568.00	
161	В	7,414.00	7,707.00	7,575.00	7,868.00	
168	А	7,110.50	7,261.00	7,278.50	7,429.00	
168	В	7,443.00	7,583.00	7,611.00	7,751.00	

Table 1-74 Information about the 7 GHz frequency band (XMC-3W ODU)

T/R Spacing	Sub- BandLower Sub-band TX Frequency (MHz)		Lower Sub-band TX Frequency (MHz)		b-band TX cy (MHz)
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
196	Х	7,093.00	7,261.00	7,289.00	7,457.00
245	Х	7,400.00	7,652.00	7,645.00	7,897.00

8 GHz Frequency Band

 Table 1-75 lists the information about the 8 GHz frequency band.

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		XHigher Sub-band TX)Frequency (MHz)	
(MHz)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
119/126	X	8,279.00	8,377.00	8,398.00	8,496.00
151.614	Х	8,203.00	8,345.00	8,355.00	8,497.00
208	X	8,043.00	8,281.00	8,251.00	8,489.00
266	Х	7,905.00	8,136.00	8,171.00	8,402.00
310	Х	7,905.00	8,185.00	8,215.00	8,495.00
311.32	Х	7,731.00	7,971.00	8,042.00	8,282.00

 Table 1-75 Information about the 8 GHz frequency band (XMC-3W ODU)

13 GHz Frequency Band

 Table 1-76 lists the information about the 13 GHz frequency band.

Table 1-76 Information about the 13 GHz frequency band (XMC-3W ODU)

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Sub-band TX Frequency (MHz)		
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit	
266	А	12,751.00	12,982.00	13,017.00	13,248.00	

15GHz Frequency Band

 Table 1-77 lists the information about the 15 GHz frequency band.

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Sub-band TX Frequency (MHz)	
(MHz)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
315/322	А	14,627.00	14,942.00	14,942.00	15,257.00
420	А	14,501.00	14,928.00	14,921.00	15,348.00
475	А	14,500.00	14,883.00	14,975.00	15,358.00
490	А	14,403.00	14,858.00	14,893.00	15,348.00
644	А	14,400.00	14,708.00	15,044.00	15,352.00
728	А	14,500.00	14,625.00	15,228.00	15,353.00

Table 1-77 Information about the 15 GHz frequency band (XMC-3W ODU)

18 GHz Frequency Band

Table 1-78 lists the information about the 18 GHz frequency band.

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Su Frequenc	b-band TX cy (MHz)
(MHZ)		Lower Limit Upper Limit		Lower Limit	Upper Limit
1010/1008	А	17,685.00	18,700.00	18,695.00	19,710.00
1560	А	17,700.00	18,140.00	19,260.00	19,700.00
1092.5	A	17,712.50	18,595.00	18,805.00	19,687.50

23GHz Frequency Band

Table 1-79 lists the information about the 23 GHz frequency band.

Table 1-79 Information about the 23 GHz frequency band (XMC-3W ODU)

T/R Spacing	Sub- Band	Lower Sub-band TX Frequency (MHz)		Higher Su Frequen	b-band TX cy (MHz)
(MHZ)		Lower Limit	Upper Limit	Lower Limit	Upper Limit
1008	А	21,990.50	22,610.00	22,998.50	23,618.00
1050	А	21,950.25	22,498.00	23,000.25	23,548.00
1200	А	21,200.00	22,400.00	22,400.00	23,600.00
1232	A	21,200.00	22,386.00	22,432.00	23,618.00

2 Hybrid coupler

About This Chapter

Hybrid coupler is short for the RF signal combiner/divider. It is used to install two ODUs on one antenna. The hybrid couplers that are described in this document are the hybrid couplers adaptive to the RTN XMC ODUs.

2.1 Device Type

The hybrid couplers is available in two series: balanced hybrid coupler and unbalanced hybrid coupler.

2.2 Appearance

The hybrid coupler is an outdoor three-interface network component of the wireless transmission products.

2.3 Functions

The hybrid coupler is used to combine and divide RF signals.

2.4 Working Principles

The hybrid coupler is mainly composed of waveguide cavities.

2.5 Interfaces

The interfaces of the hybrid coupler consist of the antenna interface, main tributary interface, and extension tributary interface.

2.6 Label

The label of the hybrid coupler is attached to the hybrid coupler and packing case to identify the basic information of the hybrid coupler.

2.7 Technical Specifications

The technical specifications of the hybrid coupler consist of the electrical specifications and mechanical specifications.

2.1 Device Type

The hybrid couplers is available in two series: balanced hybrid coupler and unbalanced hybrid coupler.

Hybrid couplers are classified based on the attenuation values of tributary signals. The attenuation values are the same in the transmit and receive directions. The differences between the two types of hybrid coupler are as follows:

• A balanced hybrid coupler is also called a 3 dB hybrid coupler.

The 3 dB hybrid coupler divides one channel of RF signals into two channels of RF signals of the similar power. The power of each divided channel of RF signals is approximately 50% of the original channel of RF signals. That is, the power attenuation value of each divided channel of RF signals is approximately 3 dB, as compared with the original channel of RF signals.

• An unbalanced hybrid coupler is also called a 6 dB hybrid coupler.

The 6 dB hybrid coupler divides one channel of RF signals into two channels of RF signals of different power. The power of the channel of extension tributary signals is approximately 25% of the original channel of RF signals. That is, the power attenuation value of the channel of extension tributary signals is approximately 6 dB, as compared with the original channel of RF signals. The power of the channel of main tributary signals is approximately 75% of the original channel of RF signals. That is, the power attenuation value of the channel of main tributary signals is approximately 75% of the original channel of RF signals. That is, the power attenuation value of the channel of main tributary signals is approximately 1.5 dB, as compared with the original channel of RF signals.

2.2 Appearance

The hybrid coupler is an outdoor three-interface network component of the wireless transmission products.

Figure 2-1 shows the appearance of the hybrid coupler.

Figure 2-1 Appearance of the hybrid coupler

Table 2-1 describes the appearance of the hybrid coupler.

Num ber	Item	Description
1	Guide pin	Used together with the guide trough of the component connected to it to facilitate the installation of the hybrid coupler.
2	Antenna interface	See Interfaces on the Hybrid coupler.
3	Main tributary interface	
4	Extension tributary interface	
5	Guide trough	Used together with the ODU guide pin to facilitate the installation of the ODU.

 Table 2-1 Appearance description of the hybrid coupler

2.3 Functions

The hybrid coupler is used to combine and divide RF signals.

The hybrid coupler has the following functions and features:

- In the TX direction, the hybrid coupler combines two routes of RF signals into one route and transmits the signals to the antenna.
- In the RX direction, the hybrid coupler divides the RF signals received from the antenna into two routes and transmits the signals to the ODU.

2.4 Working Principles

The hybrid coupler is mainly composed of waveguide cavities.

The waveguide cavity is the main component of the hybrid coupler. It has three interfaces: common interface, main tributary interface, and extension tributary interface.

The working principles of the hybrid coupler are as follows:

- In the TX direction, the RF signals received from the main tributary interface and extension tributary interface are combined into one route in the waveguide cavity and transmitted from the common interface.
- In the RX direction, the RF signals received from the common interface are divided into two routes in the waveguide cavity and transmitted from the two tributary interfaces.

2.5 Interfaces

The interfaces of the hybrid coupler consist of the antenna interface, main tributary interface, and extension tributary interface.

Figure 2-2 shows the interfaces of the hybrid coupler.

Table 2-2 describes the interfaces of the hybrid coupler.

Table 2-2 Interface description of the hybrid coupler

Seri al No.	Interface Name	Interface Label	Function	Interface Type
1	Antenna interface	-	Used to connect with the antenna, antenna adapter, or flexible waveguide.	153IEC-R70, can be interconnected with the PDR70 (6 GHz frequency bands) 153IEC-R84, can be
2	Main tributary interface	MAIN	Used to connect with the main ODU.	interconnected with the PBR84 (7/8 GHz frequency bands) 153IEC-R100, can be interconnected with the PBR100 (10/11 GHz frequency band) 153IEC-R120, can be interconnected with the

Seri al No.	Interface Name	Interface Label	Function	Interface Type
3	Extension tributary interface	STANDBY	Used to connect with the standby ODU.	PBR120 (13 GHz frequency band) 153IEC-R140, can be interconnected with the PBR140 (15 GHz frequency band) 153IEC-R220, can be interconnected with the PBR220 (18 /23/26 GHz frequency bands) 153IEC-R320, can be interconnected with the PBR320 (28/32/38 GHz frequency bands) UG 383/U-R400, can be interconnected with the UG 383/U-R400 (42 GHz frequency band)

2.6 Label

The label of the hybrid coupler is attached to the hybrid coupler and packing case to identify the basic information of the hybrid coupler.

Figure 2-3 shows the label of the hybrid coupler.

Figure 2-3 Label of the hybrid coupler

HUAWEI	Hybri	d Coupler
MODEL: CO7	BO3RRC	ITEM: 52440559
DEP: 7. 125	-8.5GHz	3dB
S/N:		
2152	24405597	YD2207997
华为技术有限公司 HUAWEI TEC	i Hnologies	CO.,LTD.

Label Information	Content of the Label	Parameter	Meaning
Hybrid coupler name	Hybrid Coupler	-	Indicates that the component is a hybrid coupler.
Hybrid coupler model	C 07 B 03 R R C 1 2 3 4 5 6 7	①: Component type	C indicates the hybrid coupler.
		2: Frequency band	Indicates the working frequency of the hybrid coupler (GHz). The Range of the working frequency is as follows: 6/07/10/11/13/15/ 18/23/26/28/32/38 /42. NOTE 07 indicates that the working frequency of the hybrid coupler is 7 GHz or 8 GHz.
		³ : Tributary features	B: Balanced U: Unbalanced
		(4): Coupling	03 indicates that the coupling of the tributary is 3 dB. 06 indicates that the coupling of
			the tributary is 6 dB.
		⁽⁵⁾ : Type of the antenna interface	C: Circle waveguide R: Rectangular waveguide
		⁽⁶⁾ : Type of the ODU interface	C: Circle waveguide R: Rectangular waveguide

Table 2-5 Meaning of the hybrid couplet laber
--

Label Information	Content of the Label	Parameter	Meaning
		⑦: Type of the installation interface	Matches with the RTN XMC ODU.
Hybrid coupler code (ITEM)	52440559	-	Used to uniquely identify the model of each hybrid coupler.
Hybrid coupler description (DEP)	7.125-8.5GHz <u>3dB</u>	(1): Range of the working frequency	Indicates the range of the working frequency of the hybrid coupler. (GHz)
		⁽²⁾ : Coupling	Coupling of the main and extension tributaries (dB)
Hybrid coupler serial number	21524405597¥D2207997	-	Used to uniquely identify each hybrid coupler.
Bar code area		-	Bar code of the hybrid coupler serial number

2.7 Technical Specifications

The technical specifications of the hybrid coupler consist of the electrical specifications and mechanical specifications.

 Table 2-4 lists the technical specifications of the hybrid coupler.

Туре	Frequen cy Band	Attenuat ion of the main path typical(d B)	Attenuat ion of the standby path typical(d B)	Minimu m Isolatio n(dB)	Voltage Standing Wave Ratio (VSWR)	Interface Type
3 dB hybrid coupler	6 GHz	3.4	3.4	20	1.3	Can be interconnect ed with the PDR70
	7/8 GHz	3.6	3.6	20	1.3	Can be interconnect ed with the PBR84
	10 GHz	3.8	3.8	20	1.3	Can be interconnect ed with the PBR100
	11 GHz	3.6	3.6	20	1.3	Can be interconnect ed with the PBR100
	13 GHz	3.6	3.6	20	1.3	Can be interconnect ed with the PBR120
	15 GHz	3.6	3.6	20	1.3	Can be interconnect ed with the PBR140
	18 GHz	3.6	3.6	20	1.3	Can be interconnect ed with the PBR220
	23 GHz	3.6	3.6	20	1.3	Can be interconnect ed with the PBR220
	26 GHz	3.9	3.9	20	1.4	Can be interconnect ed with the PBR220

 Table 2-4 Technical specifications of the hybrid coupler

Туре	Frequen cy Band	Attenuat ion of the main path typical(d B)	Attenuat ion of the standby path typical(d B)	Minimu m Isolatio n(dB)	Voltage Standing Wave Ratio (VSWR)	Interface Type
	28 GHz	3.9	3.9	20	1.4	Can be interconnect ed with the PBR320
	32 GHz	3.9	3.9	20	1.4	Can be interconnect ed with the PBR320
	38 GHz	3.9	3.9	20	1.4	Can be interconnect ed with the PBR320
	42 GHz	4.4	4.4	20	1.4	Can be interconnect ed with the UG383/U- R400
6 dB hybrid coupler	6 GHz	1.5	6.3	20	1.3	Can be interconnect ed with the PDR70
	7/8 GHz	1.7	6.5	20	1.3	Can be interconnect ed with the PBR84
	10 GHz	1.9	7.0	20	1.3	Can be interconnect ed with the PBR100
	11 GHz	1.7	6.5	20	1.3	Can be interconnect ed with the PBR100
	13 GHz	1.7	6.5	20	1.3	Can be interconnect ed with the PBR120

Туре	Frequen cy Band	Attenuat ion of the main path typical(d B)	Attenuat ion of the standby path typical(d B)	Minimu m Isolatio n(dB)	Voltage Standing Wave Ratio (VSWR)	Interface Type
	15 GHz	1.7	6.5	20	1.3	Can be interconnect ed with the PBR140
	18 GHz	1.7	6.5	20	1.3	Can be interconnect ed with the PBR220
	23 GHz	1.7	6.5	20	1.3	Can be interconnect ed with the PBR220
	26 GHz	1.9	7.5	20	1.4	Can be interconnect ed with the PBR220
	28 GHz	1.9	7.5	20	1.4	Can be interconnect ed with the PBR320
	32 GHz	1.9	7.5	20	1.4	Can be interconnect ed with the PBR320
	38 GHz	1.9	7.5	20	1.4	Can be interconnect ed with the PBR320
	42 GHz	2.1	7.5	20	1.4	Can be interconnect ed with the UG383/U- R400

 Table 2-5 lists the mechanical specifications of the hybrid coupler.

 Table 2-5 Mechanical specifications of the hybrid coupler

Power capacity (W)	8
Dimensions (mm)	420 x 300 x 180 (width x depth x height)
Weight (kg)	≤5

3_{OMT}

About This Chapter

The orthogonal mode transducer (OMT) is the short name for the polarized hybrid coupler. The OMT is used when two ODUs with different polarization directions need to be installed on the same antenna.

ΠΝΟΤΕ

The OMT must be used by UHP S2D Antenna.

3.1 Functions and Features

The OMT separates V polarization from H polarization for RF signals.

3.2 Working Principle

The OMT performs conversion between a rectangular waveguide cavity and a round waveguide cavity for dual-polarized waves, and combines/separates V-polarized waves and H-polarized waves with/from each other.

3.3 Interfaces

The OMT has three types of interfaces: antenna interface, V-polarized ODU interface, and H-polarized ODU interface.

3.4 Technical Specifications

The technical specifications of the OMT include electrical and mechanical specifications.

3.1 Functions and Features

The OMT separates V polarization from H polarization for RF signals.

- In the transmit direction, the OMT combines two ODU RF signals into one RF signal which is then transmitted to the antenna.
- In the receive direction, the OMT divides the RF signal received from the antenna into two RF signals which are then transmitted to the ODUs.

3.2 Working Principle

The OMT performs conversion between a rectangular waveguide cavity and a round waveguide cavity for dual-polarized waves, and combines/separates V-polarized waves and H-polarized waves with/from each other.

- In the transmit direction, the OMT performs conversion between a rectangular waveguide cavity and a round waveguide cavity, so that V/H-polarized waves separately from two rectangular waveguide cavities can be transmitted in the round waveguide cavity and then sent to free space by means of an antenna with a round waveguide interface.
- In the receive direction, the OMT receives V/H-polarized waves from the round waveguide interface of an antenna, separates V-polarized waves from H-polarized waves, and transmits the separated waves to appropriate rectangular waveguide cavities.

3.3 Interfaces

The OMT has three types of interfaces: antenna interface, V-polarized ODU interface, and H-polarized ODU interface.

- The antenna interface of the OMT is a round recessed waveguide interface.
- The ODU interface of the OMT is a rectangular protruding waveguide interface.

Table 3-1 Description of the interfaces of the OMT

Interface	Mark	Function	Type of Connector
Antenna interface	-	Connects to the antenna.	153IEC-R84 (7/8 GHz frequency band)

Interface	Mark	Function	Type of Connector
V-polarized ODU interface	V	Connects to the V-polarized ODU.	153IEC-R100 (10/11 GHz frequency band) 153IEC-R120 (13 GHz frequency
H-polarized ODU interface	Н	Connects to the H-polarized ODU.	band) 153IEC-R140 (15 GHz frequency band) 153IEC-R220 (18/23/26 GHz frequency band) 153IEC-R320 (28/32/38 GHz frequency band)

NOTE

The XMC-3 ODU antenna port is of I-shaped and therefore can be interconnected to either the horizontal or vertical interface.

3.4 Technical Specifications

The technical specifications of the OMT include electrical and mechanical specifications.

Freque ncy Band (GHz)	Frequency Range (GHz)	Maximum Loss (dB)	VSWR	Polarization Isolation (dB)
7/8	7.125 to 8.5	0.6	1.3	35
10	10.125 to 11.7	0.4	1.3	35
11	10.7 to 11.7	0.6	1.3	35
13	12.75 to 13.25	0.6	1.3	35
15	14.4 to 15.35	0.6	1.3	35
18	17.7 to 19.7	0.6	1.3	35
23	21.2 to 23.6	0.6	1.3	35
26	24.25 to 26.5	0.8	1.3	35
28	27.5 to 29.5	0.8	1.3	35
32	31.8 to 33.4	1	1.3	35
38	37.0 to 40.0	1	1.3	35

Table 3-2 Electrical specifications of the OMT

 Table 3-3 Mechanical specifications of the OMT

Weight (kg)	Dimensions
≤5.8	≤360 mm x 269 mm x 450mm (W x D x H)

4 Dual-Polarized Coupler

About This Chapter

A dual-polarized coupler helps install four ODUs directly on one dual-polarized antenna.

4.1 Functions and Features

A dual-polarized coupler combines two channels of H-polarized or V-polarized RF signals into one channel and combines the channel of H-polarized RF signals with the channel of V-polarized RF signals.

4.2 Working Principle

A dual-polarized coupler has five ports and comprises an orthogonal mode transducer (OMT) and two hybrid couplers.

4.3 Interfaces

The Dual Polarized Coupler has three types of interfaces: antenna interface, V-polarized ODU interface, and H-polarized ODU interface.

4.4 Technical Specifications

The technical specifications of the Dual Polarized Coupler include electrical and mechanical specifications.

4.1 Functions and Features

A dual-polarized coupler combines two channels of H-polarized or V-polarized RF signals into one channel and combines the channel of H-polarized RF signals with the channel of V-polarized RF signals.

- In the transmit direction, a dual-polarized coupler combines two channels of H-polarized RF signals received from two H-polarized ODUs into one channel and two channels of V-polarized RF signals received from two V-polarized ODUs into one channel, then combines the channel of H-polarized RF signals with the channel of V-polarized RF signals, and finally sends the combined signals to an antenna.
- In the receive direction, a dual-polarized coupler splits the signals received from an antenna into H-polarized RF signals and V-polarized RF signals, splits the H-polarized RF signals into two channels and sends the two channels of signals to two H-polarized ODUs, and splits the V-polarized RF signals into two channels and sends the two channels of signals to two V-polarized ODUs.

4.2 Working Principle

A dual-polarized coupler has five ports and comprises an orthogonal mode transducer (OMT) and two hybrid couplers.

The OMT combines H-polarized and V-polarized waves into dual-polarized waves in transmission direct, and splits dual-polarized waves into H-polarized and V-polarized waves in receive direct, by performing conversion between a rectangular waveguide cavity and a round waveguide cavity. Either hybrid coupler combines/splits H- or V-polarized signals using the coupler in the rectangular waveguide. **Figure 4-1** illustrates the working principle of a dual-polarized coupler.

Figure 4-1 Working principle of a dual-polarized coupler

4.3 Interfaces

The Dual Polarized Coupler has three types of interfaces: antenna interface, V-polarized ODU interface, and H-polarized ODU interface.

- The antenna interface of the Dual Polarized Coupler is a round recessed waveguide interface.
- The ODU interface of the Dual Polarized Coupler is a rectangular protruding waveguide interface.

Take waterproof and dustproof measures when the ODU interface is not used.

Figure 4-2 Interfaces of the Dual Polarized Coupler

 Table 4-1 Description of the interfaces of the Dual Polarized Coupler

Interface	Mark	Function	Type of Connector
Antenna interface	-	Connects to the antenna.	153IEC-R84 (7/8 GHz frequency band)
Main tributary interface of V- polarized	Main.V	Connects to the main ODU of V- polarized.	153IEC-R100 (10/11 GHz frequency band) 153IEC-R120 (13 GHz frequency band)
Extension tributary interface of V- polarized	STB.V	Connects to the standby ODU of V-polarized.	153IEC-R140 (15 GHz frequency band) 153IEC-R220 (18/23/26 GHz
Main tributary interface of H- polarized	Main.H	Connects to the main ODU of H- polarized.	frequency band) 153IEC-R320 (28/32/38 GHz frequency band)
Extension tributary interface of H- polarized	STB.H	Connects to the standby ODU of H-polarized.	

ΠΝΟΤΕ

The XMC-3 ODU antenna port is of I-shaped and therefore can be interconnected to either the horizontal or vertical interface.

4.4 Technical Specifications

The technical specifications of the Dual Polarized Coupler include electrical and mechanical specifications.

Frequ ency Band (GHz)	Freque ncy Range (GHz)	6dB series		3dB series		VS	Polarizati	Coupli
		Loss of the main tributa ry (dB)	Loss of the extens ion tributa ry (dB)	Loss of the main tribut ary (dB)	Loss of the extens ion tributa ry (dB)	WR	on Isolation(dB)	ng Isolatio n(dB)
7/8	7.125 to 8.5	2.0±0.3	6.8±0.5	3.7±0.5	3.7±0.5	1.3	35	20
11	10.7 to 11.7	2.0±0.3	6.8±0.5	3.7±0.5	3.7±0.5	1.3	35	20
13	12.7 to 13.3	2.0±0.3	6.8±0.5	3.7±0.5	3.7±0.5	1.3	35	20
15	14.4 to 15.4	2.2±0.3	6.8±0.5	3.7±0.5	3.7±0.5	1.3	35	20
18	17.7 to 19.7	2.2±0.3	7.0±0.5	3.9±0.5	3.9±0.5	1.3	35	20
23	21.2 to 23.6	2.2±0.3	7.0±0.5	3.9±0.5	3.9±0.5	1.3	35	20
26	24.25 to 26.5	2.2±0.3	7.0±0.5	-	-	1.4	35	20
28	27.5 to 29.5	2.4±0.3	7.7±0.5	-	-	1.4	35	20
38	37.0 to 40.0	2.4±0.3	7.7±0.5	4.2±0.5	4.2±0.5	1.4	35	20

Table 4-2 Electrical specifications of the Dual Polarized Coupler

Table 4-3 Mechanical specifications of the Dual Polarized Coupler

Weight (kg)	Dimensions
≤12.9	\leq 240mm×500mm×410mm (W x D x H)

5 Separate Mounting Components

About This Chapter

The separate mounting components consist of the ODU separate mounting bracket and flexible waveguide. The separate mounting components described in this document are the separate mounting components adaptive to the RTN XMC ODUs.

5.1 ODU Separate Mounting Bracket

When the ODU or hybrid coupler is installed with the antenna separately, the ODU separate mounting bracket can be used to fix the ODU or hybrid coupler on the pole.

5.2 Flexible Waveguide

A flexible waveguide is rectangular. It is used to connect the flange interface of the ODU or hybrid coupler with the flange interface of the antenna.

5.1 ODU Separate Mounting Bracket

When the ODU or hybrid coupler is installed with the antenna separately, the ODU separate mounting bracket can be used to fix the ODU or hybrid coupler on the pole.

Appearance

There are two types of separated installation racks of the ODU.**Figure 5-1** shows the separated installation rack of the XMC-2/XMC-2H ODU and **Figure 5-2**shows the separated installation rack of the XMC-3 ODU.

Figure 5-1 Exterior of the separated installation rack of the XMC-2/XMC-2H ODU

Figure 5-2 Exterior of the separated installation rack of the XMC-3 ODU

The ODU separate mounting bracket can be used to secure an ODU to a pole with a diameter of 51 mm to 114 mm.

The main bracket is used together with the auxiliary bracket, long bolt, and dual-port nut to fix the whole bracket on the pole. The ODU and hybrid coupler can be installed on the transfer component. The transfer component is connected with the main bracket in clamping mode.

5.2 Flexible Waveguide

A flexible waveguide is rectangular. It is used to connect the flange interface of the ODU or hybrid coupler with the flange interface of the antenna.

Appearance

Figure 5-3 shows the appearance of the flexible waveguide.

Figure 5-3 Appearance of the flexible waveguide

Technical Specifications

 Table 5-1 lists the technical specifications of the flexible waveguide.

Freque ncy Band	Lengt h(m)	Maxi mum Attenu ation(dB)	Maxi mum twist degree (°)	Minim um E- bend radiu s(mm)	Minim um H- bend radiu s(mm)	Minim um Voltag e Standi ng Wave Ratio	Interfa ce(Ant enna side)	Interfa ce(OD U/ hybrid couple r side)
6 GHz	0.9, 1.2, 1.8	0.2, 0.3, 0.4	195	102	204	1.1	PDR70	PDR70
7, 8 GHz	0.9, 1.2, 1.8	0.3, 0.4, 0.6	240	76	152	1.1	PBR84	PBR84
10 GHz	0.6, 0.9, 1.2, 1.8	0.24, 0.4, 0.5, 0.8	280	64	127	1.1	PBR10 0	PBR10 0
11 GHz	0.6, 0.9, 1.2, 1.8	0.24, 0.4, 0.5, 0.8	280	64	127	1.1	PBR10 0	PBR10 0
13 GHz	0.6, 0.9, 1.2, 1.8	0.3, 0.5, 0.6, 0.9	330	64	115	1.1	PBR12 0	PBR12 0
15 GHz	0.6, 0.9	0.4, 0.8	405	52	102	1.1	PBR14 0	PBR14 0
18, 23, 26 GHz	0.6, 0.9	0.75, 1.2	465	38	76	1.2	PBR22 0	PBR22 0
28, 32, 38 GHz	0.6, 0.9	1.2, 1.8	465	38	76	1.2	PBR32 0	PBR32 0
42 GHz	0.6, 0.9	2.1, 2.4	530	26	52	1.4	UG383 , U- R400	UG383 , U- R400

Table 5-1 Technical specifications of the flexible waveguide

6 Antennas

About This Chapter

The microwave device uses the parabolic antennas to transmit and receive electromagnetic waves. The antennas described in this document are the parabolic antennas adaptive to the RTN XMC ODUs.

6.1 Device Type

Antennas are classified into two types, namely, the single-polarized antenna and dualpolarized antenna.

6.2 Functions

The microwave antenna is used to convert between the RF signals transmitted from the ODU and electromagnetic waves radiated in the air.

6.3 Working Principles

The antenna consists of the reflector, feed boom, radome, shield, and mounting bracket.

6.4 Interfaces

The feed boom interface of the single-polarized antenna in direct mounting mode is a waveguide interface. The feed boom interfaces of the single-polarized antenna in separate mounting mode and of the dual-polarized antenna are flange interfaces.

6.5 Antenna Diameters

The antenna diameters vary according to the antenna type and the frequency band where the antenna operates.

6.6 Technical Specifications

The technical specifications of the antenna include the electrical indexes and mechanical indexes. The electrical indexes of the antenna include the antenna gain, half-power beamwidth, VSWR, and front-to-back ratio. The mechanical indexes of the antenna include the size, weight, wind-protective feature, and ice/snow-protective feature.

6.1 Device Type

Antennas are classified into two types, namely, the single-polarized antenna and dual-polarized antenna.

• The single-polarized antenna transmits or receives electromagnetic waves in a specific polarization direction. The single-polarized antenna provides a feed boom interface. The feed boom interface can be set to be vertically polarized or horizontally polarized.

According to the mode of installing the ODU on the antenna, the single-polarized antenna is classified into two types, namely, the direct mounting mode and separate mounting mode. The single-polarized antenna with the diameter less than or equal to 1.8 m supports the direct mounting mode and separate mounting mode. The single-polarized antenna with the diameter greater than 1.8 m supports the separate mounting mode.

Figure 6-1 and Figure 6-2 show the feed booms of the single-polarized antennas.

Figure 6-1 Feed boom of the single-polarized antenna with the diameter less than or equal to 1.8 m

Figure 6-2 Feed boom of the single-polarized antenna with the diameter greater than 1.8 m

• The dual-polarized antenna transmits and receives horizontally-polarized and verticallypolarized electromagnetic waves at the same time. According to the mode of installing the ODU to the antenna, the dual-polarized antenna is classified into two types, namely, direct-mount antenna and separate-mount antenna.

Figure 6-3 and **Figure 6-4** show the feed booms of the separate-mount dual-polarized antenna and the direct-mount dual-polarized antenna.

Figure 6-3 Feed boom of the separate-mount dual-polarized antenna

Figure 6-4 Feed boom of the direct-mount dual-polarized antenna

- The UHP S2D antenna is a multi-function antenna. It has the following functions:
 - A single-polarized antenna is used by default, which can be transformed to a dualpolarized antenna installed in direct-mounting mode.
 - If a single-polarized antenna is transformed to a dual-polarized antenna, the OMT or dual-polarized combiner can be used to allow multiple ODUs to be installed in direct-mounting mode. In this way, the configuration of XPIC/1+1 or ACAP/CCDP 4+0 can be achieved.

6.2 Functions

The microwave antenna is used to convert between the RF signals transmitted from the ODU and electromagnetic waves radiated in the air.

- In the TX direction, the antenna converts the RF signals transmitted from the ODU into directional electromagnetic waves and then radiates electromagnetic waves in the air.
- In the RX direction, the antenna receives and assembles electromagnetic waves from the air, converts electromagnetic waves into the RF signals, and then transmits the RF signals to the ODU.

6.3 Working Principles

The antenna consists of the reflector, feed boom, radome, shield, and mounting bracket.

Figure 6-5 shows the structure of the antenna.

This section takes the single-polarized antenna as an example to describe the working principles of antennas. The dual-polarized antenna has two feed boom interfaces and thus can transmit and receive electromagnetic waves in the vertical and horizontal polarization directions at the same time. The working principles of each component of the dual-polarized antenna are similar to the working principles of each component of the single-polarized antenna.

Figure 6-5 Structure of the antenna

3. Shield

The functions of each component of the antenna are described as follows:

• Feed boom

The input interface of the feed boom receives the RF signals transmitted from the ODU. The received RF signals are transmitted through the waveguide to the output interface of the feed boom, which is located at the focal spot of the reflector. The output interface of the feed boom is equivalent to a preliminary horn antenna. It radiates electromagnetic waves towards the antenna reflector.

You can change the polarization direction of the antenna by rotating the feed boom. The polarization direction of the antenna is the polarization of electromagnetic waves radiated by the antenna. The polarization direction of electromagnetic waves is the direction of the electrical field. **Figure 6-6** shows the polarization directions supported by the rectangular waveguide.

The polarization direction of the antenna must be the same as the polarization direction of the ODU or hybrid coupler. The feed booms of certain types use the round waveguide. In this case, see installation instructions of the antenna to adjust the polarization direction of the antenna according to the polarization identifier.

Figure 6-6 Polarization directions supported by the rectangular waveguide

 Direction of the electrical field

• Reflector

Normally, the reflector of the microwave antenna is a rotatable paraboloid. The reflector is mainly used for reflecting electromagnetic waves and providing the directive gain.

- In the TX direction, the reflector reflects electromagnetic waves radiated from the feed boom so that electromagnetic waves are directional.
- In the RX direction, the reflector reflects electromagnetic waves received from a wider space, and then assembles electromagnetic waves to the output interface of the feed boom.
- Radome

The radome protects the antenna from damages caused by the wind, rain, and ice. Electromagnetic waves can be radiated through the radome.

• Shield

The shield is installed on the HP antenna. The shield is mainly used for suppressing the radiation of the side lobes.

• Mounting bracket

The mounting bracket is used for fixing the antenna onto the pole and for adjusting the azimuth and elevation slightly. In addition to the mounting bracket, a reinforcing rod is required for fixing the antenna with a larger diameter. For details, see the instructions for the antenna.

6.4 Interfaces

The feed boom interface of the single-polarized antenna in direct mounting mode is a waveguide interface. The feed boom interfaces of the single-polarized antenna in separate mounting mode and of the dual-polarized antenna are flange interfaces.

 Table 6-1 lists the specifications for the feed boom interface of the antenna adaptive to the XMC ODU.

Freque	Interface Type							
ncy Band	Direct-Mount Single-Polarized Antenna	Direct-Mount Dual- Polarized Antenna	Separate- mount Single- Polarized Antenna	Separate- mount Dual- Polarized Antenna				
6 GHz	153IEC-R70, can be interconnected with the PDR70	153IEC-R70	154IEC-PDR70	154IEC-PDR70				
7/8 GHz	153IEC-R84, can be interconnected with the PBR84	153IEC-R84	154IEC-UBR84	154IEC-UBR84				
10/11 GHz	153IEC-R100, can be interconnected with the PBR100	153IEC-R100	154IEC- UBR100	154IEC- UBR100				
13 GHz	153IEC-R120, can be interconnected with the PBR120	153IEC-R120	154IEC- UBR120	154IEC- UBR120				
15 GHz	153IEC-R140, can be interconnected with the PBR140	153IEC-R140	NA	154IEC- UBR140				
18/23/2 6 GHz	153IEC-R220, can be interconnected with the PBR220	153IEC-R220	NA	154IEC- UBR220				
28/32/3 8 GHz	154IEC-R320, can be interconnected with the PBR320	153IEC-R320	NA	154IEC- UBR320				
42 GHz	UG 383/U-R400, can be interconnected with the UG 383/U-R400	UG383	NA	UG383				

Table 6-1 Specifications for the feed boom interface of an antenna

6.5 Antenna Diameters

The antenna diameters vary according to the antenna type and the frequency band where the antenna operates.

Table 6-2 and **Table 6-3** list the diameters supported by different types of antennas. "Y" indicates that the corresponding antenna diameter is supported. "NA" indicates that the corresponding antenna diameter is not supported.
Frequenc		Antenna Diameter								
y Band	0.2 m	0.3 m	0.6 m	0.9 m	1.0 m	1.2 m	1.8 m	2.4 m	3.0 m	3.7 m
6 GHz	NA	NA	NA	Y	Y	Y	Y	Y	Y	Y
7/8 GHz	NA	NA	Y	Y	Y	Y	Y	Y	Y	Y
10/11 GHz	NA	Y	Y	Y	Y	Y	Y	NA	NA	NA
13 GHz	NA	Y	Y	Y	Y	Y	Y	Y	Y	NA
15 GHz	NA	Y	Y	Y	Y	Y	Y	NA	NA	NA
18 GHz	NA	Y	Y	Y	Y	Y	Y	NA	NA	NA
23 GHz	Y	Y	Y	Y	Y	Y	Y	NA	NA	NA
26 GHz	Y	Y	Y	Y	Y	Y	NA	NA	NA	NA
28 GHz	NA	Y	Y	NA						
32 GHz	NA	Y	Y	NA						
38 GHz	Y	Y	Y	NA						
42 GHz	NA	Y	Y	NA						

Table 6-2 Diameter of the single-polarized antenna

Table 6-3 Diameter of the separate-mount dual-polarized antenna

Frequen		Antenna Diameter								
cy Band	0.3 m	0.6 m	0.9 m	1.0 m	1.2 m	1.8 m	2.4 m	3.0 m	3.7 m	
6 GHz	NA	NA	NA	Y	Y	Y	Y	Y	Y	
7/8 GHz	NA	Y	Y	Y	Y	Y	Y	Y	Y	
10 GHz	NA	Y	Y	Y	Y	Y	NA	NA	NA	
11 GHz	NA	Y	Y	Y	Y	Y	Y	Y	NA	
13 GHz	NA	Y	Y	NA	Y	Y	Y	Y	Y	
15 GHz	NA	Y	Y	NA	Y	Y	NA	NA	NA	
18 GHz	NA	Y	Y	NA	Y	Y	NA	NA	NA	
23 GHz	NA	Y	Y	NA	Y	Y	NA	NA	NA	
26 GHz	Y	Y	Y	NA	Y	NA	NA	NA	NA	
28 GHz	Y	Y	NA							
32 GHz	Y	Y	NA							

Frequen	Antenna Diameter								
су Вапа	0.3 m	0.6 m	0.9 m	1.0 m	1.2 m	1.8 m	2.4 m	3.0 m	3.7 m
38 GHz	Y	Y	NA						
42 GHz	Y	Y	NA						

Table 6-4 Diameter of the direct-mount dual-polarized antenna

Frequenc	Antenna Diameter							
y Band	0.3 m	0.6 m	0.9 m	1 m	1.2 m	1.8 m		
6 GHz	NA	NA	NA	NA	NA	NA		
7/8 GHz	NA	Y	Y	Y	Y	Y		
10 GHz	NA	Y	Y	Y	Y	Y		
11 GHz	NA	Y	Y	Y	Y	Y		
13 GHz	Y	Y	Y	Y	Y	Y		
15 GHz	Y	Y	Y	Y	Y	Y		
18 GHz	Y	Y	Y	Y	Y	Y		
23 GHz	Y	Y	Y	Y	Y	Y		
26 GHz	Y	Y	Y	Y	Y	NA		
28 GHz	Y	Y	NA	NA	NA	NA		
32 GHz	Y	Y	NA	NA	NA	NA		
38 GHz	Y	Y	NA	NA	NA	NA		
42 GHz	NA	NA	NA	NA	NA	NA		

6.6 Technical Specifications

The technical specifications of the antenna include the electrical indexes and mechanical indexes. The electrical indexes of the antenna include the antenna gain, half-power beamwidth, VSWR, and front-to-back ratio. The mechanical indexes of the antenna include the size, weight, wind-protective feature, and ice/snow-protective feature.

Huawei provides a complete antenna series. For details about antenna specifications, contact Huawei engineers to obtain corresponding antenna specifications documents according to the *RTN Microwave Antenna Specifications Index*.

7 Antenna Adapter

This describes the antenna adapter. In direct mounting mode, the antenna adapter is used for transfer if the antenna does not adaptive to the RTN XMC ODU.

Appearance and Interfaces

Figure 7-1 shows the appearance and interfaces of the antenna adapter.

Figure 7-1 Appearance and interfaces of the antenna adapter

1. Interface on the ODU/ hybrid coupler side

2. Polarization identifier

3. Interface on the antenna 4. Guide trough side

Technical Specifications

 Table 7-1 lists the technical specifications of the antenna adapter.

Fable 7.1 Technical encodifications of the onten	no odontor	
Table 7-1 rechinical specifications of the anten		

Item	Specification
Loss	\leq 0.2 dB (7/8/10/11/13/15/18/23/26/28/32/38/42 GHz frequency band)

Item		Specification
Voltage Stand (VSWR)	ing Wave Ratio	\leq 1.3 (7/8/10/11/13/15/18/23/26/28/32/38/42 GHz frequency band)
Interfaces	Antenna side	 1.025 inch dia circular (7/8 GHz frequency band) 153IEC-R100 (10/11 GHz frequency band) 153IEC-R120 (13 GHz frequency band) 153IEC-R140 (15 GHz frequency band) 153IEC-R220 (18/23/26 GHz frequency band) 153IEC-R320 (28/32 GHz frequency band) 0.219 inch dia Circular (38 GHz frequency band) UG 383/U-R400 (42 GHz frequency band)
	ODU/hybrid coupler side	153IEC-R84, can be interconnected with the PBR84 (7/8 GHz frequency band) 153IEC-R100, can be interconnected with the PBR100 (10/11 GHz frequency band) 153IEC-R120, can be interconnected with the PBR120 (13 GHz frequency band) 153IEC-R140, can be interconnected with the PBR140 (15 GHz frequency band) 153IEC-R220, can be interconnected with the PBR220 (18/23/26 GHz frequency band) 153IEC-R320, can be interconnected with the PBR320 (28/32/38 GHz frequency band) UG 383/U-R400, can be interconnected with the UG 383/U-R400 (42 GHz frequency band)
Weight		\leq 2.5 kg

Labels

The following labels are attached to the antenna adapter: nameplate label, and bar code. These labels are used to identify the basic information of the antenna adapter.

• Nameplate Label

Figure 7-2 shows the nameplate label of the antenna adapter.

Figure 7-2 Nameplate label of the antenna adapter

Table 7-2 describes the meanings of the parameters on the nameplate label.

Label Informat ion	Content of the Label	Parameter	Meaning
Antenna adapter name	7G/8G Compatible adapter	① _: Frequency band	Working frequency of the antenna adapter: 7/8/10/11/13/15/18/ 23/26/32/38/42 (GHz)
		②: Component name	Indicates that the component is an antenna adapter
Antenna adapter code (ITEM)	21211378	-	Used to identify the type of the antenna adapter

Table 7-2 Meanings of the parameters on the nameplate label

• Bar Code

Table 7-3 shows the bar code of the antenna adapter and describes the meanings of the label.

 Table 7-3 Bar code

Name	Appearance	Meaning
Bar code		Bar code of the antenna adapter serial number, which is used to uniquely identify each antenna adapter

8 Cables

About This Chapter

This describes the cables of the ODU. The cables of the ODU which consist of the IF cable and ODU PGND cable.

8.1 IF Cable

The IF cable is used to connect the ODU with the IDU and transmits the IF signals O&M signals and -48 V power between the ODU and the IDU.

8.2 PGND Cable of the ODU

The ODU PGND cable is used to connect the grounding screw of the ODU to the outdoor ground point such as the ground point on the tower so that the ODU can be connected to the outdoor grounding grid.

8.1 IF Cable

The IF cable is used to connect the ODU with the IDU and transmits the IF signals O&M signals and -48 V power between the ODU and the IDU.

The IF cable can be categorized into three types: 5D cable, RG-8U cable, and 1/2-inch cable.

- If the distance between the IDU and the ODU is shorter than 120 m, the 5D cable is used. The 5D cable has an N-type connector at one end connected to the IF interface of the ODU and a TNC connector at the other end connected to the IF interface of the IDU.
- If the distance between the IDU and the ODU is from 120 m to 180 m, the RG-8U cable is used. The RG-8U cable has an N-type connector at each end. One end is connected to the IF interface of the ODU and the other end is connected with the IF jumper of the IDU.
- If the distance between the IDU and the ODU is from 180 m to 300 m, the 1/2-inch cable is used. The 1/2-inch cable has an N-type connector at each end. One end is connected to the IF interface of the ODU and the other end is connected with the IF jumper of the IDU.

Cable Diagram

1. RF coaxial cable connector, N-type, male

2. RF coaxial cable connector, TNC-type, male

Cable Connection Table

None.

Technical Specifications

Item		Performance	Performance		
	5D Cable	RG-8U Cable	1/2-Inch Cable		
Characteristic impedance (ohm)	50	50	50		
Attenuation (dB/100 m)	≤ 10.0 (140 MHz) ≤ 15.0 (350 MHz)	≤ 6.0 (140 MHz) ≤ 9.0 (350 MHz)	≤ 5.0 (140 MHz) ≤ 7.8 (350 MHz)		
DC resistance (ohm/km at 20°C)	≤11.0	≤4.9	≤4.3		
Outside diameter of the cable (mm)	7.60	10.16	13.40		

Table 8-1 Performance of the IF cable

8.2 PGND Cable of the ODU

The ODU PGND cable is used to connect the grounding screw of the ODU to the outdoor ground point such as the ground point on the tower so that the ODU can be connected to the outdoor grounding grid.

Cable Diagram

Figure 8-2 Diagram of the ODU protection ground cable

Cable Connection Table

None.

9_{Appendix}

About This Chapter

This chapter introduces information about frequency sub-band combination of XMC-3/ XMC-3W ODU.

9.1 Information about Sub-band Combination of XMC-3 ODU This chapter introduces information about sub-band combination of XMC-3 ODU.

9.2 Information about Sub-band Combination of XMC-3W ODU This chapter introduces information about sub-band combination of XMC-3W ODU.

9.1 Information about Sub-band Combination of XMC-3 ODU

This chapter introduces information about sub-band combination of XMC-3 ODU.

 Table 9-1 shows the information about sub-band combination of 7 GHz frequency band.

T/R Spacing	T/R Spacin	Lower Sul Frequenc	o-band TX cy (MHz)	Higher Sub-band TX Frequency (MHz)		
(MHz) & Sub-Band	g (MHz) & Sub- Band	Lower Limit	Upper Limit	Lower Limit	Upper Limit	
154A/	154A	7,427.00	7,485.00	7,581.00	7,639.00	
160A/1611	160A	7,433.50	7,496.50	7,593.50	7,656.50	
	161I	7,414.00	7,484.00	7,575.00	7,645.00	
154B/161J/	154B	7,456.00	7,526.00	7,610.00	7,680.00	
168A	161J	7,449.00	7,512.00	7,610.00	7,673.00	
	168A	7,443.00	7,499.00	7,611.00	7,667.00	
154C/161S	154C	7,512.00	7,568.00	7,666.00	7,722.00	
	161S NOTE This is special require ments;	7,508.50	7,568.00	7,669.50	7,729.00	
154D/	154D	7,128.00	7,184.00	7,282.00	7,338.00	
161Q/ 196A	161Q NOTE This is special require ments;	7,128.00	7,184.00	7,289.00	7,345.00	
	196A	7,093.00	7,177.00	7,289.00	7,373.00	
154E/	154E	7,170.00	7,226.00	7,324.00	7,380.00	
101B/168E	161B	7,149.00	7,212.00	7,310.00	7,373.00	
	168E	7,163.00	7,205.00	7,331.00	7,373.00	
154F/161R	154F	7,212.00	7,268.00	7,366.00	7,422.00	

Table 9-1 Frequency information of the 7 GHz frequency band (XMC-3 ODU)

T/R T/R Spacing Spacin		Lower Sul Frequence	o-band TX cy (MHz)	Higher Sub-band TX Frequency (MHz)		
(MHz) & Sub-Band	g (MHz) & Sub- Band	Lower Limit	Upper Limit	Lower Limit	Upper Limit	
	161R NOTE This is special require ments;	7,212.00	7,268.00	7,373.00	7,429.00	
154G/ 160B/ 161K/168B	154G NOTE This is special require ments;	7,484.00	7,541.00	7,638.00	7,695.00	
	160B	7,478.50	7,541.50	7,638.50	7,701.50	
	161K	7,484.00	7,547.00	7,645.00	7,708.00	
	168B	7,485.00	7,541.00	7,653.00	7,709.00	
154H/ 160C/ 161L/168C	154H NOTE This is special require ments;	7,539.00	7,569.00	7,693.00	7,723.00	
	160C	7,526.00	7,589.00	7,686.00	7,749.00	
	161L	7,519.00	7,582.00	7,680.00	7,743.00	
	168C	7,527.00	7,583.00	7,695.00	7,751.00	
161A/	161A	7,114.00	7,177.00	7,275.00	7,338.00	
168D	168D	7,110.50	7,170.00	7,278.50	7,338.00	
161C/	161C	7,718.50	7,247.00	7,341.50	7,408.00	
168F/196B	168F	7,198.00	7,236.50	7,366.00	7,404.50	
	196B	7,149.00	7,233.00	7,345.00	7,429.00	
161D/	161D	7,219.00	7,282.00	7,380.00	7,443.00	
168G/196C	168G	7,226.00	7,261.00	7,394.00	7,429.00	
	196C	7,205.00	7,261.00	7,401.00	7,457.00	
161E	161E	7,239.00	7,302.00	7,400.00	7,463.00	
161F	161F	7,274.00	7,337.00	7,435.00	7,498.00	

T/R Spacing	T/R Spacin	Lower Sul Frequence	b-band TX cy (MHz)	Higher Sub-band TX Frequency (MHz)		
(MHZ) & Sub-Band	g (MHz) & Sub- Band	Lower Limit	Upper Limit	Lower Limit	Upper Limit	
161G	161G	7,309.00	7,372.00	7,470.00	7,533.00	
161H	161H	7,344.00	7,407.00	7,505.00	7,568.00	
161M	161M	7,539.00	7,602.00	7,700.00	7,763.00	
161N	161N	7,574.00	7,637.00	7,735.00	7,798.00	
1610	1610	7,609.00	7,672.00	7,770.00	7,833.00	
161P	161P	7,644.00	7,707.00	7,805.00	7,868.00	
245A	245A	7,400.00	7,484.00	7,645.00	7,729.00	
245B	245B	7,484.00	7,568.00	7,729.00	7,813.00	
245C	245C	7,568.00	7,652.00	7,813.00	7,897.00	

Table 9-2 shows the information about sub-band combination of 15 GHz frequency band.

T/R Spacing	T/R Spacin	Lower Sul Frequence	o-band TX cy (MHz)	Higher Sub-band TX Frequency (MHz)		
(MHZ) & Sub-Band	g (MHz) & Sub- Band	Lower Limit	Upper Limit	Lower Limit	Upper Limit	
315A/ 322A	315A/ 322A	14,627.00	14,746.00	14,942.00	15,061.00	
315B/322B	315B/ 322B	14,725.00	14,844.00	15,040.00	15,159.00	
315C/ 322C/420B	315C/ 322C	14,823.00	14,942.00	15,138.00	15,257.00	
	420B	14,718.00	14,928.00	15,138.00	15,348.00	
420A	420A	14,501.00	14,725.00	14,921.00	15,145.00	
490A	490A	14,403.00	14,634.00	14,893.00	15,124.00	
490B	490B	14,627.00	14,858.00	15,117.00	15,348.00	
644A/ 728A	644A	14,400.00	14,708.00	15,044.00	15,352.00	

 Table 9-2 Frequency information of the 15 GHz frequency band (XMC-3 ODU)

T/R Spacing	T/R Spacin	Lower Sul Frequence	o-band TX cy (MHz)	Higher Su Frequence	b-band TX cy (MHz)
Sub-Band	(MHz) & g Sub-Band (MHz) & Sub- Band		Upper Limit	Lower Limit	Upper Limit
	728A	14,500.00	14,625.00	15,228.00	15,353.00

9.2 Information about Sub-band Combination of XMC-3W ODU

This chapter introduces information about sub-band combination of XMC-3W ODU.

- The XMC-3W ODU is a wide-band ODU. The first columns in **Table 9-3** and **Table 9-4** list T/R spacing and sub-bands supported by the same ODU. For example, 154A/161A/168A/196X indicates that four T/R spacing and sub-bands are supported by one hop of ODU.
- The XMC-3W ODU T/R spacing and sub-band is newly defined. The mapping between T/R spacing and sub-bands of XMC-3W ODU and XMC-3 ODU is listed in the second and third columns of Table 9-3 and Table 9-4.

 Table 9-3 shows the information about sub-band combination of 7 GHz frequency band.

T/R Spacing	T/R T/R Spaci Spaci	Lower Sul Frequen	b-band TX cy (MHz)	Higher Sub-band TX Frequency (MHz)		
(MHz) & Sub- Band	ng (MHz) & Sub- Band	ng & Sub- Band of the Corres pondi ng XMC- 3 ODU	Lower Limit	Upper Limit	Lower Limit	Upper Limit
154A/ 161A/ 168A/ 196X	154A	154D/ 154E/ 154F	7,128.00	7,268.00	7,282.00	7,422.00

 Table 9-3 Frequency information of the 7 GHz frequency band (XMC-3W ODU)

T/R Spacing	T/R Spaci	T/R Spaci	Lower Sul Frequence	o-band TX cy (MHz)	Higher Sub-band TX Frequency (MHz)	
Sub- Band	ng (MHz) & Sub- Band	Sub- Band of the Corres pondi ng XMC- 3 ODU	Lower Limit	Upper Limit	Lower Limit	Upper Limit
	161A	161A/ 161B/ 161C/ 161D/ 161E/ 161F/ 161F/ 161G/ 161H/ 161Q/ 161R	7,114.00	7,407.00	7,275.00	7,568.00
	168A	168D/ 168E/ 168F/ 168G	7,110.50	7,261.00	7,278.50	7,429.00
	196X	196A/ 196B/ 196C	7,093.00	7,261.00	7,289.00	7,457.00
154B/ 160X/ 161B/ 168B/ 245X	154B	154A/ 154B/ 154C/ 154G/ 154H	7,427.00	7,569.00	7,581.00	7,723.00
	160X	160A/ 160B/ 160C	7,433.50	7,589.00	7,593.50	7,749.00
	161B	161I/ 161S/ 161L/ 161M/ 161N/ 161O/ 161P/ 161K/ 161J	7,414.00	7,707.00	7,575.00	7,868.00

T/R Spacing	T/R Spaci	ti T/R Spaci ng & Sub- Band - of the d Corres pondi ng XMC- 3 ODU	Lower Sul Frequence	b-band TX cy (MHz)	Higher Sub-band TX Frequency (MHz)	
Sub- Band	ng (MHz) & Sub- Band		Lower Limit	Upper Limit	Lower Limit	Upper Limit
	168B	168A/ 168B/ 168C	7,443.00	7,583.00	7,611.00	7,751.00
	245X	245A/ 245B/ 245C	7,400.00	7,652.00	7,645.00	7,897.00

Table 9-4 shows the information about sub-band combination of 8 GHz frequency band.

Table 9-4 Frequency information of the 8 GHz frequency band (XMC-3W ODU)									
T/R Spacing	T/R Spaci	T/R Spaci	Lower Sul Frequence	b-band TX cy (MHz)	Higher Sub-band TX Frequency (MHz)				
(MH2) & Sub- Band	ng ng & (MHz) Sub- & Band Sub- of the Band Corres pondi ng XMC- 3 ODU	ng & Sub- Band of the Corres pondi ng XMC- 3 ODU	Lower Limit	Upper Limit	Lower Limit	Upper Limit			
119X/ 126X	119X	119A/ 119B/ 119C	8,279.00	8,377.00	8,398.00	8,496.00			
	126X	126A/ 126B/ 126C							

T/R Spacing	T/R Spaci ng (MHz) & Sub- Band	T/R Spaci	Lower Sul Frequence	o-band TX cy (MHz)	Higher Sub-band TX Frequency (MHz)	
Sub- Band		ng & Sub- Band of the Corres pondi ng XMC- 3 ODU	Lower Limit	Upper Limit	Lower Limit	Upper Limit
151.614X /208X	151.61 4X	151.61 4A/ 151.61 4B/ 151.61 4C	8,203.00	8,345.00	8,355.00	8,497.00
	208X	208A/ 208B/ 208C/ 208D	8,043.00	8,281.00	8,251.00	8,489.00
266X/ 310X	266X	266A/ 266B	7,905.00	8,136.00	8,171.00	8,402.00
	310X	310A/ 310B/ 310C	7,905.00	8,185.00	8,215.00	8,495.00
311.32X	311.32 X	311.32 A/ 311.32 B	7,731.00	7,971.00	8,042.00	8,282.00

Table 9-5 shows the information about sub-band combination of 13 GHz frequency band.

T/R Spacing	T/R Spacin	T/R Spacing	Lower Sul Frequence	o-band TX cy (MHz)	Higher Su Frequenc	b-band TX cy (MHz)
(MH2) & Sub- Band	g (MHz) & Sub- Band	& Sub- Band of the Correspo nding XMC-3 ODU	Lower Limit	Upper Limit	Lower Limit	Upper Limit
266A	266A	266A/ 266B	12,751.00	12,982.00	13,017.00	13,248.00

Table 9-5 Frequency information of the 13 GHz frequency band (XMC-3W ODU)

Table 9-6 shows the information about sub-band combination of 15 GHz frequency band.

T/R Spacing	T/R Spacin	t T/R in Spacing	Lower Sul Frequenc	b-band TX cy (MHz)	Higher Sub-band TX Frequency (MHz)	
Sub- Band	(MHz) & Sub- Band	& Sub- Band of the Correspo nding XMC-3 ODU	Lower Limit	Upper Limit	Lower Limit	Upper Limit
315A/ 322A/ 420A/ 475A/ 490A/ 644A/	315A/ 322A	315A/ 315B/ 315C/ 322A/ 322B/ 322C	14,627.00	14,942.00	14,942.00	15,257.00
728A	420A	420A/ 420B	14,501.00	14,928.00	14,921.00	15,348.00
	475A	N/A	14,500.00	14,883.00	14,975.00	15,358.00
	490A	490A/ 490B	14,403.00	14,858.00	14,893.00	15,348.00
	644A	644A	14,400.00	14,708.00	15,044.00	15,352.00
	728A	728A	14,500.00	14,625.00	15,228.00	15,353.00

 Table 9-6 Frequency information of the 15 GHz frequency band (XMC-3W ODU)

Table 9-7 shows the information about sub-band combination of 18 GHz frequency band.

T/RT/RSpacingSpacin(MHz) &gSub-(MHz)Band&Sub-Sub-Band	T/R Spacin	T/R Spacing	Lower Sul Frequenc	o-band TX cy (MHz)	Higher Sub-band TX Frequency (MHz)	
	& Sub- Band of the Correspo nding XMC-3 ODU	Lower Limit	Upper Limit	Lower Limit	Upper Limit	
1010A/ 1008A/ 1560A/ 1092.5A	1010A/ 1008A	1010A/ 1010B/ 1008A/ 1008B	17,685.00	18,700.00	18,695.00	19,710.00
	1560A	1560C	17,700.00	18,140.00	19,260.00	19,700.00
	1092.5 A	1092.5A/ 1092.5B	17,712.50	18,595.00	18,805.00	19,687.50

 Table 9-7 Frequency information of the 18 GHz frequency band (XMC-3W ODU)

Table 9-8 shows the information about sub-band combination of 23 GHz frequency band.

T/R Spacing (MHz) & Sub- Band	T/R Spacin g (MHz) & Sub- Band	T/R Spacing & Sub- Band of the Correspo nding XMC-3 ODU	Lower Sub-band TX Frequency (MHz)		Higher Sub-band TX Frequency (MHz)	
			Lower Limit	Upper Limit	Lower Limit	Upper Limit
1008A/ 1050A/ 1200A/ 1232A	1008A	1008A/ 1008B	21,990.50	22,610.00	22,998.50	23,618.00
	1050A	1050A	21,950.25	22,498.00	23,000.25	23,548.00
	1200A	1200A/ 1200B/ 1200C	21,200.00	22,400.00	22,400.00	23,600.00
	1232A	1232A/ 1232B	21,200.00	22,386.00	22,432.00	23,618.00