

# AAU3911

# **Hardware Description**

lssue 02 Date 2015-01-30



HUAWEI TECHNOLOGIES CO., LTD.

# Copyright © Huawei Technologies Co., Ltd. 2015. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd.

# **Trademarks and Permissions**

All other trademarks and trade names mentioned in this document are the property of their respective holders.

# Notice

The purchased products, services and features are stipulated by the contract made between Huawei and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

# Huawei Technologies Co., Ltd.

| Address:     | Huawei Industrial Base     |
|--------------|----------------------------|
|              | Bantian, Longgang          |
|              | Shenzhen 518129            |
|              | People's Republic of China |
| Website:     | http://www.huawei.com      |
| E vez e il i | aunnart@huauai.aam         |

Email: support@huawei.com

# **About This Document**

# Overview

This document provides reference for planning and deploying an Active Antenna Unit 3911 (AAU3911, which is shortened to AAU in this document). It describes the exteriors, functional modules, combinations, engineering specifications, and cable types of the AAU.

The exteriors of components or cables in this document are for reference only. The actual exteriors may be different.

# **Product Version**

The following table lists the product versions related to this document.

| Product Name | Solution Version                                                                                                                                            | Product Version       |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| DBS3900      | <ul> <li>SRAN9.0 and later versions</li> <li>GBSS16.0 and later versions</li> <li>RAN16.0 and later versions</li> <li>eRAN7.0 and later versions</li> </ul> | V100R009C00 and later |

# **Intended Audience**

- System personnel
- Installation personnel
- Maintenance engineer

# Organization

# 1 Changes in AAU3911 Hardware Description

This chapter describes the changes in AAU3911 Hardware Description.

### **2 AAU Introduction**

This chapter describes the exterior, function modules, combinations, RET system, technical specifications of the AAU, and engineering specifications of the RU.

### **3 AAU Cables**

This chapter describes the cables connected to an AAU, including the AU PGND cable, RU power cable, RF jumper, CPRI fiber optic cable, AISG multi-wire cable, and RU alarm cable (optional).

# Conventions

### **Symbol Conventions**

The symbols that may be found in this document are defined as follows.

| Symbol   | Description                                                                                                                                                                                                                                          |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A DANGER | Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.                                                                                                                                           |
|          | Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.                                                                                                                                          |
|          | Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury.                                                                                                                                           |
|          | Indicates a potentially hazardous situation which, if not<br>avoided, could result in equipment damage, data loss,<br>performance deterioration, or unanticipated results.<br>NOTICE is used to address practices not related to personal<br>injury. |
|          | Calls attention to important information, best practices and tips.                                                                                                                                                                                   |
|          | NOTE is used to address information not related to personal injury, equipment damage, and environment deterioration.                                                                                                                                 |

### **General Conventions**

The general conventions that may be found in this document are defined as follows.

| Convention      | Description                                                                                                        |
|-----------------|--------------------------------------------------------------------------------------------------------------------|
| Times New Roman | Normal paragraphs are in Times New Roman.                                                                          |
| Boldface        | Names of files, directories, folders, and users are in <b>boldface</b> . For example, log in as user <b>root</b> . |

| Convention  | Description                                                         |
|-------------|---------------------------------------------------------------------|
| Italic      | Book titles are in <i>italics</i> .                                 |
| Courier New | Examples of information displayed on the screen are in Courier New. |

### **Command Conventions**

The command conventions that may be found in this document are defined as follows.

| Convention   | Description                                                                                                                           |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Boldface     | The keywords of a command line are in <b>boldface</b> .                                                                               |
| Italic       | Command arguments are in <i>italics</i> .                                                                                             |
| []           | Items (keywords or arguments) in brackets [] are optional.                                                                            |
| { x   y   }  | Optional items are grouped in braces and separated by vertical bars. One item is selected.                                            |
| [ x   y   ]  | Optional items are grouped in brackets and separated by vertical bars. One item is selected or no item is selected.                   |
| { x   y   }* | Optional items are grouped in braces and separated by vertical bars. A minimum of one item or a maximum of all items can be selected. |
| [ x   y   ]* | Optional items are grouped in brackets and separated by vertical bars. Several items or no item can be selected.                      |

### **GUI Conventions**

The GUI conventions that may be found in this document are defined as follows.

| Convention | Description                                                                                                                                |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Boldface   | Buttons, menus, parameters, tabs, window, and dialog titles are in <b>boldface</b> . For example, click <b>OK</b> .                        |
| >          | Multi-level menus are in <b>boldface</b> and separated by the ">" signs. For example, choose <b>File</b> > <b>Create</b> > <b>Folder</b> . |

# **Keyboard Operations**

The keyboard operations that may be found in this document are defined as follows.

| Format       | Description                                                                                                                           |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Key          | Press the key. For example, press Enter and press Tab.                                                                                |
| Key 1+Key 2  | Press the keys concurrently. For example, pressing <b>Ctrl+Alt</b><br>+ <b>A</b> means the three keys should be pressed concurrently. |
| Key 1, Key 2 | Press the keys in turn. For example, pressing <b>Alt</b> , <b>A</b> means the two keys should be pressed in turn.                     |

## **Mouse Operations**

The mouse operations that may be found in this document are defined as follows.

| Action       | Description                                                                               |
|--------------|-------------------------------------------------------------------------------------------|
| Click        | Select and release the primary mouse button without moving the pointer.                   |
| Double-click | Press the primary mouse button twice continuously and quickly without moving the pointer. |
| Drag         | Press and hold the primary mouse button and move the pointer to a certain position.       |

# Contents

| About This Document                       | ii |
|-------------------------------------------|----|
| 1 Changes in AAU3911 Hardware Description | 1  |
| 2 AAU Introduction                        | 3  |
| 2.1 AAU Exterior                          | 4  |
| 2.2 Functional Modules of an AAU          | 7  |
| 2.2.1 RU                                  | 7  |
| 2.2.2 AU                                  |    |
| 2.2.3 Combiner                            |    |
| 2.3 AAU Combinations                      |    |
| 2.4 RET System of an AAU                  |    |
| 2.5 Engineering Specifications of an AAU  |    |
| 2.6 Optical Modules                       | 45 |
| 3 AAU Cables                              | 47 |
| 3.1 Cable List                            |    |
| 3.2 AU PGND Cable                         | 49 |
| 3.3 RU Power Cables                       | 49 |
| 3.4 RF Jumpers                            |    |
| 3.5 CPRI Fiber Optic Cables               |    |
| 3.6 AISG Multi-Wire Cables                |    |
| 3.7 RU Alarm Cables (Optional)            |    |

# **1** Changes in AAU3911 Hardware Description

This chapter describes the changes in AAU3911 Hardware Description.

# 02 (2015-01-30)

This is the second commercial release.

Compared with the issues 01 (2015-01-15), this issue includes the following new topics.

- RU3952m
- AU11Ic

Compared with the issues 01 (2015-01-15), this issue includes the following change.

| Торіс                                                                                                                        | Change Description                                         |
|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 2.1 AAU Exterior                                                                                                             | Added the AU11Ic in the components section.                |
| <ul> <li>2.3 AAU Combinations</li> <li>2.4 RET System of an AAU</li> <li>2.5 Engineering Specifications of an AAU</li> </ul> | Added the information of AU111c.                           |
| 3.4 RF Jumpers                                                                                                               | Added an RU RF jumper with a length of 1100 mm (43.31 in.) |

Compared with the issues 01 (2015-01-15), this issue does not include any new topics or exclude any topics.

# 01 (2015-01-15)

This is the first commercial release.

Compared with the issues Draft A (2014-10-30), this issue does not include any new topics or exclude any topics.

Compared with the issues Draft A (2014-10-30), this issue includes the following change.

| Торіс              | Change Description                  |
|--------------------|-------------------------------------|
| The whole document | Included some editing modification. |

# Draft A (2014-10-30)

This is a draft.

# **2** AAU Introduction

# **About This Chapter**

This chapter describes the exterior, function modules, combinations, RET system, technical specifications of the AAU, and engineering specifications of the RU.

### 2.1 AAU Exterior

This section describes the exterior, dimensions, and components of an AAU.

### 2.2 Functional Modules of an AAU

This chapter describes functional modules in an AAU, including the RUs and AU.

### 2.3 AAU Combinations

An AAU is an active antenna unit that can be connected to RRUs or RFUs in the live network.

### 2.4 RET System of an AAU

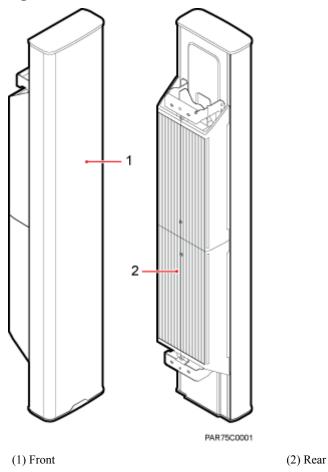
The remote electrical tilt (RET) system of an AAU consists of the remote control unit (RCU), motor, gearing, and phase shifter. In the RET system, the RCU is used to remotely adjust the downtilts of the antenna array.

### 2.5 Engineering Specifications of an AAU

This section describes the engineering specifications of an AAU, including input power and equipment specifications.

### 2.6 Optical Modules

An optical module transmits optical signals between an optical port and a fiber optic cable.


# 2.1 AAU Exterior

This section describes the exterior, dimensions, and components of an AAU.

# Exterior

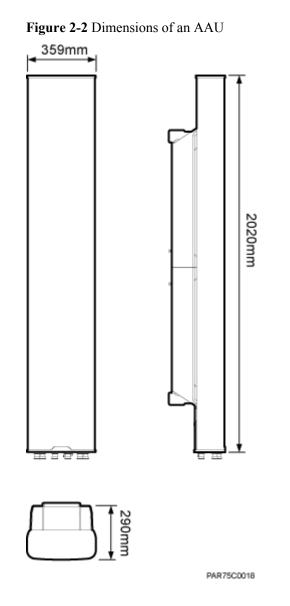
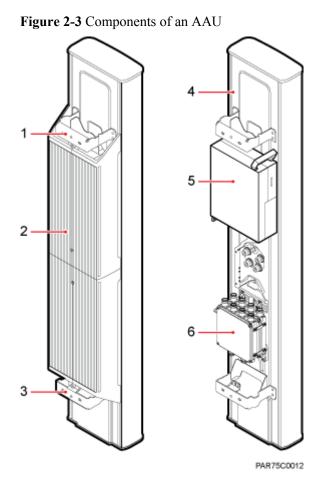

The following figure shows the exterior of an AAU.

Figure 2-1 Exterior of an AAU



# Dimensions


The following figure shows the dimensions of an AAU.



# Components

An AAU consists of the radio unit (RU) and antenna unit (AU).

The following figure shows the components of AAUs, the left indicates an AAU with the plastic housing, and the right indicates an AAU without the plastic housing.



The following table describes the components in an AAU.

| No. | Component       | Optional or<br>Mandatory | Maximum<br>Quantity in<br>an AAU | Description                                                                    |
|-----|-----------------|--------------------------|----------------------------------|--------------------------------------------------------------------------------|
| (1) | Upper handle    | Mandatory                | 1                                | The upper handle is the base for installing antennas.                          |
| (2) | Plastic housing | Mandatory                | 1                                | The housing makes the RUs and AU into a whole.                                 |
| (3) | Lower handle    | Mandatory                | 1                                | The lower handle is the base for installing antennas.                          |
| (4) | 2.2.2 AU        | Mandatory                | 1                                | The AU is the main bearing part<br>in an AAU.<br>There are three types of AUs: |
|     |                 |                          |                                  | AU111a, AU111b, and AU111c.                                                    |

Table 2-1 Components in an AAU

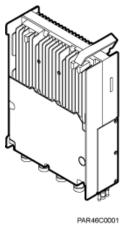
| No. | Component         | Optional or<br>Mandatory | Maximum<br>Quantity in<br>an AAU | Description                                                                                                                                                                                                                                                                 |
|-----|-------------------|--------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (5) | RU                | Mandatory                | 2                                | • The RU is the RF unit of an AAU.                                                                                                                                                                                                                                          |
|     |                   |                          |                                  | • The installation slots of RUs are determined based on AAU configurations.                                                                                                                                                                                                 |
| (6) | 2.2.3<br>Combiner | Optional                 | 1                                | <ul> <li>A combiner combines<br/>signals of RF units operating<br/>in different frequency bands<br/>and is optional for an<br/>AU111b or an AU111c.</li> <li>Combiners are classified<br/>into two types: single-layer<br/>combiner and dual-layer<br/>combiner.</li> </ul> |

# 2.2 Functional Modules of an AAU

This chapter describes functional modules in an AAU, including the RUs and AU.

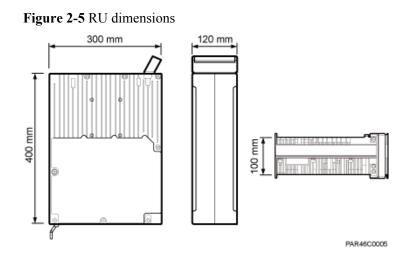
# 2.2.1 RU

A radio unit (RU) converts and forwards signals between the BBU and the antenna system.


# RU3832/RU3260

This section describes the exterior, dimensions, and function of the RU3832/RU3260 as well as the ports and indicators on this type of RU.

# Exterior


The following figure shows an RU.

# Figure 2-4 Exterior of an RU



# Dimensions

The following figure shows the dimensions of an RU.



# Functions

An RU consists of a high-speed interface module, a signal processing unit, a power amplifier, and a duplexer. The following figure shows the logical structure of an RU.

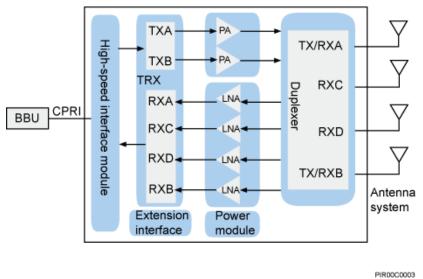
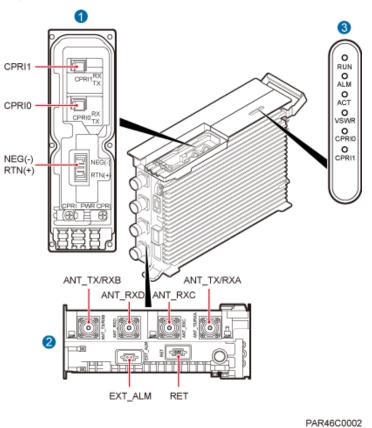



Figure 2-6 Logical structure of the RU


An RU performs the following functions:

- Receives downlink baseband data from the BBU and sends uplink baseband data for the communication between the BBU and the RRU.
- Receives RF signals from the antenna system, down-converts the received signals to IF signals, amplifies the IF signals, and performs analog-to-digital conversion. The TX channel filters downlink signals, performs digital-to-analog conversion, and up-converts RF signals to the TX band.
- Multiplexes RX and TX signals, which enables these signals to share the same antenna path. It also filters the RX and TX signals.

# Ports

The following figure shows all the ports on an RU.





The following table describes all the ports on an RU.

| Item                     | Silkscreen   | Description                                                                   |  |
|--------------------------|--------------|-------------------------------------------------------------------------------|--|
| (1) Ports in the cabling | RTN(+)       | Power supply port                                                             |  |
| cavity                   | NEG(-)       |                                                                               |  |
|                          | CPRI0        | Optical/electrical port 0                                                     |  |
|                          | CPRI1        | Optical/electrical port 1                                                     |  |
| (2) Ports at the bottom  | ANT_TX/RXA   | TX/RX port A                                                                  |  |
|                          | ANT_RXC      | RX port C                                                                     |  |
|                          | ANT_RXD Port | RX port D                                                                     |  |
|                          | ANT_TX/RXB   | TX/RX port B                                                                  |  |
|                          | EXT_ALM      | Alarm port                                                                    |  |
|                          | RET          | Communication port for the RET antenna,<br>supporting RET signal transmission |  |

Table 2-2 Ports on an RU

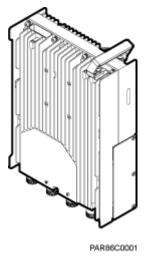
# Indicators

The following table describes the indicators on an RU.

| Table 2-3 | Indicators | on | an RU |
|-----------|------------|----|-------|
|           | malcutors  | on | unite |

| Item                  | Silkscre<br>en | Color | Status                                            | Meaning                                                                                                                                                                                          |
|-----------------------|----------------|-------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (3)<br>Indicator<br>s | RUN            | Green | Steady on                                         | There is power supply, but the module is faulty.                                                                                                                                                 |
|                       |                |       | Steady off                                        | There is no power supply, or the module is faulty.                                                                                                                                               |
|                       |                |       | Blinking (on<br>for 1s and off<br>for 1s)         | The board is functioning properly.                                                                                                                                                               |
|                       |                |       | Blinking (on<br>for 0.125s and<br>off for 0.125s) | Software is being loaded to the module, or the module is not started.                                                                                                                            |
|                       | ALM            | Red   | Steady on                                         | Alarms are generated, and the module must be replaced.                                                                                                                                           |
|                       |                |       | Blinking (on<br>for 1s and off<br>for 1s)         | Alarms are generated. The alarms may<br>be caused by the faults on the related<br>boards or ports. Therefore, you need to<br>locate the faults before deciding<br>whether to replace the module. |
|                       |                |       | Steady off                                        | No alarm is generated.                                                                                                                                                                           |
|                       | ACT            | Green | Steady on                                         | The module is running properly with TX channels enabled or the software is being loaded without RU running.                                                                                      |
|                       |                |       | Blinking (on<br>for 1s and off<br>for 1s)         | The module is running properly with TX channels disabled.                                                                                                                                        |
|                       | VSWR           | Red   | Steady off                                        | No Voltage Standing Wave Ratio (VSWR) alarm is generated.                                                                                                                                        |
|                       |                |       | Blinking (on<br>for 1s and off<br>for 1s)         | VSWR alarms are generated on the ANT_TX/RXB port.                                                                                                                                                |
|                       |                |       | Steady on                                         | VSWR alarms are generated on the ANT_TX/RXA port.                                                                                                                                                |

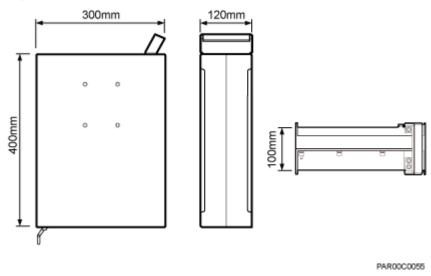
| Item | Silkscre<br>en | Color  | Status                                            | Meaning                                                                                                                              |
|------|----------------|--------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|      |                |        | Blinking (on<br>for 0.125s and<br>off for 0.125s) | VSWR alarms are generated on the ANT_TX/RXA and ANT_TX/RXB ports.                                                                    |
|      | CPRI0          | Red or | Steady green                                      | The CPRI link is functioning properly.                                                                                               |
|      |                | green  | Steady red                                        | An optical module fails to receive<br>signals because the optical module is<br>faulty or the fiber optic cable is broken.            |
|      |                |        | Blinking red<br>(on for 1s and<br>off for 1s)     | The CPRI link is out of lock because<br>of a failure in clock lock between two<br>modes or mismatched data rates over<br>CPRI ports. |
|      |                |        | Steady off                                        | The optical module cannot be detected,<br>or the CPRI cable is not connected<br>properly.                                            |
|      | CPRI1          | Red or | Steady green                                      | The CPRI link is functioning properly.                                                                                               |
|      |                | green  | Steady red                                        | An optical module fails to receive<br>signals because the optical module is<br>faulty or the fiber optic cable is broken.            |
|      |                |        | Blinking red<br>(on for 1s and<br>off for 1s)     | The CPRI link is out of lock because<br>of a failure in clock lock between two<br>modes or mismatched data rates over<br>CPRI ports. |
|      |                |        | Steady off                                        | The optical module cannot be detected, or the optical module is powered off.                                                         |


# RU3952m

This section describes the exterior, dimensions, and function of the RU3952m as well as the ports and indicators on this type of RU.

# Exterior

The following figure shows the exterior of an RU.


# Figure 2-8 Exterior of an RU



# Dimensions

The following figure shows the dimensions of an RU.

### Figure 2-9 Dimensions of an RU



# Function

An RU consists of the high-speed interface unit, signal processing unit, power amplifier, and duplexer.

An RU consists of a high-speed interface module, a signal processing unit, a power amplifier, and a duplexer.

An RU can work in 2T4R single-band mode or 2T2R+2R' dual-band mode. **Figure 2-10** shows the logical structure of an RU working in 2T4R single-band mode. **Figure 2-11** shows the logical structure of an RU working in 2T2R+2R' dual-band mode.

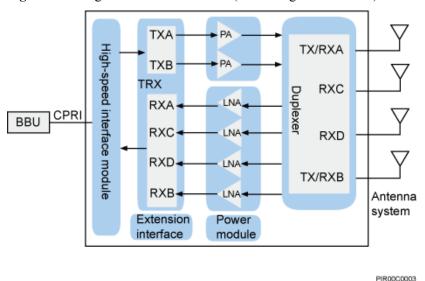
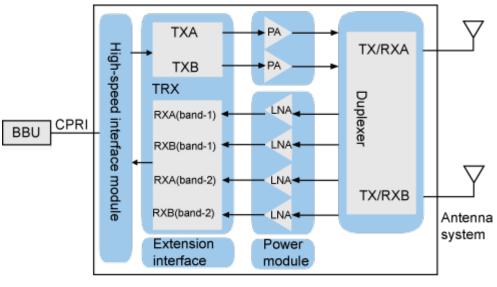
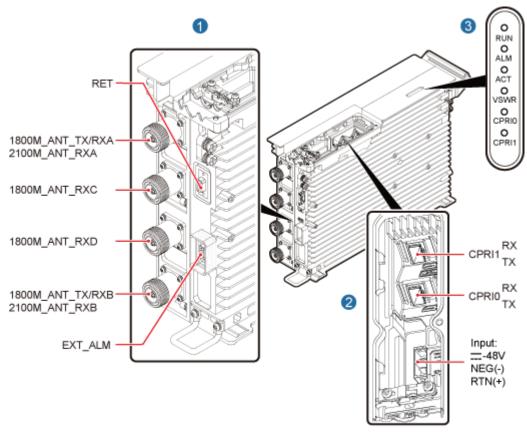




Figure 2-10 Logical structure of an RU (2T4R single-band mode)



**Figure 2-11** Logical structure of an RU (2T2R+2R' dual-band mode)

PIR00C0003-1


An RU performs the following functions:

- Receives downlink baseband data from the BBU and sends uplink baseband data for the communication between the BBU and the RRU.
- Receives RF signals through the feeder, down-converts the received signals into IF signals, amplifies them, and performs ADC. At the TX channels, the RRU filters signals, performs DAC, and then up-converts the RF signals to the TX band.
- Multiplexes RX and TX signals, which enables these signals to share the same antenna path. It also filters the RX and TX signals.

### **Ports**

The following figure shows all the ports on an RU.

Figure 2-12 Ports on an RU



PAR86C0002

The following table describes the ports on an RU.

| Item                     | Silkscreen                                | Description                                                                   |
|--------------------------|-------------------------------------------|-------------------------------------------------------------------------------|
| (1) Ports at the bottom  | 1800M_ANT_TX/<br>RXA<br>2100M_ANT_RX<br>A | TX/RX port A, supporting RET signal transmission                              |
|                          | 1800M_ANT_TX/<br>RXB<br>2100M_ANT_RX<br>B | TX/RX port B                                                                  |
|                          | 1800M_ANT_RX<br>C                         | RX port C                                                                     |
|                          | 1800M_ANT_RX<br>D                         | RX port D                                                                     |
|                          | EXT_ALM                                   | Alarm monitoring port                                                         |
|                          | RET                                       | Communication port for the RET antenna,<br>supporting RET signal transmission |
| (2) Ports in the cabling | RTN(+)                                    | Power supply socket                                                           |
| cavity                   | NEG(-)                                    |                                                                               |
|                          | CPRI0                                     | Optical/electrical port 0                                                     |
|                          | CPRI1                                     | Optical/electrical port 1                                                     |

Table 2-4 Ports on an RU

# Indicators

The following table describes the indicators on an RU.

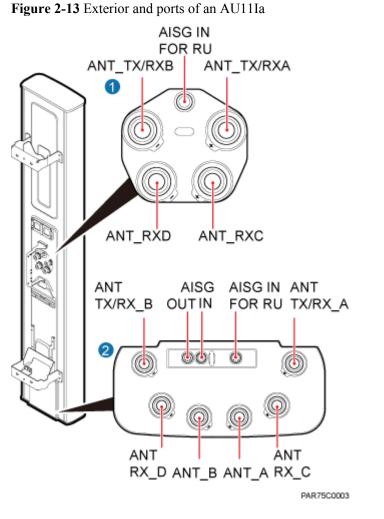
Table 2-5 Indicators on an RU

| Item             | Silkscre<br>en | Color | Status                                    | Meaning                                            |
|------------------|----------------|-------|-------------------------------------------|----------------------------------------------------|
| (3)<br>Indicator | RUN            | Green | Steady on                                 | There is power supply, but the module is faulty.   |
| S                |                |       | Steady off                                | There is no power supply, or the module is faulty. |
|                  |                |       | Blinking (on<br>for 1s and off<br>for 1s) | The board is functioning properly.                 |

| Item | Silkscre<br>en | Color  | Status                                            | Meaning                                                                                                                                                                                          |
|------|----------------|--------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                |        | Blinking (on<br>for 0.125s and<br>off for 0.125s) | Software is being loaded to the module, or the module is not started.                                                                                                                            |
|      | ALM            | Red    | Steady on                                         | Alarms are generated, and the module must be replaced.                                                                                                                                           |
|      |                |        | Blinking (on<br>for 1s and off<br>for 1s)         | Alarms are generated. The alarms may<br>be caused by the faults on the related<br>boards or ports. Therefore, you need to<br>locate the faults before deciding<br>whether to replace the module. |
|      |                |        | Steady off                                        | No alarm is generated.                                                                                                                                                                           |
|      | ACT            | Green  | Steady on                                         | The module is running properly with TX channels enabled or the software is being loaded without RU running.                                                                                      |
|      |                |        | Blinking (on<br>for 1s and off<br>for 1s)         | The module is running properly with TX channels disabled.                                                                                                                                        |
|      | VSWR           | Red    | Steady off                                        | No Voltage Standing Wave Ratio<br>(VSWR) alarm is generated.                                                                                                                                     |
|      |                |        | Blinking (on<br>for 1s and off<br>for 1s)         | VSWR alarms are generated on the ANT_TX/RXB port.                                                                                                                                                |
|      |                |        | Steady on                                         | VSWR alarms are generated on the ANT_TX/RXA port.                                                                                                                                                |
|      |                |        | Blinking (on<br>for 0.125s and<br>off for 0.125s) | VSWR alarms are generated on the ANT_TX/RXA and ANT_TX/RXB ports.                                                                                                                                |
|      | CPRI0          | Red or | Steady green                                      | The CPRI link is functioning properly.                                                                                                                                                           |
|      |                | green  | Steady red                                        | An optical module fails to receive<br>signals because the optical module is<br>faulty or the fiber optic cable is broken.                                                                        |
|      |                |        | Blinking red<br>(on for 1s and<br>off for 1s)     | The CPRI link is out of lock because<br>of a failure in clock lock between two<br>modes or mismatched data rates over<br>CPRI ports.                                                             |
|      |                |        | Steady off                                        | The optical module cannot be detected,<br>or the CPRI cable is not connected<br>properly.                                                                                                        |

| Item | Silkscre<br>en | Color  | Status                                        | Meaning                                                                                                                              |
|------|----------------|--------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|      | CPRI1          | Red or | Steady green                                  | The CPRI link is functioning properly.                                                                                               |
|      |                | green  | Steady red                                    | An optical module fails to receive<br>signals because the optical module is<br>faulty or the fiber optic cable is broken.            |
|      |                |        | Blinking red<br>(on for 1s and<br>off for 1s) | The CPRI link is out of lock because<br>of a failure in clock lock between two<br>modes or mismatched data rates over<br>CPRI ports. |
|      |                |        | Steady off                                    | The optical module cannot be detected,<br>or the optical module is powered off.                                                      |

# 2.2.2 AU


An AU is an antenna unit, which is the main bearing part in an AAU. The AU performs the antenna function and RET function and provides ports and installation slots. The AU11Ia and AU11Ib modules are applicable to the AAU3911.

# AU11Ia

This section describes the exterior, ports, functions, and cable connections of an AU111a.

# **Exterior and Ports**

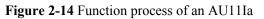
The following figure shows the exterior and ports of an AU11Ia.

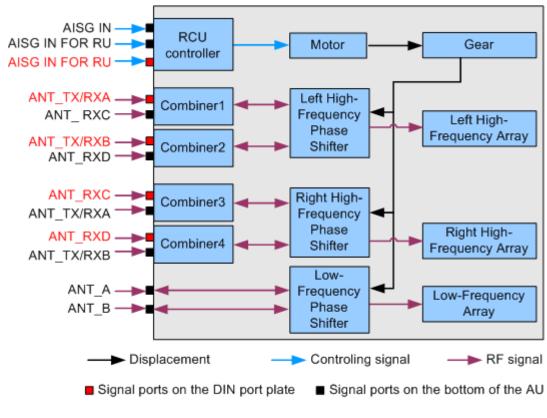


(1) Ports on the DIN port plate

(2) Ports at the bottom of the AU

The following table describes the ports on an AU11Ia.


Table 2-6 Ports on an AU11Ia


| Item                    | Silkscreen     | Description                                                               |
|-------------------------|----------------|---------------------------------------------------------------------------|
| (1) Ports on the DIN    | ANT_TX/RXA     | RF port connected to the ANT port on the RU                               |
| port plate              | ANT_TX/RXB     | in the upper slot                                                         |
|                         | ANT_RXC        |                                                                           |
|                         | ANT_RXD        |                                                                           |
|                         | AISG IN FOR RU | RET antenna port connected to the RET port<br>on the RU in the upper slot |
| (2) Ports at the bottom | ANT_TX/RXA     | RF port connected to the ANT port on the RU                               |
| of the AU               | ANT_TX/RXB     | in the lower slot or to the ANT port on a passive high-frequency module   |

| Item | Silkscreen     | Description                                                                                                                                                           |
|------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | ANT_RXC        |                                                                                                                                                                       |
|      | ANT_RXD        |                                                                                                                                                                       |
|      | ANT_A          | RF port connected to the ANT port on a                                                                                                                                |
|      | ANT_B          | passive low-frequency module                                                                                                                                          |
|      | AISG IN FOR RU | RET antenna port connected to the RET port<br>on the RU in the lower slot                                                                                             |
|      | AISG IN        | RET antenna port connected to the RET port<br>on a passive module                                                                                                     |
|      | AISG OUT       | RET antenna cascading port connected to the<br>RET antenna port on an external RET antenna<br>so that the passive module can adjust downtilts<br>of cascaded antennas |

# Function

The following figure shows the function process of an AU11Ia.





PIR75C0000

The AU performs the following functions:

- Remotely adjusts the downtilts: The remote control unit (RCU) receives RS485 signals, converts the received RS485 signals, and sends the converted signals to the motor; the motor converts received signals into phase shift and drives the phase shifter using a gear, enabling the downtilt adjustment of the antenna arrays.
- Combines signals: The combiner combines RF signals of different frequency bands and then sends these signals to the antenna array through the feeder power network.
- Receives and transmits signals: The antenna array receives and transmits RF signals.
- Reports information: The RCU reports the AU basic information and RU slot information.
- Provides ports for RU mounting kits and AAU mounting kits.

# **Cable Connections of Ports**

The following figure shows cable connections of ports on an AU111a.

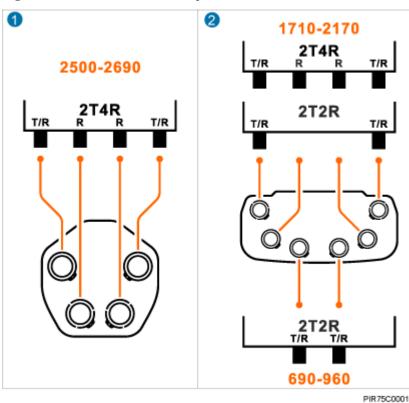



Figure 2-15 Cable connections of ports on an AU11Ia

(1) Cable connections of ports on the DIN port plate of (2) Cable connections of ports at the bottom of the the AU11Ia AU11Ia

The cable connection label sticks on the AU and includes the following information:

• Frequency band information of ports. For example, in the cable connections of ports on the DIN port plate of the AU11Ia shown by illustration 1 in the preceding figure, "2500-2690" indicates that the ports on the DIN port plate can be connected to RUs operating in the frequency band from 2500 MHz to 2690 MHz.

• Information about RF ports on an AU that are to be connected to the RF modules in 2T2R or 2T4R mode

# AU11Ib

This section describes the exterior, ports, functions, and cable connections of an AU111b.

# **Exterior and Ports**

The following figure shows the exterior and ports of an AU11Ib.

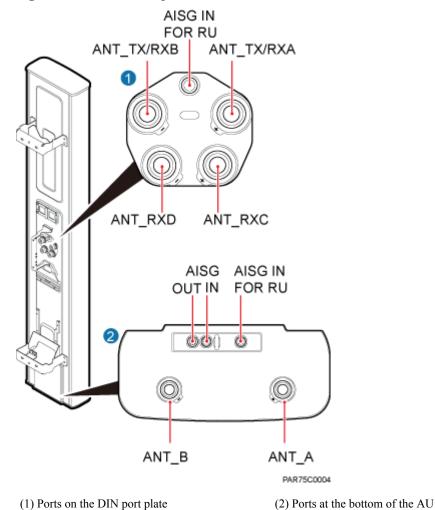



Figure 2-16 Exterior and ports of an AU11Ib

The following table describes the ports on an AU11Ib.

 Table 2-7 Ports on an AU111b

| Item                            | Silkscreen | Description                                                                         |
|---------------------------------|------------|-------------------------------------------------------------------------------------|
| (1) Ports on the DIN port plate | ANT_TX/RXA | RF port connected to the ANT port on the RU<br>in the upper slot or on the combiner |

| Item                                 | Silkscreen     | Description                                                                                                                                                           |
|--------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | ANT_TX/RXB     |                                                                                                                                                                       |
|                                      | ANT_RXC        |                                                                                                                                                                       |
|                                      | ANT_RXD        |                                                                                                                                                                       |
|                                      | AISG IN FOR RU | RET antenna port connected to the RET port<br>on the RU in the upper slot                                                                                             |
| (2) Ports at the bottom<br>of the AU | ANT_A          | RF port connected to the ANT port on a passive low-frequency module                                                                                                   |
|                                      | ANT_B          |                                                                                                                                                                       |
|                                      | AISG IN FOR RU | RET antenna port connected to the RET port<br>on the RU in the lower slot                                                                                             |
|                                      | AISG IN        | RET antenna port connected to the RET port<br>on a passive module                                                                                                     |
|                                      | AISG OUT       | RET antenna cascading port connected to the<br>RET antenna port on an external RET antenna<br>so that the passive module can adjust downtilts<br>of cascaded antennas |

# Function

The following figure shows the function process of an AU11Ib.

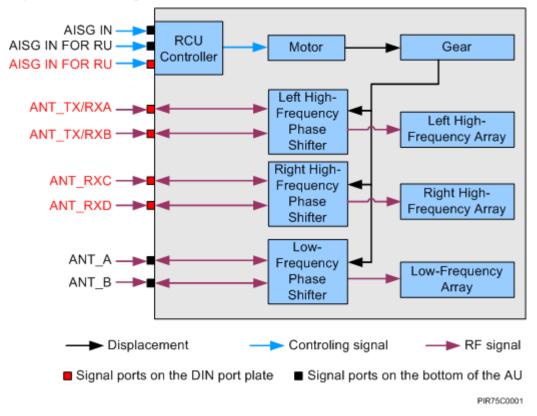



Figure 2-17 Function process of an AU111b

The AU performs the following functions:

- Remotely adjusts the downtilts: The remote control unit (RCU) receives RS485 signals, converts the received RS485 signals, and sends the converted signals to the motor; the motor converts received signals into phase shift and drives the phase shifter using a gear, enabling the downtilt adjustment of the antenna arrays.
- Combines signals: The combiner combines RF signals of different frequency bands and then sends these signals to the antenna array through the feeder power network.
- Receives and transmits signals: The antenna array receives and transmits RF signals.
- Reports information: The RCU reports the AU basic information and RU slot information.
- Provides ports for RU mounting kits and AAU mounting kits.

# **Cable Connections of Ports**

The following figure shows cable connections of ports on an AU111b.

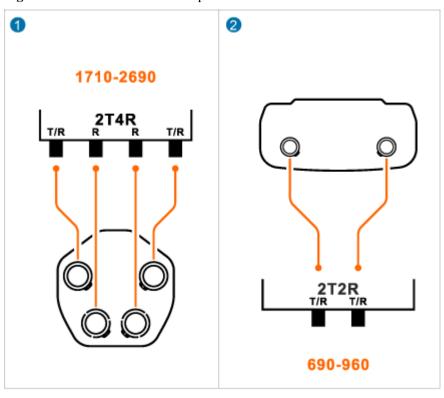
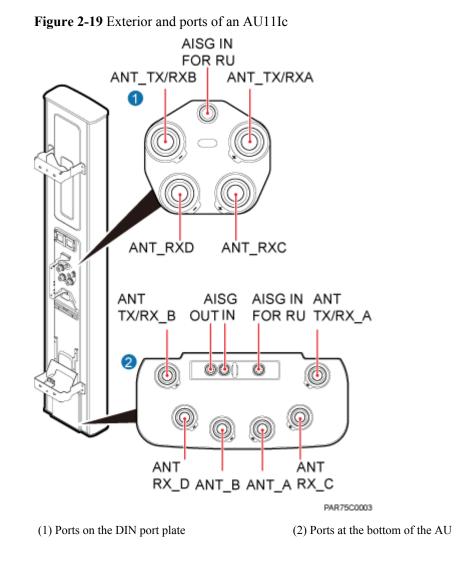



Figure 2-18 Cable connections of ports on an AU11Ib

PIR75C0002

(1) Cable connections of ports on the DIN port plate of (2) Cable connections of ports at the bottom of the the AU111b AU111b

The cable connection label sticks on the AU and includes the following information:


- Frequency band information of ports. For example, in the cable connections of ports on the DIN port plate of the AU111b shown by illustration 1 in the preceding figure, "1710-2690" indicates that the ports on the DIN port plate can be connected to RUs operating in the frequency band from 1710 MHz to 2690 MHz.
- Information about RF ports on an AU that are to be connected to the RF modules in 2T2R or 2T4R mode

# AU11Ic

This section describes the exterior, ports, functions, and cable connections of an AU111c.

# **Exterior and Ports**

The following figure shows the exterior and ports of an AU11Ic.



The following table describes the ports on an AU11Ic.

 Table 2-8 Ports on an AU111c

| Item                               | Silkscreen     | Description                                                                         |
|------------------------------------|----------------|-------------------------------------------------------------------------------------|
| (1) Ports on the DIN<br>port plate | ANT_TX/RXA     | RF port connected to the ANT port on the RU<br>in the upper slot or on the combiner |
|                                    | ANT_TX/RXB     |                                                                                     |
|                                    | ANT_RXC        |                                                                                     |
|                                    | ANT_RXD        |                                                                                     |
|                                    | AISG IN FOR RU | RET antenna port connected to the RET port<br>on the RU in the upper slot           |

| Item                                 | Silkscreen     | Description                                                                                                                                                           |
|--------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (2) Ports at the bottom<br>of the AU | ANT_TX/RXA     | RF port connected to the ANT port on the RU<br>in the lower slot or to the ANT port on a<br>passive high-frequency module                                             |
|                                      | ANT_TX/RXB     |                                                                                                                                                                       |
|                                      | ANT_RXC        |                                                                                                                                                                       |
|                                      | ANT_RXD        |                                                                                                                                                                       |
|                                      | ANT_A          | RF port connected to the ANT port on a passive low-frequency module                                                                                                   |
|                                      | ANT_B          |                                                                                                                                                                       |
|                                      | AISG IN FOR RU | RET antenna port connected to the RET port<br>on the RU in the lower slot                                                                                             |
|                                      | AISG IN        | RET antenna port connected to the RET port<br>on a passive module                                                                                                     |
|                                      | AISG OUT       | RET antenna cascading port connected to the<br>RET antenna port on an external RET antenna<br>so that the passive module can adjust downtilts<br>of cascaded antennas |

# Function

The following figure shows the function process of an AU111c.

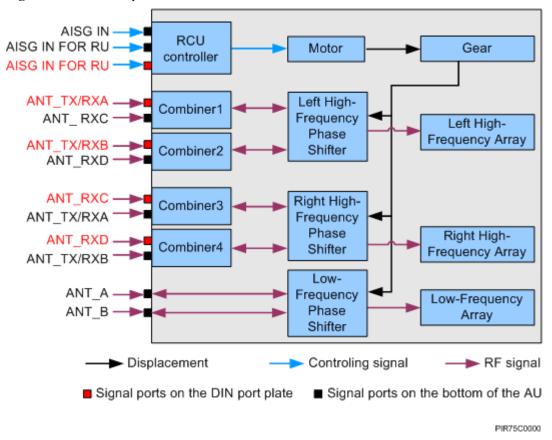



Figure 2-20 Function process of an AU11Ic

The AU performs the following functions:

- Remotely adjusts the downtilts: The remote control unit (RCU) receives RS485 signals, converts the received RS485 signals, and sends the converted signals to the motor; the motor converts received signals into phase shift and drives the phase shifter using a gear, enabling the downtilt adjustment of the antenna arrays.
- Combines signals: The combiner combines RF signals of different frequency bands and then sends these signals to the antenna array through the feeder power network.
- Receives and transmits signals: The antenna array receives and transmits RF signals.
- Reports information: The RCU reports the AU basic information and RU slot information.
- Provides ports for RU mounting kits and AAU mounting kits.

# **Cable Connections of Ports**

The following figure shows cable connections of ports on an AU11Ic.

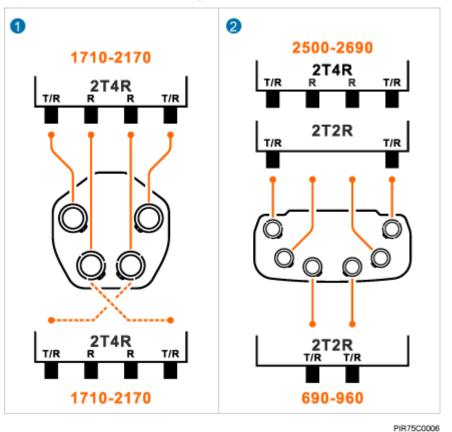



Figure 2-21 Cable connections of ports on an AU11Ic

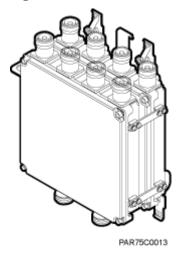
(1) Cable connections of ports on the DIN port plate of (2) Cable connections of ports at the bottom of the the AU111c AU111c

The cable connection label sticks on the AU and includes the following information:

- Frequency band information of ports. For example, in the cable connections of ports on the DIN port plate of the AU11Ic shown by illustration 1 in the preceding figure, "1710-2170" indicates that the ports on the DIN port plate can be connected to RUs operating in the frequency band from 1710 MHz to 2170 MHz.
- Information about RF ports on an AU that are to be connected to the RF modules in 2T2R or 2T4R mode

# 2.2.3 Combiner

A combiner is a passive module, combining signals of RF units operating in different frequency bands. Combiners for an AAU fall into two categories: single-layer combiner and dual-layer combiner.


# Exterior

**Figure 2-22** and **Figure 2-23** show the exteriors of a single-layer combiner and a dual-layer combiner, respectively.

# PAR75CO14

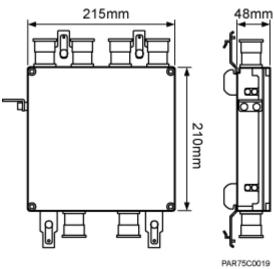
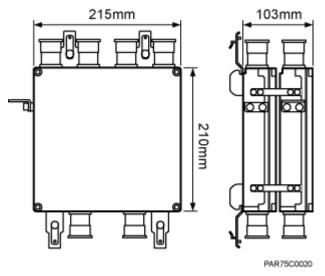
Figure 2-22 Exterior of a single-layer combiner

Figure 2-23 Exterior of a dual-layer combiner



#### Dimensions

**Figure 2-24** and **Figure 2-25** show the dimensions of a single-layer combiner and a dual-layer combiner, respectively.

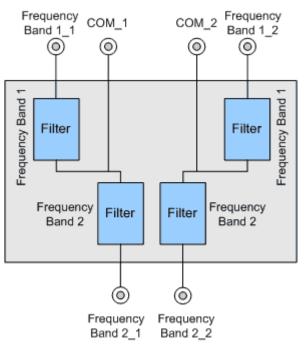


Figure 2-24 Dimensions of a single-layer combiner

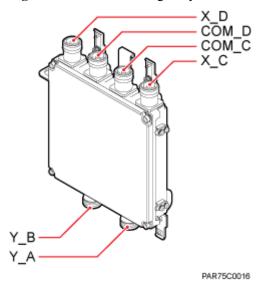
Figure 2-25 Dimensions of a dual-layer combiner



#### Function

A combiner combines signals of RF units operating in different frequency bands. A single-layer combiner consists of two combining units, each of which combines signals of two frequency bands. A dual-layer combiner is assembled by two single-layer combiners. The number of RF ports on a dual-layer combiner is twice the number of RF ports on a single-layer combiner. The single- and dual-layer combiners have the same working principle. The following figure shows the working principle of a single-layer combiner.




#### Figure 2-26 Working principle of a single-layer combiner

PIR75C0005

#### Port

The following figure shows the ports on a single-layer combiner.

Figure 2-27 Ports on a single-layer combiner



The following table describes the ports on a single-layer combiner.

#### 

- In X\_D, X\_C, Y\_B, and Y\_A of the **Port** column, X and Y indicate the frequency bands supported by the combiner, and A, B, C, and D indicate the port numbers of the combiner.
- The combiner for the AAU3911 can combine the following frequency bands: AWS and PCS, 2100 MHz and 1800 MHz.

| Port  | Description                                                                                               |  |
|-------|-----------------------------------------------------------------------------------------------------------|--|
| Y_A   | RF port used for connecting to the ANT port on the RRU operating in the Y frequency band                  |  |
| Y_B   | RF port used for connecting to the ANT port on the RRU operating in the Y frequency band                  |  |
| COM_C | RF port used for connecting to the ANT port on the DIN port plate in the middle of the AAU                |  |
| X_C   | RF port used for connecting to the ANT port on the RU operating in the X frequency band in the upper slot |  |
| X_D   | RF port used for connecting to the ANT port on the RU operating in the X frequency band in the upper slot |  |
| COM_D | RF port used for connecting to the ANT port on the DIN port<br>plate in the middle of the AAU             |  |

The following figure shows the ports on a dual-layer combiner.

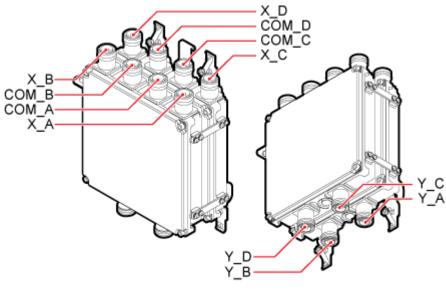



Figure 2-28 Ports on a dual-layer combiner

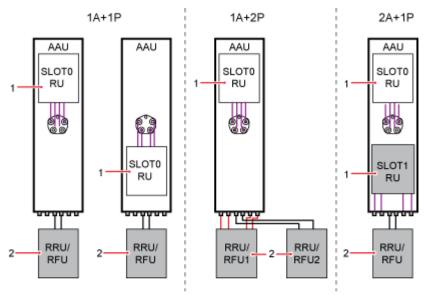
The following table describes the ports on a dual-layer combiner.

#### ΠΝΟΤΕ

- In X\_A, X\_B, X\_C, X\_D, Y\_A, Y\_B, Y\_C, and Y\_D of the **Port** column, X and Y indicate the frequency bands supported by the combiner, and A, B, C, and D indicate the port numbers of the combiner.
- The combiner for the AAU3911 can combine the following frequency bands: AWS and PCS, and 2100 MHz and 1800 MHz.

| Port  | Description                                                                                               |
|-------|-----------------------------------------------------------------------------------------------------------|
| Y_A   | RF port used for connecting to the ANT port on the RRU operating in the Y frequency band                  |
| Y_B   | RF port used for connecting to the ANT port on the RRU operating in the Y frequency band                  |
| Y_C   | RF port used for connecting to the ANT port on the RRU operating in the Y frequency band                  |
| Y_D   | RF port used for connecting to the ANT port on the RRU operating in the Y frequency band                  |
| COM_A | RF port used for connecting to the ANT port on the DIN port plate in the middle of the AAU                |
| X_A   | RF port used for connecting to the ANT port on the RU operating in the X frequency band in the upper slot |
| COM_B | RF port used for connecting to the ANT port on the DIN port plate in the middle of the AAU                |
| X_B   | RF port used for connecting to the ANT port on the RU operating in the X frequency band in the upper slot |
| COM_C | RF port used for connecting to the ANT port on the DIN port plate in the middle of the AAU                |
| X_C   | RF port used for connecting to the ANT port on the RU operating in the X frequency band in the upper slot |
| X_D   | RF port used for connecting to the ANT port on the RU operating in the X frequency band in the upper slot |
| COM_D | RF port used for connecting to the ANT port on the DIN port plate in the middle of the AAU                |

# 2.3 AAU Combinations


An AAU is an active antenna unit that can be connected to RRUs or RFUs in the live network.

#### 

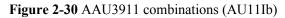
- When an RF module is installed in the rear plastic housing of an AU, it is called an active module, shortened to A.
- When an RF module is not installed in the rear plastic housing of an AU, it is called a passive module, shortened to P.
- In this section, A is an RU, P can be an RRU or RFU from Huawei or other manufactures.

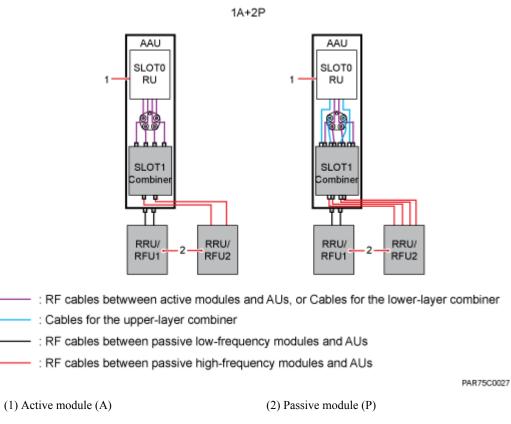
There are the following types of AAU3911 combinations based on the number of configured As and Ps, as shown in the following figures.

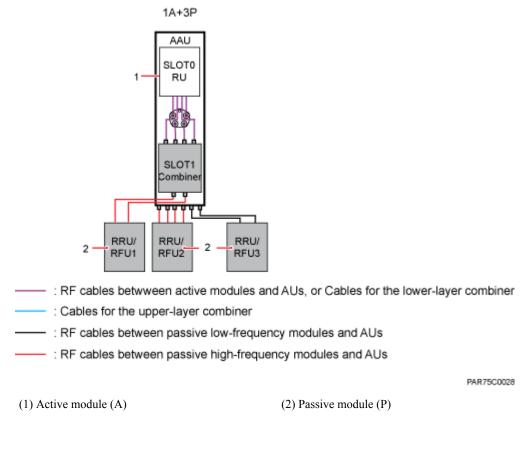
Figure 2-29 AAU3911 combinations (AU11Ia)



—— : RF cables betwween active modules and AUs, or Cables for the lower-layer combiner


Cables for the upper-layer combiner


- —— : RF cables between passive low-frequency modules and AUs
  - RF cables between passive high-frequency modules and AUs


PAR75C0008

(1) Active module (A)

(2) Passive module (P)







#### Figure 2-31 AAU3911 combinations (AU11Ic)

The following table describes the AAU3911 combinations based on the frequency bands of configured As and Ps and the number of RF ports on the RU.

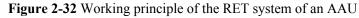
#### 

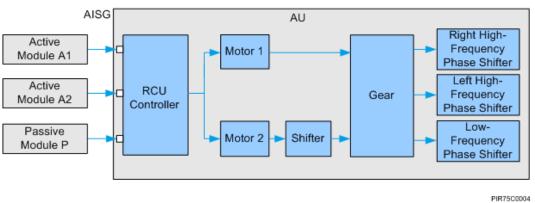
- In xA+yP in the AAU Configuration column, A stands for active, P stands for passive, x indicates the frequency band of the active unit, and y indicates the frequency band of the passive unit. For example, 2.1 A+700-900 P means that the frequency band of the active unit is 2100 MHz and the frequency band of the passive unit is 700 MHz to 900 MHz.
- In the **RU Configuration** column, **UP** indicates that the RU is installed in the upper slot of the AAU, and **DOWN** indicates that the RU is installed in the lower slot of the AAU.
- For types and technical specifications of active modules, see AAU3911 Technical Specifications.

#### Table 2-11 AAU3911 combinations

| AAU<br>Configuration                                                 | RU Configuration                     | АU Туре | With a Combiner or<br>Not |
|----------------------------------------------------------------------|--------------------------------------|---------|---------------------------|
| 2.6 A (2T4R 2x40<br>W)+1.8~2.1 P (4<br>ports)+700~900<br>P (2 ports) | RU3260 2600 MHz<br>2T4R, 2x40 W (UP) | AU11Ia  | No                        |

| AAU<br>Configuration                                                                | RU Configuration                      | AU Type | With a Combiner or<br>Not |
|-------------------------------------------------------------------------------------|---------------------------------------|---------|---------------------------|
| AWS A (2T4R<br>2x60W)<br>+700~900P (2<br>Ports)                                     | RU3832 AWS 2T4R,<br>2x60 W (DOWN)     |         |                           |
| 2.6 A (2T4R 2x40<br>W)+AWS A                                                        | RU3260 2600 MHz<br>2T4R, 2x40 W (UP)  |         |                           |
| (2T4R 2x60W)<br>+700~900 P (2<br>ports)                                             | RU3832 AWS 2T4R,<br>2x60 W (DOWN)     |         |                           |
| AWS A (2T4R<br>2x60 W)+PCS P<br>(4 ports)<br>+700~900 P (2<br>ports)                | RU3832 AWS 2T4R,<br>2x60 W (UP)       | AU11Ib  | Yes                       |
| 2.1 A (2T4R 2x60<br>W)+1.8 P (4<br>ports)+700~900<br>P (2 ports)                    | RU3832 2100 MHz<br>2T4R, 2x60 W (UP)  |         |                           |
| 1.8 A (2T4R 2x60<br>W)+2.1 P (4<br>ports)+2.6 P (4<br>ports)+700~900<br>P (2 ports) | RU3952m 1800 MHz<br>2T4R, 2x60 W (UP) | AU11Ic  | Yes                       |


# 2.4 RET System of an AAU


The remote electrical tilt (RET) system of an AAU consists of the remote control unit (RCU), motor, gearing, and phase shifter. In the RET system, the RCU is used to remotely adjust the downtilts of the antenna array.

#### **RET Function**

The RCU in the RET system of an AAU receives the control signals from the base station and drives the gearing through the step motor to drive the phase shifter in the antenna, thereby adjusting the downtilt of the AU.

The following figure shows the working principle of the RET system of an AAU.





#### **RCU Serial Number**

An AAU has three RCU serial numbers, which are printed on the AU label and uniquely identify an RCU.

The RCU serial number has 19 characters. The following table describes the encoding scheme of the RCU serial number and the meaning of each field in the RCU serial number.

| Field<br>Meaning   | Number<br>of<br>Character<br>s | Field Description                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Company code       | 2                              | Always set to HW                                                                                                                                                                                                                                                                                                                                                                                                        |
| Equipment<br>type  | 7                              | Always set to AAU3911                                                                                                                                                                                                                                                                                                                                                                                                   |
| Reserved           | 2                              | Generated randomly                                                                                                                                                                                                                                                                                                                                                                                                      |
| Year               | 1                              | It represents the year in which the product is produced. One character is used to represent the last two digits of a year.<br>For example, the last two digits of the years 2001 to 2009 are represented by characters 1 to 9, respectively. The 26 letters from A to Z are used to represent the years starting from 2010. The letter A represents 2010 and the subsequent letters represent the years following 2010. |
| Month              | 1                              | It represents the month in which the product is produced.<br>Hexadecimal is adopted.<br>For example, characters 1 to 9 represent January to September,<br>respectively. A represents October, B represents November, and<br>C represents December.                                                                                                                                                                      |
| Sequence<br>number | 4                              | It is generated in the production process.                                                                                                                                                                                                                                                                                                                                                                              |

| Field<br>Meaning              | Number<br>of<br>Character<br>s | Field Description                                                                                                                                                                  |
|-------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DIN and<br>array<br>positions | 2                              | <ul> <li>HL: left high-frequency array on the DIN port plate</li> <li>HR: right high-frequency array at the bottom</li> <li>LR: right low-frequency array at the bottom</li> </ul> |

#### **RET Configuration Principles**

The RET configuration principles are as follows:

- Any RET port can scan for the serial number of an RCU to which a link has not been set up and can control the RCU.
- Links have no priority, and apply the first-come first-served principle. Only one AISG link can be established for an RCU serial number. If a link needs to be switched, you must delete the configuration on the link so that the link can be released.
- After the RCU link is established, the RCU serial number is not displayed in the scanning result of other RET ports.
- An RCU (containing both low- and high-frequency modules) preferentially uses an RU for RET control.
- The left high-frequency array (HL) is preferentially configured for the RU in the upper slot, and the right high-frequency array (HR) is preferentially configured for the RU in the lower slot. The following table lists the mapping between the AU arrays and the TX and RX channels of the RUs.

| AU Type | High-<br>frequency             | High-<br>frequency             | External<br>High-<br>frequency/<br>Low-<br>frequency<br>RRU (P) | Array Positi<br>RX Channel | `                       |
|---------|--------------------------------|--------------------------------|-----------------------------------------------------------------|----------------------------|-------------------------|
|         | RU in the<br>Upper Slot<br>(A) | RU in the<br>Lower Slot<br>(A) |                                                                 | RU in the<br>Upper Slot    | RU in the<br>Lower Slot |
| AU11Ia  | 2T4R                           | 2T2R or<br>2T4R                | Low-<br>frequency:<br>2T2R                                      | L (2T2R) R<br>(2R)         | R (2T2R) L<br>(2R)      |
|         | 2T4R                           | 2T2R                           | High-<br>frequency:<br>2T2R<br>Low-<br>frequency:<br>2T2R       | L (2T2R) R<br>(2R)         | R (2T2R)                |

Table 2-12 Mapping between the AU arrays and the TX and RX channels of the RUs

| AU Type | High-<br>frequency             | High-<br>frequency             | External<br>High-                          | Array Position (TX and RX Channels) |                         |
|---------|--------------------------------|--------------------------------|--------------------------------------------|-------------------------------------|-------------------------|
|         | RU in the<br>Upper Slot<br>(A) | RU in the<br>Lower Slot<br>(A) | frequency/<br>Low-<br>frequency<br>RRU (P) | RU in the<br>Upper Slot             | RU in the<br>Lower Slot |
|         | 2T4R                           | -                              | High-<br>frequency:<br>2T4R                | L (2T2R) R<br>(2R)                  | -                       |
|         |                                |                                | Low-<br>frequency:<br>2T2R                 |                                     |                         |
| AU11Ib  | 2T4R                           | -                              | High-<br>frequency:<br>2T4R                | L (2T2R) R<br>(2R)                  | -                       |
|         |                                |                                | Low-<br>frequency:<br>2T2R                 |                                     |                         |
| AU11Ic  | 2T4R                           | -                              | High-<br>frequency:<br>2T4R                | L (2T2R<br>+2R')                    | -                       |
|         |                                |                                | Low-<br>frequency:<br>2T2R                 |                                     |                         |

#### 

The frequency band identification for RF ports on an AU contains the information of array positions, as shown in Figure 2-33, Figure 2-34, and Figure 2-35. In the figures, L indicates the left array, and R indicates the right array.

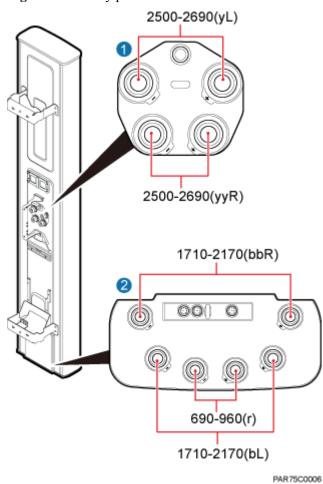



Figure 2-33 Array positions of the AU11Ia

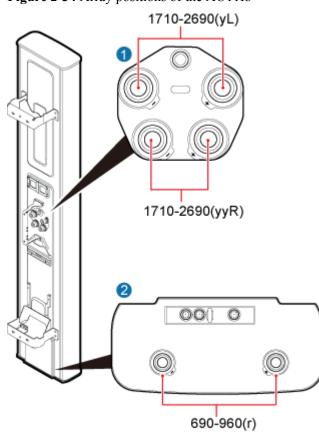



Figure 2-34 Array positions of the AU11Ib

PAR75C0007

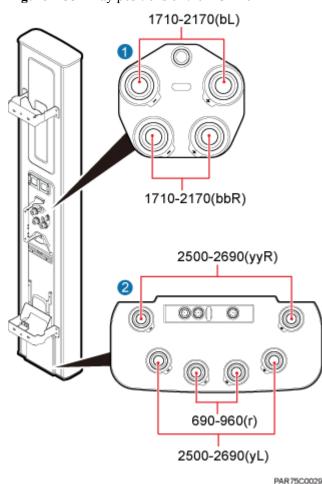



Figure 2-35 Array positions of the AU11Ic

• The mapping between TX and RX channels of passive modules and AU arrays are described in the engineering report. AU arrays can be found through the DIN silkscreens in the site survey table. The following site survey table uses passive modules operating in 850 MHz connected to an AAU as examples.

Table 2-13 Site survey table

| RRU Type | AU Type | Site ID                                              | Sector ID                                            | DIN<br>Silkscreen |
|----------|---------|------------------------------------------------------|------------------------------------------------------|-------------------|
| 850      | AU11Ia  | Recorded<br>according to<br>the actual<br>situation. | Recorded<br>according to<br>the actual<br>situation. | 690-960(r)        |

# 2.5 Engineering Specifications of an AAU

This section describes the engineering specifications of an AAU, including input power and equipment specifications.

#### **Input Power**

The following table lists the input power specifications of an AAU.

Table 2-14 Input power specifications of an AAU

| Input Power | Voltage Range        |
|-------------|----------------------|
| -48 V DC    | -36 V DC to -57 V DC |

#### **Equipment Specifications**

The following table lists the equipment specifications of an AAU.

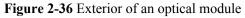
Table 2-15 Equipment specifications of an AAU

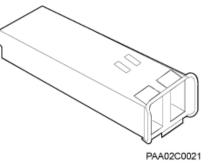
| Item                   | Specifications                                                                                                                                                                                                                                               |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Dimensions (H x W x D) | 2020 mm x 359 mm x 290 mm (79.53 in. x 14.13 in. x 11.4 in.) (excluding the handles and attachment plate)                                                                                                                                                    |  |
| Weight                 | <ul> <li>Main module (excluding the handles, and attachment plate):</li> <li>49 kg (108.05 lb) (Configured with one RU)</li> <li>57 kg (125.69 lb) (Configured with one RU and one combiner)</li> <li>65 kg (143.33 lb) (Configured with two RUs)</li> </ul> |  |

#### 

For details about other engineering specifications of an AAU, see AAU3911 Technical Specifications in 3900 Series Base Station Technical Description.

# 2.6 Optical Modules

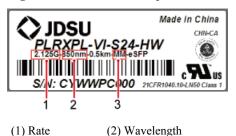

An optical module transmits optical signals between an optical port and a fiber optic cable.


#### 

- The exteriors of an optical module and the label on an optical module in this section are for reference only. The actual exteriors may be different.
- Boards or RF modules supporting only the 1.25 Gbit/s CPRI rate, for example, the GTMU or RRU3908 V1, cannot use optical modules supporting a 9.8 Gbit/s CPRI rate.

#### Exterior

The following figure shows the exterior of an optical module.






#### Label on an optical module

There is a label on each optical module, which provides information such as the rate, wavelength, and transmission mode, as shown in the following figure.

Figure 2-37 Label on an optical module



(3) Transmission mode

#### **Optical Module Type**

Optical modules can be divided into single- and multimode optical modules, which can be distinguished as follows:

- The puller of a single-mode optical module is blue and the puller of a multimode optical module is black or gray.
- The transmission mode is displayed as "SM" on the label of a single-mode optical module and "MM" on the label of a multimode optical module.

# $\mathbf{3}_{AAU \text{ Cables}}$

# **About This Chapter**

This chapter describes the cables connected to an AAU, including the AU PGND cable, RU power cable, RF jumper, CPRI fiber optic cable, AISG multi-wire cable, and RU alarm cable (optional).

3.1 Cable List

This section describes AAU cable connections.

#### 3.2 AU PGND Cable

This section describes an AU PGND cable which connects an AU and a ground bar for the proper grounding of an AAU.

#### 3.3 RU Power Cables

The RU power cable is a -48 V DC shielded cable. It feeds -48 V DC power to an RU. The maximum length of an RU power cable delivered with RUs is 50 m (164.04 ft) by default.

3.4 RF Jumpers A radio frequency (RF) jumper forwards and receives RF signals.

#### 3.5 CPRI Fiber Optic Cables

CPRI fiber optic cables are classified into single-mode fiber optic cables and multi-mode fiber optic cables. CPRI fiber optic cables transmit signals between the BBU and RUs.

#### 3.6 AISG Multi-Wire Cables

An Antenna Interface Standards Group (AISG) multi-wire cable connects an RU to an AU and transmits RS485 signals.

#### 3.7 RU Alarm Cables (Optional)

The RU alarm cable, a shielded straight-through cable, transmits alarm signals from an external device to an RU so that the base station monitors the operating status of external equipment. The length of an RU alarm cable is 5 m (16.4 ft).

# 3.1 Cable List

This section describes AAU cable connections.

The following table lists the AAU cables.

| Table 3-1 | List of AAU | cables |
|-----------|-------------|--------|
|-----------|-------------|--------|

| Cable                            | One End                                             |                                                                                                                                                               | The Other End                                                    |                                     |  |
|----------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------|--|
|                                  | Connector                                           | Installation<br>Position                                                                                                                                      | Connector                                                        | Installation<br>Position            |  |
| AU PGND<br>Cable                 | OT terminal<br>(M6)                                 | Ground<br>terminal on the<br>AU                                                                                                                               | OT terminal<br>(M8)                                              | External ground bar                 |  |
| RU Power<br>Cables               | Tool-less<br>female<br>connector<br>(pressfit type) | NEG(-) and<br>RTN(+) ports<br>on the RU                                                                                                                       | Depending on<br>the power<br>supply<br>equipment                 | External power<br>equipment         |  |
| RF Jumpers                       | jumper: DIN RRU                                     |                                                                                                                                                               | RRU RFRF ports on thejumper: DINAUmale connectorImage: Connector |                                     |  |
|                                  | RU RF jumper:<br>DIN male<br>connector              | RF ports on the RU                                                                                                                                            | RU RF jumper:<br>QDIN<br>connector                               |                                     |  |
| AISG Multi-<br>Wire Cables       | Waterproof<br>DB9 male<br>connector                 | RET port on the RU                                                                                                                                            | Standard AISG male connector                                     | AISG IN FOR<br>RU port on the<br>AU |  |
| CPRI Fiber<br>Optic Cables       | DLC connector                                       | <ul> <li>CPRI0 port<br/>on the RU in<br/>single-mode<br/>scenarios</li> <li>CPRI0 and<br/>CPRI1 ports<br/>on the RU in<br/>multimode<br/>scenarios</li> </ul> | DLC connector                                                    | CPRI port on the<br>BBU             |  |
| RU Alarm<br>Cables<br>(Optional) | Waterproof<br>DB15 male<br>connector                | EXT_ALM port<br>on the RU                                                                                                                                     | Cord end<br>terminal                                             | External alarm device               |  |

# 3.2 AU PGND Cable

This section describes an AU PGND cable which connects an AU and a ground bar for the proper grounding of an AAU.

An PGND cable is a green or green and yellow cable. An OT terminal is installed at each end of the cable. The following figure shows the exterior of an PGND cable.

Figure 3-1 Exterior of an PGND cable



(1) OT terminal (16 mm<sup>2</sup> or 0.025 in.<sup>2</sup>, M6)

(2) OT terminal (16 mm<sup>2</sup> or 0.025 in.<sup>2</sup>, M8)

#### 

- If the customer prepares the PGND cable, a copper-core cable with a cross-sectional area of 16 mm<sup>2</sup> (0.025 in.<sup>2</sup>) or larger is recommended.
- One OT terminal must be added to each end of the PGND cable onsite.
- You can determine the color of the cable and whether to use corresponding two-hole OT terminals based on local regulations.

The following figure shows a two-hole OT terminal.

#### Figure 3-2 Two-hole OT terminal



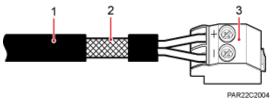
PAD00C6003

### 3.3 RU Power Cables

The RU power cable is a -48 V DC shielded cable. It feeds -48 V DC power to an RU. The maximum length of an RU power cable delivered with RUs is 50 m (164.04 ft) by default.

#### ΠΝΟΤΕ

- The maximum length of power supply that an RU power cable supports is 150 m (492.12 ft). Contact Huawei engineers when an RRU power cable greater than 50 m (164.04 ft) is required.
- If a power device provided by the customer is used, the recommended specification of the circuit breaker on this power device is 15 A to 30 A.


#### Exterior

There are four types of RU power cables in terms of cross-sectional areas:  $3.3 \text{ mm}^2$  (0.005 in. <sup>2</sup>) (12 AWG) and  $5.3 \text{ mm}^2$  (0.008 in.<sup>2</sup>) (10 AWG) complying with North American standards,

and 4 mm<sup>2</sup> (0.006 in.<sup>2</sup>) and 6 mm<sup>2</sup> (0.009 in.<sup>2</sup>) complying with European standards. The specifications of RU power cables vary depending on the actual RU TX power and the cable length.

The RU power cable has a tool-less female connector (pressfit type) at one end and bare wires at the other end. A corresponding terminal is added to the bare wires based on the requirements of the port on the external power device. The following figure shows the exterior of an RU power cable.

Figure 3-3 Exterior of an RU power cable



(1) -48 V DC power cable

(2) Shield layer

(3) Tool-less female connector (pressfit type)

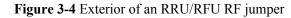
#### **Cable Description**

The following table describes RU power cables.

| Table 3-2 RU | power cables |
|--------------|--------------|
|--------------|--------------|

| Cable    | Wire   | Wire Color in Most<br>Regions |                              | Wire Color in Other Regions |
|----------|--------|-------------------------------|------------------------------|-----------------------------|
|          |        | North<br>American<br>Standard | Europea<br>n<br>Standar<br>d | UK                          |
| RU power | RTN(+) | Black                         | Brown                        | Blue                        |
| cable    | NEG(-) | Blue                          | Blue                         | Gray                        |

# 3.4 RF Jumpers


A radio frequency (RF) jumper forwards and receives RF signals.

#### **RRU/RFU RF Jumper**

An RRU/RFU RF jumper connects an RRU/RFU to the antenna system.

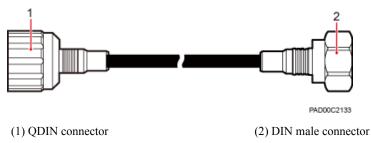
An RRU/RFU RF jumper is a 1/2" jumper, which has a DIN male connector at one end and a customized connector at the other end.

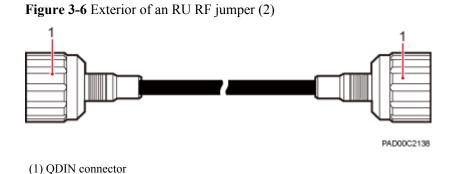
The following figure shows an RRU/RFU RF jumper with a DIN male connector at each end.





(1) DIN male connector


#### **RU RF Jumper**


An RU RF jumper connects an RU to an AU. RU RF jumpers for the AAU fall into the following categories:

- RU RF jumper with a length of 330 mm (12.99 in.), which is used for connecting an RU in the upper slot to an RF port on the DIN port plate in the middle of an AU or connecting an RF port on the DIN port plate in the middle of an AU to an RF port on the combiner.
- RU RF jumper with a length of 450 mm (17.72 in.), which is used for connecting an RU in the upper slot to an RF port on the combiner.
- RU RF jumper with a length of 750 mm (29.53 in.), which is used for connecting an RU in the lower slot to an RF port at the bottom of an AU.
- RU RF jumper with a length of 1100 mm (43.31 in.), which is used for connecting an RU in the lower slot to an RF port on the DIN port plate in the middle of an AU.

An RU RF jumper is a 1/4" jumper. The following figures show an RU RF jumper.

Figure 3-5 Exterior of an RU RF jumper (1)



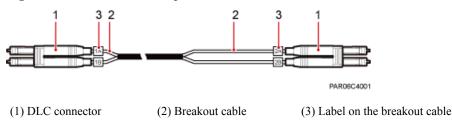


# 3.5 CPRI Fiber Optic Cables

CPRI fiber optic cables are classified into single-mode fiber optic cables and multi-mode fiber optic cables. CPRI fiber optic cables transmit signals between the BBU and RUs.

The maximum length of the multimode fiber optic cable between the BBU and RU is 150 m (492.12 ft).

A single-mode fiber optic cable consists of the single-mode pigtail and trunk single-mode fiber optic cable, and the single-mode pigtail and trunk single-mode fiber optic cable are interconnected using the ODF. The maximum length of the single-mode pigtail is 20 m (65.62 ft) on BBU side and 70 m (229.66 ft) on RU side.

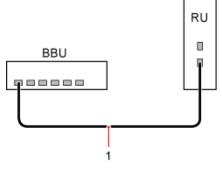

#### ΠΝΟΤΕ

- The ODF and trunk single-mode fiber optic cable are provided by the customer and must comply with the ITU-T G.652 standard.
- The ODF is an outdoor transfer box for fiber optic cables, which interconnects the single-mode pigtail and trunk single-mode fiber optic cable.
- A multimode fiber optic cable and a single-mode fiber optic cable are connected to a multimode optical module and a single-mode optical module, respectively.

#### Exterior

Multimode fiber optic cable: The multimode fiber optic cable has a DLC connector at each end, as shown in the following figure.

Figure 3-7 Multimode fiber optic cable




#### 

- When a multimode fiber optic cable connects a BBU and an RU, the breakout cable on the BBU side is 0.34 m (1.12 ft) and the breakout cable on the RU side is 0.03 m (0.098 ft).
- When a multimode fiber optic cable connects two RUs, the breakout cable on both sides is 0.03 m (0.098 ft).

The following figure shows the connection of the multimode fiber optic cable between a BBU and an RU.

Figure 3-8 Connection of the multimode fiber optic cable between a BBU and an RU



CIR3910001

(1) Multimode fiber optic cable between a BBU and an  $\ensuremath{\mathrm{RU}}$ 

Single-mode pigtail: The single-mode pigtail has a DLC connector at one end and an FC, LC, or SC connector at the other end, as shown in the following figure .

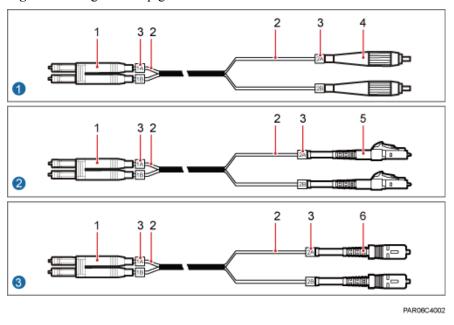
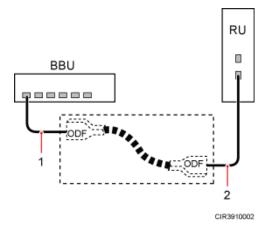



Figure 3-9 Single-mode pigtail


(1) DLC connector (2) Breakout cable (3) Label on the (4) FC connector (5) LC connector (6) SC connector breakout cable

#### 

- When a single-mode pigtail connects a BBU and an ODF, the breakout cables on the BBU side and ODF side are 0.34 m (1.12 ft) and 0.8 m (2.62 ft), respectively.
- When a single-mode pigtail connects an RU and an ODF, the breakout cables on the RU side and ODF side are 0.03 m (0.098 ft) and 0.8 m (2.62 ft), respectively.

The following figure shows the connection of the single-mode pigtail.

Figure 3-10 Connection of the single-mode pigtail



(1) Single-mode pigtail between a BBU and an ODF (2) Single-mode pigtail between an RU and an ODF

#### **Selection Principles**

The following table describes the principles for selecting CPRI fiber optic cables.

| Remote<br>Distance                                                                                                                                                                         | Selection Principle                                                                               | Description                                                                                                          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|
| Less than or<br>equal to 100 m<br>(328.08 ft)                                                                                                                                              | Multimode fiber optic cable                                                                       | Connects the BBU and RU                                                                                              |  |
| Greater than                                                                                                                                                                               | Multimode fiber optic cable                                                                       | Connects the BBU and RU                                                                                              |  |
| 100 m (328.08<br>ft) and equal to<br>or less than<br>150 m (492.12<br>ft)Recommended: single-mode<br>fiber optic cable (single-mode<br>pigtail and trunk single-mode<br>fiber optic cable) |                                                                                                   | The single-mode pigtail at the RU or BBU side is connected to the trunk single-mode fiber optic cable using the ODF. |  |
| Greater than<br>150 m (492.12<br>ft)                                                                                                                                                       | Single-mode fiber optic cable<br>(single-mode pigtail and trunk<br>single-mode fiber optic cable) |                                                                                                                      |  |

Table 3-3 Principles for selecting CPRI fiber optic cables

#### **Pin Assignment**

The following table describes the labels on and recommended connections for the breakout cables of a CPRI fiber optic cable.

**Table 3-4** Labels on and recommended connections for the breakout cables of a CPRI fiber optic

 cable

| Label | Multimode Fiber Optic<br>Cable Between a BBU and<br>an RU | Single-Mode Pigtail                          |
|-------|-----------------------------------------------------------|----------------------------------------------|
| 1A    | CPRI RX port on the RU                                    | RX port on the BBU or CPRI RX port on the RU |
| 1B    | CPRI TX port on the RU                                    | TX port on the BBU or CPRI TX port on the RU |
| 2A    | TX port on the BBU                                        | ODF                                          |
| 2B    | RX port on the BBU                                        | ODF                                          |

# 3.6 AISG Multi-Wire Cables

An Antenna Interface Standards Group (AISG) multi-wire cable connects an RU to an AU and transmits RS485 signals.

AISG multi-wire cables for the AAU3911 fall into the following categories:

- AISG multi-wire cable with a length of 330 mm (12.99 in.), which is used for connecting an RU in the upper slot to a remote electrical tilt (RET) antenna port on the DIN port plate in the middle of an AU.
- AISG multi-wire cable with a length of 750 mm (29.53 in.), which is used for connecting an RU in the lower slot to an RET antenna port at the bottom of an AU.

#### Exterior

The following figure shows the exterior of an AISG multi-wire cable.

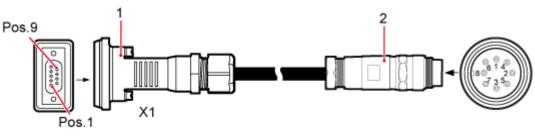



Figure 3-11 Exterior of an AISG multi-wire cable

PAD00C2132

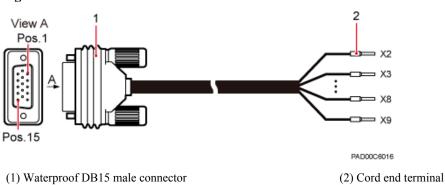
(1) Waterproof DB9 male connector

(2) Standard AISG male connector

#### Description

The following table describes an AISG multi-wire cable.

| Table 3-5 AISG multi- | wire cable |
|-----------------------|------------|
|-----------------------|------------|


| X1 End (Pin of the<br>Waterproof DB9<br>Male Connector) | X2 End (Pin of the<br>Standard AISG<br>Male Connector) | Color            | Wire Type    | Description |
|---------------------------------------------------------|--------------------------------------------------------|------------------|--------------|-------------|
| X1.1                                                    | X2.1                                                   | White and blue   | Twisted pair | +12 V       |
|                                                         |                                                        | Blue             | pan          |             |
| X1.3                                                    | X2.3                                                   | White and orange | Twisted      | RS485 B     |
| X1.5                                                    | X2.5                                                   | Orange           | pair         | RS485 A     |
| X1.4                                                    | X2.4                                                   | White and green  | -            | GND         |
| X1.9 and X1.4 are interconnected.                       | -                                                      | -                | -            | GND         |
| -                                                       | X2.1 and X2.6 are interconnected.                      | -                | -            | +12 V       |
| -                                                       | X2.4 and X2.7 are interconnected.                      | -                | -            | GND         |

# 3.7 RU Alarm Cables (Optional)

The RU alarm cable, a shielded straight-through cable, transmits alarm signals from an external device to an RU so that the base station monitors the operating status of external equipment. The length of an RU alarm cable is 5 m (16.4 ft).

#### Exterior

An RU alarm cable has a waterproof DB15 male connector at one end and eight cord end terminals at the other end, as shown in the following figure.



#### Figure 3-12 Exterior of an RU alarm cable

#### **Cable Description**

The following table describes an RU alarm cable.

| RU<br>Alarm<br>Port | Pin of the<br>Waterpro<br>of DB15<br>Male<br>Connecto<br>r | Wire<br>Color      | Wire<br>Type | Cord end<br>terminal | Description           |
|---------------------|------------------------------------------------------------|--------------------|--------------|----------------------|-----------------------|
| Dry<br>contact      | X1.2                                                       | White and blue     | Twisted pair | X2                   | Boolean input 0+      |
|                     | X1.3                                                       | Blue               |              | X3                   | Boolean input 0-(GND) |
|                     | X1.6                                                       | White and orange   | Twisted pair | X4                   | Boolean input 1+      |
|                     | X1.7                                                       | Orange             |              | X5                   | Boolean input 1-(GND) |
| RS485               | X1.10                                                      | White and green    | Twisted pair | X6                   | APM RX-               |
|                     | X1.11                                                      | Green              |              | X7                   | APM RX+               |
|                     | X1.13                                                      | White and<br>brown | Twisted pair | X8                   | APM TX-               |
|                     | X1.14                                                      | Brown              |              | X9                   | APM TX+               |

Table 3-6 Description of an RU alarm cable